1
|
Vasiliūnaitė E, Repšytė M, Kramer EM, Lang J, Jelinek C, Ulrich RG, Buck CB, Gedvilaitė A. Novel polyomavirus in the endangered garden dormouse Eliomys quercinus. Virol J 2024; 21:309. [PMID: 39605065 PMCID: PMC11603729 DOI: 10.1186/s12985-024-02581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The garden dormouse (Eliomys quercinus) has experienced a significant population decline across Europe in recent decades. While habitat loss and climate change are often cited as primary factors, pathogen exposure, either to novel or to previously known, may play a role in such a decline. This study aimed to investigate the presence of polyomaviruses in garden dormice, given that these viruses are highly prevalent and can cause disease, particularly in immunocompromised individuals. METHODS The carcasses of garden dormice (n = 89) were collected throughout Germany. Kidney samples were tested for the presence of polyomavirus DNA using nested degenerate and specific diagnostic PCRs. Seroprevalence was assessed from chest cavity fluid samples through an enzyme-linked immunosorbent assay using polyomavirus VP1 virus-like particles produced in yeast. RESULTS A new polyomavirus, related to chimpanzee (Pan troglodytes) polyomaviruses 4 and 5 and human Merkel cell polyomavirus, was identified in the garden dormouse. Two 5,380 bp-length complete viral genomes were sequenced from dormice kidney samples (sequences PQ246041 and PQ246042). Genes encoding the putative structural proteins VP1, VP2, and VP3, as well as the Large, Middle, and small T antigens, containing conserved functional domains were identified. Polyomavirus DNA was detected in 2 of 74 dormice (2.7%, 95% confidence interval: 0-6.4%) through PCR, while 12 of 69 animals (17.4%, 95% confidence interval: 8.4-26.3%) tested positive for polyomavirus-specific antibodies. CONCLUSIONS In conclusion, here we describe a novel polyomavirus in the garden dormouse with molecular and serological detection. Pairwise sequence comparison and phylogenetic analysis suggest that this novel virus may represent a novel species within the genus Alphapolyomavirus. Future work should examine if this virus is garden dormouse-specific and whether it is associated with disease in dormice.
Collapse
Affiliation(s)
- Emilija Vasiliūnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius, LT-10257, Lithuania.
| | - Monika Repšytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius, LT-10257, Lithuania
| | - Eva Marie Kramer
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus-Liebig-University Gießen, Frankfurter Strasse 104, D-35392, Gießen, Germany
| | - Johannes Lang
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus-Liebig-University Gießen, Frankfurter Strasse 104, D-35392, Gießen, Germany
| | - Christine Jelinek
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, Justus-Liebig-University Gießen, Frankfurter Strasse 104, D-35392, Gießen, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut (FLI) Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Gießen, Germany
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4263, USA
| | - Alma Gedvilaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
2
|
Lučiūnaitė A, Dalgėdienė I, Vasiliūnaitė E, Norkienė M, Kučinskaitė-Kodzė I, Žvirblienė A, Gedvilaitė A. Immunogenic Properties and Antigenic Similarity of Virus-like Particles Derived from Human Polyomaviruses. Int J Mol Sci 2023; 24:ijms24054907. [PMID: 36902338 PMCID: PMC10003412 DOI: 10.3390/ijms24054907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Polyomaviruses (PyVs) are highly prevalent in humans and animals. PyVs cause mild illness, however, they can also elicit severe diseases. Some PyVs are potentially zoonotic, such as simian virus 40 (SV40). However, data are still lacking about their biology, infectivity, and host interaction with different PyVs. We investigated the immunogenic properties of virus-like particles (VLPs) derived from viral protein 1 (VP1) of human PyVs. We immunised mice with recombinant HPyV VP1 VLPs mimicking the structure of viruses and compared their immunogenicity and cross-reactivity of antisera using a broad spectrum of VP1 VLPs derived from the PyVs of humans and animals. We demonstrated a strong immunogenicity of studied VLPs and a high degree of antigenic similarity between VP1 VLPs of different PyVs. PyV-specific monoclonal antibodies were generated and applied for investigation of VLPs phagocytosis. This study demonstrated that HPyV VLPs are highly immunogenic and interact with phagocytes. Data on the cross-reactivity of VP1 VLP-specific antisera revealed antigenic similarities among VP1 VLPs of particular human and animal PyVs and suggested possible cross-immunity. As the VP1 capsid protein is the major viral antigen involved in virus-host interaction, an approach based on the use of recombinant VLPs is relevant for studying PyV biology regarding PyV interaction with the host immune system.
Collapse
|
3
|
Ochola GO, Li B, Obanda V, Ommeh S, Ochieng H, Yang XL, Onyuok SO, Shi ZL, Agwanda B, Hu B. Discovery of novel DNA viruses in small mammals from Kenya. Virol Sin 2022; 37:491-502. [PMID: 35680114 PMCID: PMC9437603 DOI: 10.1016/j.virs.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Emergence and re-emergence of infectious diseases of wildlife origin have led pre-emptive pathogen surveillances in animals to be a public health priority. Rodents and shrews are among the most numerically abundant vertebrate taxa and are known as natural hosts of important zoonotic viruses. Many surveillance programs focused more on RNA viruses. In comparison, much less is known about DNA viruses harbored by these small mammals. To fill this knowledge gap, tissue specimens of 232 animals including 226 rodents, five shrews and one hedgehog were collected from 5 counties in Kenya and tested for the presence of DNA viruses belonging to 7 viral families by PCR. Diverse DNA sequences of adenoviruses, adeno-associated viruses, herpesviruses and polyomaviruses were detected. Phylogenetic analyses revealed that most of these viruses showed distinction from previously described viruses and formed new clusters. Furthermore, this is the first report of the discovery and full-length genome characterization of a polyomavirus in Lemniscomys species. This novel polyomavirus, named LsPyV KY187, has less than 60% amino acid sequence identity to the most related Glis glis polyomavirus 1 and Sciurus carolinensis polyomavirus 1 in both large and small T-antigen proteins and thus can be putatively allocated to a novel species within Betapolyomavirus. Our findings help us better understand the genetic diversity of DNA viruses in rodent and shrew populations in Kenya and provide new insights into the evolution of those DNA viruses in their small mammal reservoirs. It demonstrates the necessity of ongoing pathogen discovery studies targeting rodent-borne viruses in East Africa.
Collapse
Affiliation(s)
- Griphin Ochieng Ochola
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; Mammalogy Section, National Museums of Kenya, Nairobi, 40658-00100, Kenya; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Vincent Obanda
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, 40241-00100, Kenya
| | - Sheila Ommeh
- Institute of Biotechnology Research, Jomo Kenyatta University of Science and Technology, Nairobi, 62000-00200, Kenya
| | - Harold Ochieng
- Mammalogy Section, National Museums of Kenya, Nairobi, 40658-00100, Kenya
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Samson Omondi Onyuok
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Mammalogy Section, National Museums of Kenya, Nairobi, 40658-00100, Kenya
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Bernard Agwanda
- Mammalogy Section, National Museums of Kenya, Nairobi, 40658-00100, Kenya.
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
4
|
The Bank Vole (Clethrionomys glareolus)—Small Animal Model for Hepacivirus Infection. Viruses 2021; 13:v13122421. [PMID: 34960690 PMCID: PMC8708279 DOI: 10.3390/v13122421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Many people worldwide suffer from hepatitis C virus (HCV) infection, which is frequently persistent. The lack of efficient vaccines against HCV and the unavailability of or limited compliance with existing antiviral therapies is problematic for health care systems worldwide. Improved small animal models would support further hepacivirus research, including development of vaccines and novel antivirals. The recent discovery of several mammalian hepaciviruses may facilitate such research. In this study, we demonstrated that bank voles (Clethrionomys glareolus) were susceptible to bank vole-associated Hepacivirus F and Hepacivirus J strains, based on the detection of hepaciviral RNA in 52 of 55 experimentally inoculated voles. In contrast, interferon α/β receptor deficient C57/Bl6 mice were resistant to infection with both bank vole hepaciviruses (BvHVs). The highest viral genome loads in infected voles were detected in the liver, and viral RNA was visualized by in situ hybridization in hepatocytes, confirming a marked hepatotropism. Furthermore, liver lesions in infected voles resembled those of HCV infection in humans. In conclusion, infection with both BvHVs in their natural hosts shares striking similarities to HCV infection in humans and may represent promising small animal models for this important human disease.
Collapse
|
5
|
Jandrig B, Krause H, Zimmermann W, Vasiliunaite E, Gedvilaite A, Ulrich RG. Hamster Polyomavirus Research: Past, Present, and Future. Viruses 2021; 13:v13050907. [PMID: 34068409 PMCID: PMC8153644 DOI: 10.3390/v13050907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022] Open
Abstract
Hamster polyomavirus (Mesocricetus auratus polyomavirus 1, HaPyV) was discovered as one of the first rodent polyomaviruses at the end of the 1960s in a colony of Syrian hamsters (Mesocricetus auratus) affected by skin tumors. Natural HaPyV infections have been recorded in Syrian hamster colonies due to the occurrence of skin tumors and lymphomas. HaPyV infections of Syrian hamsters represent an important and pioneering tumor model. Experimental infections of Syrian hamsters of different colonies are still serving as model systems (e.g., mesothelioma). The observed phylogenetic relationship of HaPyV to murine polyomaviruses within the genus Alphapolyomavirus, and the exclusive detection of other cricetid polyomaviruses, i.e., common vole (Microtus arvalis polyomavirus 1) and bank vole (Myodes glareolus polyomavirus 1) polyomaviruses, in the genus Betapolyomavirus, must be considered with caution, as knowledge of rodent-associated polyomaviruses is still limited. The genome of HaPyV shows the typical organization of polyomaviruses with an early and a late transcriptional region. The early region encodes three tumor (T) antigens including a middle T antigen; the late region encodes three capsid proteins. The major capsid protein VP1 of HaPyV was established as a carrier for the generation of autologous, chimeric, and mosaic virus-like particles (VLPs) with a broad range of applications, e.g., for the production of epitope-specific antibodies. Autologous VLPs have been applied for entry and maturation studies of dendritic cells. The generation of chimeric and mosaic VLPs indicated the high flexibility of the VP1 carrier protein for the insertion of foreign sequences. The generation of pseudotype VLPs of original VP1 and VP2–foreign protein fusion can further enhance the applicability of this system. Future investigations should evaluate the evolutionary origin of HaPyV, monitor its occurrence in wildlife and Syrian hamster breeding, and prove its value for the generation of potential vaccine candidates and as a gene therapy vehicle.
Collapse
Affiliation(s)
- Burkhard Jandrig
- Department of Urology, University Medical Center Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Correspondence:
| | - Hans Krause
- Charité—Universitätsmedizin Berlin, Urologische Klinik, Charitéplatz 1, 10117 Berlin, Germany;
| | | | - Emilija Vasiliunaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; (E.V.); (A.G.)
| | - Alma Gedvilaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; (E.V.); (A.G.)
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Insel Riems, Germany
| |
Collapse
|
6
|
Isolation and characterization of new Puumala orthohantavirus strains from Germany. Virus Genes 2020; 56:448-460. [PMID: 32328924 PMCID: PMC7329759 DOI: 10.1007/s11262-020-01755-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/03/2020] [Indexed: 12/28/2022]
Abstract
Orthohantaviruses are re-emerging rodent-borne pathogens distributed all over the world. Here, we report the isolation of a Puumala orthohantavirus (PUUV) strain from bank voles caught in a highly endemic region around the city Osnabrück, north-west Germany. Coding and non-coding sequences of all three segments (S, M, and L) were determined from original lung tissue, after isolation and after additional passaging in VeroE6 cells and a bank vole-derived kidney cell line. Different single amino acid substitutions were observed in the RNA-dependent RNA polymerase (RdRP) of the two stable PUUV isolates. The PUUV strain from VeroE6 cells showed a lower titer when propagated on bank vole cells compared to VeroE6 cells. Additionally, glycoprotein precursor (GPC)-derived virus-like particles of a German PUUV sequence allowed the generation of monoclonal antibodies that allowed the reliable detection of the isolated PUUV strain in the immunofluorescence assay. In conclusion, this is the first isolation of a PUUV strain from Central Europe and the generation of glycoprotein-specific monoclonal antibodies for this PUUV isolate. The obtained virus isolate and GPC-specific antibodies are instrumental tools for future reservoir host studies.
Collapse
|
7
|
Kesäniemi J, Lavrinienko A, Tukalenko E, Mappes T, Watts PC, Jurvansuu J. Infection Load and Prevalence of Novel Viruses Identified from the Bank Vole Do Not Associate with Exposure to Environmental Radioactivity. Viruses 2019; 12:E44. [PMID: 31905955 PMCID: PMC7019477 DOI: 10.3390/v12010044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Bank voles (Myodes glareolus) are host to many zoonotic viruses. As bank voles inhabiting areas contaminated by radionuclides show signs of immunosuppression, resistance to apoptosis, and elevated DNA repair activity, we predicted an association between virome composition and exposure to radionuclides. To test this hypothesis, we studied the bank vole virome in samples of plasma derived from animals inhabiting areas of Ukraine (contaminated areas surrounding the former nuclear power plant at Chernobyl, and uncontaminated areas close to Kyiv) that differed in level of environmental radiation contamination. We discovered four strains of hepacivirus and four new virus sequences: two adeno-associated viruses, an arterivirus, and a mosavirus. However, viral prevalence and viral load, and the ability to cause a systemic infection, was not dependent on the level of environmental radiation.
Collapse
Affiliation(s)
- Jenni Kesäniemi
- Finland Ecology and Genetics Research Unit, University of Oulu, 90014 Oulu, Finland;
| | - Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland; (A.L.); (T.M.); (P.C.W.)
| | - Eugene Tukalenko
- National Research Center for Radiation Medicine of the National Academy of Medical Science, 02000 Kyiv, Ukraine;
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland; (A.L.); (T.M.); (P.C.W.)
| | - Phillip C. Watts
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland; (A.L.); (T.M.); (P.C.W.)
| | - Jaana Jurvansuu
- Finland Ecology and Genetics Research Unit, University of Oulu, 90014 Oulu, Finland;
| |
Collapse
|
8
|
Cho M, Kim H, Son HS. Codon usage patterns of LT-Ag genes in polyomaviruses from different host species. Virol J 2019; 16:137. [PMID: 31727090 PMCID: PMC6854729 DOI: 10.1186/s12985-019-1245-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Polyomaviruses (PyVs) have a wide range of hosts, from humans to fish, and their effects on hosts vary. The differences in the infection characteristics of PyV with respect to the host are assumed to be influenced by the biochemical function of the LT-Ag protein, which is related to the cytopathic effect and tumorigenesis mechanism via interaction with the host protein. Methods We carried out a comparative analysis of codon usage patterns of large T-antigens (LT-Ags) of PyVs isolated from various host species and their functional domains and sequence motifs. Parity rule 2 (PR2) and neutrality analysis were applied to evaluate the effects of mutation and selection pressure on codon usage bias. To investigate evolutionary relationships among PyVs, we carried out a phylogenetic analysis, and a correspondence analysis of relative synonymous codon usage (RSCU) values was performed. Results Nucleotide composition analysis using LT-Ag gene sequences showed that the GC and GC3 values of avian PyVs were higher than those of mammalian PyVs. The effective number of codon (ENC) analysis showed host-specific ENC distribution characteristics in both the LT-Ag gene and the coding sequences of its domain regions. In the avian and fish PyVs, the codon diversity was significant, whereas the mammalian PyVs tended to exhibit conservative and host-specific evolution of codon usage bias. The results of our PR2 and neutrality analysis revealed mutation bias or highly variable GC contents by showing a narrow GC12 distribution and wide GC3 distribution in all sequences. Furthermore, the calculated RSCU values revealed differences in the codon usage preference of the LT-AG gene according to the host group. A similar tendency was observed in the two functional domains used in the analysis. Conclusions Our study showed that specific domains or sequence motifs of various PyV LT-Ags have evolved so that each virus protein interacts with host cell targets. They have also adapted to thrive in specific host species and cell types. Functional domains of LT-Ag, which are known to interact with host proteins involved in cell proliferation and gene expression regulation, may provide important information, as they are significantly related to the host specificity of PyVs.
Collapse
Affiliation(s)
- Myeongji Cho
- Laboratory of Computational Biology & Bioinformatics, Institute of Public Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hayeon Kim
- Department of Biomedical Laboratory Science, Kyungdong University, 815 Gyeonhwon-ro, Munmak, Wonju, Gangwondo, 24695, South Korea
| | - Hyeon S Son
- Laboratory of Computational Biology & Bioinformatics, Institute of Public Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. .,SNU Bioinformatics Institute, Interdisciplinary Graduate Program in Bioinformatics, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
9
|
Novel Polyomaviruses in Mammals from Multiple Orders and Reassessment of Polyomavirus Evolution and Taxonomy. Viruses 2019; 11:v11100930. [PMID: 31658738 PMCID: PMC6833039 DOI: 10.3390/v11100930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
As the phylogenetic organization of mammalian polyomaviruses is complex and currently incompletely resolved, we aimed at a deeper insight into their evolution by identifying polyomaviruses in host orders and families that have either rarely or not been studied. Sixteen unknown and two known polyomaviruses were identified in animals that belong to 5 orders, 16 genera, and 16 species. From 11 novel polyomaviruses, full genomes could be determined. Splice sites were predicted for large and small T antigen (LTAg, STAg) coding sequences (CDS) and examined experimentally in transfected cell culture. In addition, splice sites of seven published polyomaviruses were analyzed. Based on these data, LTAg and STAg annotations were corrected for 10/86 and 74/86 published polyomaviruses, respectively. For 25 polyomaviruses, a spliced middle T CDS was observed or predicted. Splice sites that likely indicate expression of additional, alternative T antigens, were experimentally detected for six polyomaviruses. In contrast to all other mammalian polyomaviruses, three closely related cetartiodactyl polyomaviruses display two introns within their LTAg CDS. In addition, the VP2 of Glis glis (edible dormouse) polyomavirus 1 was observed to be encoded by a spliced transcript, a unique experimental finding within the Polyomaviridae family. Co-phylogenetic analyses based on LTAg CDS revealed a measurable signal of codivergence when considering all mammalian polyomaviruses, most likely driven by relatively recent codivergence events. Lineage duplication was the only other process whose influence on polyomavirus evolution was unambiguous. Finally, our analyses suggest that an update of the taxonomy of the family is required, including the creation of novel genera of mammalian and non-mammalian polyomaviruses.
Collapse
|
10
|
Riebold D, Russow K, Schlegel M, Wollny T, Thiel J, Freise J, Hüppop O, Eccard JA, Plenge-Bönig A, Loebermann M, Ulrich RG, Klammt S, Mettenleiter TC, Reisinger EC. Occurrence of Gastrointestinal Parasites in Small Mammals from Germany. Vector Borne Zoonotic Dis 2019; 20:125-133. [PMID: 31513468 DOI: 10.1089/vbz.2019.2457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An increase in zoonotic infections in humans in recent years has led to a high level of public interest. However, the extent of infestation of free-living small mammals with pathogens and especially parasites is not well understood. This pilot study was carried out within the framework of the "Rodent-borne pathogens" network to identify zoonotic parasites in small mammals in Germany. From 2008 to 2009, 111 small mammals of 8 rodent and 5 insectivore species were collected. Feces and intestine samples from every mammal were examined microscopically for the presence of intestinal parasites by using Telemann concentration for worm eggs, Kinyoun staining for coccidia, and Heidenhain staining for other protozoa. Adult helminths were additionally stained with carmine acid for species determination. Eleven different helminth species, five coccidians, and three other protozoa species were detected. Simultaneous infection of one host by different helminths was common. Hymenolepis spp. (20.7%) were the most common zoonotic helminths in the investigated hosts. Coccidia, including Eimeria spp. (30.6%), Cryptosporidium spp. (17.1%), and Sarcocystis spp. (17.1%), were present in 40.5% of the feces samples of small mammals. Protozoa, such as Giardia spp. and amoebae, were rarely detected, most likely because of the repeated freeze-thawing of the samples during preparation. The zoonotic pathogens detected in this pilot study may be potentially transmitted to humans by drinking water, smear infection, and airborne transmission.
Collapse
Affiliation(s)
- Diana Riebold
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany.,Host Septomics Research Group, ZIK Septomics, University Jena Medical School, Jena, Germany
| | - Kati Russow
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany
| | - Mathias Schlegel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Theres Wollny
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Faculty of Natural Sciences, Lausitz University of Applied Sciences, Senftenberg, Germany
| | - Jörg Thiel
- Forstliches Forschungs- und Kompetenzzentrum Gotha, Gotha, Germany
| | - Jona Freise
- Department of Pest Control, Veterinary Task-Force, Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Wardenburg, Germany
| | - Ommo Hüppop
- Institute of Avian Research "Vogelwarte Helgoland," Wilhelmshaven, Germany
| | - Jana Anja Eccard
- Animal Ecology, Institute for Biochemistry and Biology, University Potsdam, Potsdam, Germany
| | - Anita Plenge-Bönig
- Division of Hygiene and Infectious Diseases, Institute of Hygiene and Environment, Hamburg, Germany
| | - Micha Loebermann
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany
| | - Rainer Günter Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Sebastian Klammt
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany
| | | | - Emil Christian Reisinger
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
11
|
Abstract
Cancer is ubiquitous in wildlife, affecting animals from bivalves to pachyderms and cetaceans. Reports of increasing frequency demonstrate that neoplasia is associated with substantial mortality in wildlife species. Anthropogenic activities and global weather changes are shaping new geographical limitations for many species, and alterations in living niches are associated with visible examples of genetic bottlenecks, toxin exposures, oncogenic pathogens, stress and immunosuppression, which can all contribute to cancers in wild species. Nations that devote resources to monitoring the health of wildlife often do so for human-centric reasons, including for the prediction of the potential for zoonotic disease, shared contaminants, chemicals and medications, and for observing the effect of exposure from crowding and loss of habitat. Given the increasing human footprint on land and in the sea, wildlife conservation should also become a more important motivating factor. Greater attention to the patterns of the emergence of wildlife cancer is imperative because growing numbers of species are existing at the interface between humans and the environment, making wildlife sentinels for both animal and human health. Therefore, monitoring wildlife cancers could offer interesting and novel insights into potentially unique non-age-related mechanisms of carcinogenesis across species.
Collapse
Affiliation(s)
- Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Dalen Agnew
- Veterinary Diagnostic Laboratory, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Michael K Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Maia FGM, de Souza WM, Sabino-Santos G, Fumagalli MJ, Modha S, Murcia PR, Figueiredo LTM. A novel polyomavirus in sigmodontine rodents from São Paulo State, Brazil. Arch Virol 2018; 163:2913-2915. [PMID: 29931397 DOI: 10.1007/s00705-018-3913-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/01/2018] [Indexed: 01/17/2023]
Abstract
The nearly complete genome sequence of a novel polyomavirus from blood samples of Akodon montensis and Calomys tener collected in Brazil was determined by high-throughput sequencing. This virus showed a typical polyomaviruses genome organization, and it was classified as a member of the genus Betapolyomavirus. Our results expand the host range and viral diversity of the family Polyomaviridae.
Collapse
Affiliation(s)
- Felipe Gonçalves Motta Maia
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - William Marciel de Souza
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Gilberto Sabino-Santos
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Marcílio Jorge Fumagalli
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14049-900, Brazil
| |
Collapse
|
13
|
Abstract
The microbiome of wild Mus musculus (house mouse), a globally distributed invasive pest that resides in close contact with humans in urban centers, is largely unexplored. Here, we report analysis of the fecal virome of house mice in residential buildings in New York City, NY. Mice were collected at seven sites in Manhattan, Queens, Brooklyn, and the Bronx over a period of 1 year. Unbiased high-throughput sequencing of feces revealed 36 viruses from 18 families and 21 genera, including at least 6 novel viruses and 3 novel genera. A representative screen of 15 viruses by PCR confirmed the presence of 13 of these viruses in liver. We identified an uneven distribution of diversity, with several viruses being associated with specific locations. Higher mouse weight was associated with an increase in the number of viruses detected per mouse, after adjusting for site, sex, and length. We found neither genetic footprints to known human viral pathogens nor antibodies to lymphocytic choriomeningitis virus.IMPORTANCE Mice carry a wide range of infectious agents with zoonotic potential. Their proximity to humans in the built environment is therefore a concern for public health. Laboratory mice are also the most common experimental model for investigating the pathobiology of infectious diseases. In this survey of mice trapped in multiple locations within New York City over a period of 1 year, we found a diverse collection of viruses that includes some previously not associated with house mice and others that appear to be novel. Although we found no known human pathogens, our findings provide insights into viral ecology and may yield models that have utility for clinical microbiology.
Collapse
|
14
|
Gedvilaite A, Tryland M, Ulrich RG, Schneider J, Kurmauskaite V, Moens U, Preugschas H, Calvignac-Spencer S, Ehlers B. Novel polyomaviruses in shrews ( Soricidae) with close similarity to human polyomavirus 12. J Gen Virol 2017; 98:3060-3067. [PMID: 29095685 DOI: 10.1099/jgv.0.000948] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shrews (family Soricidae) have already been reported to host microorganisms pathogenic for humans. In an effort to search for additional infectious agents with zoonotic potential, we detected polyomaviruses (PyVs) in common shrew, crowned shrew, and pygmy shrew (Sorex araneus, S. coronatus and S. minutus). From these, 11 full circular genomes were determined. Phylogenetic analysis based on large T protein sequences showed that these novel PyVs form a separate clade within the genus Alphapolyomavirus. Within this clade, the phylogenetic relationships suggest host-virus co-divergence. Surprisingly, one PyV from common shrew showed a genomic sequence nearly identical to that of the human polyomavirus 12 (HPyV12). This indicated that HPyV12 is a variant of a non-human PyV that naturally infects shrews. Whether HPyV12 is a bona fide human-tropic polyomavirus arising from a recent shrew-to-human transmission event or instead reflects a technical artefact, such as consumable contamination with shrew material, needs further investigation.
Collapse
Affiliation(s)
- Alma Gedvilaite
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Morten Tryland
- Department of Arctic and Marine Biology, Arctic Infection Biology, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Julia Schneider
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.,Present address: NMI TT Pharmaservices, c/o CoLaborator, Berlin, Germany
| | | | - Ugo Moens
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | | | - Bernhard Ehlers
- Division 12 'Measles, Mumps, Rubella and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| |
Collapse
|
15
|
Qi D, Shan T, Liu Z, Deng X, Zhang Z, Bi W, Owens JR, Feng F, Zheng L, Huang F, Delwart E, Hou R, Zhang W. A novel polyomavirus from the nasal cavity of a giant panda (Ailuropoda melanoleuca). Virol J 2017; 14:207. [PMID: 29078783 PMCID: PMC5658932 DOI: 10.1186/s12985-017-0867-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023] Open
Abstract
Background Polyomaviruses infect a wide variety of mammalian and avian hosts with a broad spectrum of outcomes including asymptomatic infection, acute systemic disease, and tumor induction. Methods Viral metagenomics and general PCR methods were used to detected viral nucleic acid in the samples from a diseased and healthy giant pandas. Results A novel polyomavirus, the giant panda polyomavirus 1 (GPPyV1) from the nasal cavity of a dead giant panda (Ailuropoda melanoleuca) was characterized. The GPPyV1 genome is 5144 bp in size and reveals five putative open-reading frames coding for the classic small and large T antigens in the early region, and the VP1, VP2 and VP3 capsid proteins in the late region. Phylogenetic analyses of the large T antigen of the GPPyV1 indicated GPPyV1 belonged to a putative new species within genus Deltapolyomavirus, clustering with four human polyomavirus species. The GPPyV1 VP1 and VP2 clustered with genus Alphapolyomavirus. Our epidemiologic study indicated that this novel polyomavirus was also detected in nasal swabs and fecal samples collected from captive healthy giant pandas. Conclusion A novel polyomavirus was detected in giant pandas and its complete genome was characterized, which may cause latency infection in giant pandas.
Collapse
Affiliation(s)
- Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China.,Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhijian Liu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, 94118, USA
| | - Zhihe Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China
| | - Wenlei Bi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China
| | - Jacob Robert Owens
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China
| | - Feifei Feng
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China
| | - Lisong Zheng
- Liziping Nature Reserve, YaAn, Sichuan Province, Sichuan, 625499, China
| | - Feng Huang
- Liziping Nature Reserve, YaAn, Sichuan Province, Sichuan, 625499, China
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, 94118, USA
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China.
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
16
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Drewes S, Straková P, Drexler JF, Jacob J, Ulrich RG. Assessing the Diversity of Rodent-Borne Viruses: Exploring of High-Throughput Sequencing and Classical Amplification/Sequencing Approaches. Adv Virus Res 2017; 99:61-108. [PMID: 29029730 DOI: 10.1016/bs.aivir.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rodents are distributed throughout the world and interact with humans in many ways. They provide vital ecosystem services, some species are useful models in biomedical research and some are held as pet animals. However, many rodent species can have adverse effects such as damage to crops and stored produce, and they are of health concern because of the transmission of pathogens to humans and livestock. The first rodent viruses were discovered by isolation approaches and resulted in break-through knowledge in immunology, molecular and cell biology, and cancer research. In addition to rodent-specific viruses, rodent-borne viruses are causing a large number of zoonotic diseases. Most prominent examples are reemerging outbreaks of human hemorrhagic fever disease cases caused by arena- and hantaviruses. In addition, rodents are reservoirs for vector-borne pathogens, such as tick-borne encephalitis virus and Borrelia spp., and may carry human pathogenic agents, but likely are not involved in their transmission to human. In our days, next-generation sequencing or high-throughput sequencing (HTS) is revolutionizing the speed of the discovery of novel viruses, but other molecular approaches, such as generic RT-PCR/PCR and rolling circle amplification techniques, contribute significantly to the rapidly ongoing process. However, the current knowledge still represents only the tip of the iceberg, when comparing the known human viruses to those known for rodents, the mammalian taxon with the largest species number. The diagnostic potential of HTS-based metagenomic approaches is illustrated by their use in the discovery and complete genome determination of novel borna- and adenoviruses as causative disease agents in squirrels. In conclusion, HTS, in combination with conventional RT-PCR/PCR-based approaches, resulted in a drastically increased knowledge of the diversity of rodent viruses. Future improvements of the used workflows, including bioinformatics analysis, will further enhance our knowledge and preparedness in case of the emergence of novel viruses. Classical virological and additional molecular approaches are needed for genome annotation and functional characterization of novel viruses, discovered by these technologies, and evaluation of their zoonotic potential.
Collapse
Affiliation(s)
- Stephan Drewes
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Petra Straková
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic
| | - Jan F Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Center for Infection Research (DZIF), Germany
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany.
| |
Collapse
|
18
|
Besch-Williford C, Pesavento P, Hamilton S, Bauer B, Kapusinszky B, Phan T, Delwart E, Livingston R, Cushing S, Watanabe R, Levin S, Berger D, Myles M. A Naturally Transmitted Epitheliotropic Polyomavirus Pathogenic in Immunodeficient Rats: Characterization, Transmission, and Preliminary Epidemiologic Studies. Toxicol Pathol 2017; 45:593-603. [PMID: 28782456 DOI: 10.1177/0192623317723541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report the identification, pathogenesis, and transmission of a novel polyomavirus in severe combined immunodeficient F344 rats with null Prkdc and interleukin 2 receptor gamma genes. Infected rats experienced weight loss, decreased fecundity, and mortality. Large basophilic intranuclear inclusions were observed in epithelium of the respiratory tract, salivary and lacrimal glands, uterus, and prostate gland. Unbiased viral metagenomic sequencing of lesioned tissues identified a novel polyomavirus, provisionally named Rattus norvegicus polyomavirus 2 (RatPyV2), which clustered with Washington University (WU) polyomavirus in the Wuki clade of the Betapolyomavirus genus. In situ hybridization analyses and quantitative polymerase chain reaction (PCR) results demonstrated viral nucleic acids in epithelium of respiratory, glandular, and reproductive tissues. Polyomaviral disease was reproduced in Foxn1rnu nude rats cohoused with infected rats or experimentally inoculated with virus. After development of RatPyV2-specific diagnostic assays, a survey of immune-competent rats from North American research institutions revealed detection of RatPyV2 in 7 of 1,000 fecal samples by PCR and anti-RatPyV2 antibodies in 480 of 1,500 serum samples. These findings suggest widespread infection in laboratory rat populations, which may have profound implications for established models of respiratory injury. Additionally, RatPyV2 infection studies may provide an important system to investigate the pathogenesis of WU polyomavirus diseases of man.
Collapse
Affiliation(s)
| | - Patricia Pesavento
- 2 Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | | - Beth Bauer
- 1 IDEXX BioResearch, Columbia, Missouri, USA
| | - Beatrix Kapusinszky
- 3 Blood Systems Research Institute, San Francisco, California, USA.,4 Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Tung Phan
- 3 Blood Systems Research Institute, San Francisco, California, USA.,4 Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Eric Delwart
- 3 Blood Systems Research Institute, San Francisco, California, USA.,4 Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | | | | | - Rie Watanabe
- 2 Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Stephen Levin
- 5 Center for Comparative Medicine, Northwestern University, Chicago, Illinois, USA
| | - Diana Berger
- 5 Center for Comparative Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
19
|
Heuser E, Fischer S, Ryll R, Mayer-Scholl A, Hoffmann D, Spahr C, Imholt C, Alfa DM, Fröhlich A, Lüschow D, Johne R, Ehlers B, Essbauer S, Nöckler K, Ulrich RG. Survey for zoonotic pathogens in Norway rat populations from Europe. PEST MANAGEMENT SCIENCE 2017; 73:341-348. [PMID: 27299665 DOI: 10.1002/ps.4339] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The Norway rat Rattus norvegicus is an important reservoir of various zoonotic pathogens, such as cowpox virus and Leptospira, but also for agents of no or unknown zoonotic potential. We describe a survey of 426 Norway rats originating from five European countries and different habitats for Leptospira spp., rickettsiae, orthopoxvirus (OPV), avian metapneumovirus subtypes A and B (aMPV) and rat polyomavirus (rat PyV). RESULTS Leptospira DNA was detected in 60 out of 420 (14.3%) rats, and Rickettsia DNA was found in three out of 369 (0.8%) rats investigated. PCR-based typing resulted in the identification of L. interrogans sequence type 17, which corresponds to the serogroup Icterohaemorrhagiae, and Rickettsia helvetica respectively. Rat PyV DNA was detected in 103 out of 421 (24.5%) rats. OPV DNA and aMPV RNA were detected in none of the rats, but OPV-specific antibodies were detected in three out of 388 (0.8%) rats. The frequency of single Leptospira and rat PyV infections and coinfections was, independent of sex, greater for adults compared with juveniles/subadults and greater at rural sites compared with urban areas. CONCLUSIONS Study results indicate a broad geographical distribution of Leptospira DNA in rats within Europe, underlining the need to investigate further the potential mechanisms leading to increased prevalence in rural habitats and to assess the relevance to public health. In contrast, rickettsia and OPV infections rarely occurred in wild rat populations. The potential influence of rat PyV on the susceptibility to infections with other pathogens should be investigated in future studies. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elisa Heuser
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Stefan Fischer
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - René Ryll
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | | | - Donata Hoffmann
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Carina Spahr
- Federal Institute for Risk Assessment, Berlin, Germany
| | - Christian Imholt
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forestry, Vertebrate Research, Münster, Germany
| | - Dewi Murni Alfa
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Andreas Fröhlich
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Dörte Lüschow
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Poultry Diseases, Berlin, Germany
| | - Reimar Johne
- Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Insel Riems, Germany
| |
Collapse
|
20
|
Dela Cruz FN, Li L, Delwart E, Pesavento PA. A novel pulmonary polyomavirus in alpacas (Vicugna pacos). Vet Microbiol 2017; 201:49-55. [PMID: 28284622 DOI: 10.1016/j.vetmic.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Viral metagenomic analysis detected a novel polyomavirus in a 6-month old female alpaca (Vicugna pacos) euthanized after a diagnosis of disseminated lymphosarcoma. The viral genome was fully sequenced, found to be similar to other polyomaviruses in gene architecture and provisionally named Alpaca polyomavirus or AlPyV. Viral nucleic acid was detected by PCR in venous blood, spleen, thymus, and lung. AlPyV phylogenetically clustered in the "Wuki" group of PyVs, which includes WU and KI polyomaviruses, commonly found in human respiratory samples. In an ISH analysis of 17 alpaca necropsies, 7 had detectable virus within the lung. In animals without pneumonia, probe hybridization was restricted to the nuclei of scattered individual bronchiolar epithelial cells. Three of the ISH positive alpacas had interstitial pneumonia of unknown origin, and in these animals there was viral nucleic acid detected in bronchiolar epithelium, type II pneumocytes, and alveolar macrophages. The pattern of AlPyV distribution is consistent with a persistent respiratory virus that has a possible role in respiratory disease.
Collapse
Affiliation(s)
- Florante N Dela Cruz
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Linlin Li
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - P A Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
21
|
Identification and Characterization of Novel Rat Polyomavirus 2 in a Colony of X-SCID Rats by P-PIT assay. mSphere 2016; 1:mSphere00334-16. [PMID: 28028546 PMCID: PMC5177731 DOI: 10.1128/msphere.00334-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 11/20/2022] Open
Abstract
Although P-PIT was developed to detect diseases associated with known human polyomaviruses, the identification of a new polyomavirus in rats suggests that it may have utility as a broad-based screen for new, as well as known polyomaviruses. Our findings suggest that RatPyV2 may be a commensal infection of laboratory rats that can lead to disseminated disease in T cell immune-deficient rats. Infection of the X-SCID rats with RatPyV2 and Pneumocystis carinii is a potential model for coinfection pathogenesis and treatment options during transplant preclinical studies. Polyomaviruses (PyVs) are known to infect a wide range of vertebrates and invertebrates and are associated with a broad spectrum of diseases, including cancers, particularly in immune-suppressed hosts. A novel polyomavirus, designated rat polyomavirus 2 (RatPyV2), was identified from a breeding colony of rats having X-linked severe combined immunodeficiency. Using a human panpolyomavirus immunohistochemistry test (P-PIT), RatPyV2 was initially detected in the parotid salivary gland of a colony member. Rolling circle amplification using DNA from harderian and parotid glands identified a novel 5.1-kb polyomavirus genome closely related to human Washington University (WU) and Karolinska Institute (KI) and vole polyomaviruses but notably divergent from Rattus norvegicus PyV1 (RnorPyV1; also designated RatPyV1). Further screening showed RatPyV2 inclusion body infection in the lung epithelium and variably in other respiratory, reproductive, and glandular tissues of 12/12 (100%) rats. IMPORTANCE Although P-PIT was developed to detect diseases associated with known human polyomaviruses, the identification of a new polyomavirus in rats suggests that it may have utility as a broad-based screen for new, as well as known polyomaviruses. Our findings suggest that RatPyV2 may be a commensal infection of laboratory rats that can lead to disseminated disease in T cell immune-deficient rats. Infection of the X-SCID rats with RatPyV2 and Pneumocystis carinii is a potential model for coinfection pathogenesis and treatment options during transplant preclinical studies.
Collapse
|
22
|
Drewes S, Turni H, Rosenfeld UM, Obiegala A, Straková P, Imholt C, Glatthaar E, Dressel K, Pfeffer M, Jacob J, Wagner-Wiening C, Ulrich RG. Reservoir-Driven Heterogeneous Distribution of Recorded Human Puumala virus Cases in South-West Germany. Zoonoses Public Health 2016; 64:381-390. [PMID: 27918151 DOI: 10.1111/zph.12319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 01/19/2023]
Abstract
Endemic regions for Puumala virus (PUUV) are located in the most affected federal state Baden-Wuerttemberg, South-West Germany, where high numbers of notified human hantavirus disease cases have been occurring for a long time. The distribution of human cases in Baden-Wuerttemberg is, however, heterogeneous, with a high number of cases recorded during 2012 in four districts (H districts) but a low number or even no cases recorded in four other districts (L districts). Bank vole monitoring during 2012, following a beech (Fagus sylvatica) mast year, resulted in the trapping of 499 bank voles, the host of PUUV. Analyses indicated PUUV prevalences of 7-50% (serological) and 1.8-27.5% (molecular) in seven of eight districts, but an absence of PUUV in one L district. The PUUV prevalence differed significantly between bank voles in H and L districts. In the following year 2013, 161 bank voles were trapped, with reduced bank vole abundance in almost all investigated districts except one. In 2013, no PUUV infections were detected in voles from seven of eight districts. In conclusion, the linear modelling approach indicated that the heterogeneous distribution of human PUUV cases in South-West Germany was caused by different factors including the abundance of PUUV RNA-positive bank voles, as well as by the interaction of beech mast and the proportional coverage of beech and oak (Quercus spec.) forest per district. These results can aid developing local public health risk management measures and early warning models.
Collapse
Affiliation(s)
- S Drewes
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - H Turni
- Stauss & Turni Gutachterbüro, Tübingen, Germany
| | - U M Rosenfeld
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - A Obiegala
- Veterinärmedizinische Fakultät, Institut für Tierhygiene und Öffentliches Veterinärwesen, University Leipzig, Leipzig, Germany
| | - P Straková
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany.,Institute of Vertebrate Biology v.v.i., Academy of Sciences, Masaryk University, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - C Imholt
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - E Glatthaar
- Forstzoologisches Institut, Arbeitsbereich Wildtierökologie und Wildtiermanagement, Universität Freiburg, Freiburg, Germany
| | - K Dressel
- sine-Institut gGmbH, Munich, Germany
| | - M Pfeffer
- Veterinärmedizinische Fakultät, Institut für Tierhygiene und Öffentliches Veterinärwesen, University Leipzig, Leipzig, Germany
| | - J Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - C Wagner-Wiening
- Landesgesundheitsamt Baden-Württemberg, Referat 95 - Epidemiologie und Gesundheitsberichterstattung, Sachgebietsleitung: Infektionsepidemiologische Meldesysteme (SG4), Stuttgart, Germany
| | - R G Ulrich
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| |
Collapse
|
23
|
Buck CB, Van Doorslaer K, Peretti A, Geoghegan EM, Tisza MJ, An P, Katz JP, Pipas JM, McBride AA, Camus AC, McDermott AJ, Dill JA, Delwart E, Ng TFF, Farkas K, Austin C, Kraberger S, Davison W, Pastrana DV, Varsani A. The Ancient Evolutionary History of Polyomaviruses. PLoS Pathog 2016; 12:e1005574. [PMID: 27093155 PMCID: PMC4836724 DOI: 10.1371/journal.ppat.1005574] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae. Polyomaviruses are a family of DNA-based viruses that are known to infect various terrestrial vertebrates, including humans. In this report, we describe our discovery of highly divergent polyomaviruses associated with various marine fish. Searches of public deep sequencing databases unexpectedly revealed the existence of polyomavirus-like sequences in scorpion and spider datasets. Our analysis of these new sequences suggests that polyomaviruses have slowly co-evolved with individual host animal lineages through an established mechanism known as intrahost divergence. The proposed model is similar to the mechanisms through with other DNA viruses, such as papillomaviruses, are thought to have evolved. Our analysis also suggests that distantly related polyomaviruses sometimes recombine to produce new chimeric lineages. We propose a possible taxonomic scheme that can account for these inferred ancient recombination events.
Collapse
Affiliation(s)
- Christopher B. Buck
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| | | | - Alberto Peretti
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Eileen M. Geoghegan
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Michael J. Tisza
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joshua P. Katz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alison A. McBride
- Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Alvin C. Camus
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Alexa J. McDermott
- Animal Health Department, Georgia Aquarium, Inc., Atlanta, Georgia, United States of America
| | - Jennifer A. Dill
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Terry F. F. Ng
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Kata Farkas
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Charlotte Austin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Simona Kraberger
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - William Davison
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Diana V. Pastrana
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|