1
|
Nagini S, Palrasu M, Bishayee A. Limonoids from neem (Azadirachta indica A. Juss.) are potential anticancer drug candidates. Med Res Rev 2024; 44:457-496. [PMID: 37589457 DOI: 10.1002/med.21988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Neem (Azadirachta indica A. Juss.), a versatile evergreen tree recognized for its ethnopharmacological value, is a rich source of limonoids of the triterpenoid class, endowed with potent medicinal properties. Extracts of neem have been documented to display anticancer effects in diverse malignant cell lines as well as in preclinical animal models that has largely been attributed to the constituent limonoids. Of late, neem limonoids have become the cynosure of research attention as potential candidate agents for cancer prevention and therapy. Among the various limonoids found in neem, azadirachtin, epoxyazadiradione, gedunin, and nimbolide, have been extensively investigated for anticancer activity. Azadirachtin, a potent biodegradable pesticide, exhibits profound antiproliferative effects by preventing mitotic spindle formation and cell division. The antiproliferative activity of gedunin has been demonstrated to be mediated primarily via inhibition of heat shock protein90 and its client proteins. Epoxyazadiradione inhibits pro-inflammatory and kinase-driven signaling pathways to block tumorigenesis. Nimbolide, the most potent cytotoxic neem limonoid, inhibits the growth of cancer cells by regulating the phosphorylation of keystone kinases that drive oncogenic signaling besides modulating the epigenome. There is overwhelming evidence to indicate that neem limonoids exert anticancer effects by preventing the acquisition of hallmark traits of cancer, such as cell proliferation, apoptosis evasion, inflammation, invasion, angiogenesis, and drug resistance. Neem limonoids are value additions to the armamentarium of natural compounds that target aberrant oncogenic signaling to inhibit cancer development and progression.
Collapse
Affiliation(s)
- Siddavaram Nagini
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Manikandan Palrasu
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
2
|
Klaophimai S, Pouyfung P, Wongnoppavich A, Chairatvit K. Induction of S arrest and apoptosis in human oral cancer cells by Rhinacanthin-C extracted from Rhinacanthus nasutus via modulating Akt and p38 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116813. [PMID: 37348799 DOI: 10.1016/j.jep.2023.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The search for effective herbal medicines for complementary treatments is on the rise due to the high incidence of recurrence and mortality rate in human oral cancer. Rhinacanthus nasutus KURZ., an annual herb found mostly in Southeast Asia including Thailand, has been wildly used as a traditional folk medicine for the treatment of several diseases including cancer. However, the anti-cancer effect of Rhinacanthin-C (Rh-C) as a major naphthoquinone compound found in R. nasutus and the underlying mechanism of its action on human oral cancer cells remain unknown. AIM OF THE STUDY To investigate the anti-cancer mechanism of Rh-C extracted from R. nasutus in human oral cancer cells. MATERIALS AND METHODS The anti-proliferative effect of Rh-C on human oral squamous cell carcinoma (HSC4) was determined and compared to normal oral cells (human gingival fibroblasts, HGF, and normal oral keratinocytes, NOK) using the SRB colorimetric method. The molecular mechanism of Rh-C was explored using flow cytometry, colorimetric assay, in vitro human topoisomerase II assay, and Western blotting. RESULTS Rh-C displayed a time- and concentration-dependent growth inhibition on HSC4 and was much less effective on both tested normal oral cells. Rh-C inhibited Akt phosphorylation whereas over-activated p38 MAPK phosphorylation in HSC4 but not in HGF. Rh-C also inhibited topoisomerase II activity. As a result, the cell cycle was arrested in S-phase as the expression of CDK1/2 and Cyclin A2 was decreased. Eventually, the induction of HSC4 cell apoptosis was mediated by increased caspase 3 activity. CONCLUSIONS Rh-C isolated from R. nasutus possesses anti-cancer properties on human oral cancer cells by causing the S arrest and the apoptotic induction via modulating Akt/p38 signaling pathways. The results provide molecular bases for further developing Rh-C as a potential drug candidate or a complementary treatment for oral cancer.
Collapse
Affiliation(s)
- Sirinthip Klaophimai
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Phisit Pouyfung
- Department of Occupational Health and Safety, School of Public Health, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand.
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kongthawat Chairatvit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Singh S, Gaur S. Virtually selected phytochemicals from edible seeds as possible potential medicaments for hypercholesterolemia: an in silico approach. J Biomol Struct Dyn 2023; 41:8690-8700. [PMID: 36259535 DOI: 10.1080/07391102.2022.2135604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
Hypercholesterolemia is one of the major health concerns in today's time. Bioactive compounds from various sources have been implicated in managing the conditions of Hypercholesterolemia. With advancements in research, several edible seeds have been explored in managing the disease. This study employs in silico approach to gain insights into the binding interactions of the bioactive compounds which are reportedly present in Edible seeds, against the protein HMG-CoA reductase, which plays a crucial role in cholesterol metabolism. The bioactive compounds were virtually screened and selected based on molecular docking studies which revealed the strong binding interactions of HMG-CoA reductase with Acacetin (-7.6 kcal/mol), Irilone (-7.5 kcal/mol), Orobanchol (-7.5 kcal/mol), Diadzein (-7.4 kcal/mol) and Malvidin (-7.4 kcal/mol). These compounds largely conformed to drug likeliness criteria and ADME properties with lesser mutagenic, hepatotoxic effects and higher absorption percentage in human intestine. Moreover, we performed molecular dynamics simulation studies for docked complexes to explore their stability under simulated conditions. Data gathered from this study will support the future in vitro and in vivo research in development of potential medicaments using the bioactive compounds from edible seeds for management of hypercholesterolemia.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shubhi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
4
|
Taneja N, Alam A, Patnaik RS, Taneja T. Current Trends in Anticancer Drug Delivery System for Oral Cancer- A PRISMA complaint Systematic Review. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2206275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background:
Oral cancer is a deadly disease affecting worldwide. Despite developments of conventional cancer therapy, there has been little improvement in the survival rates. This culminated in the evolution of a targeted. New Drug Delivery System, discovering novel objectives for successful drug delivery and synergistic combination of anticancer agents to minimize side effects.
Objective:
The main focus was on understanding the various aspects of different targeted drug delivery vehicles used in the treatment of oral cancer including advantages, disadvantages, and future perspectives.
Materials and Methods:
A literature search was accomplished from 2005 to 2020 via Google scholar. PubMed, EBSCO, Embase, and Scopus databases along with Clinical trials registries using the terms oral buccal thin films, Hyperthermia and Thermoablation, Intra-tumoral, Photodynamic, Immunotherapy, photothermal, and ultrasound therapy in oral cancer. The articles were scrutinized and those which were not relevant to our search were omitted. Clinical trials on targeted drug delivery systems for Oral Cancer being conducted or completed around the world from various registries of clinical trials have also been searched out and the findings were tabulated in the end. The PRISMA 2020 guidelines were followed.
Results:
The treatment of oral squamous cell carcinoma (OSCC) mostly depends upon the location, type, and stage of the tumor. Vivid targeted drug delivery systems are being used in the therapeutic interventions of oral cancer as they aim for specific target site delivery and are the most appropriate treatment. Active Pharmacological Ingredient (API) is taken to the targeting site, sparing non-target organs or cells, triggering selective and efficient localization, thereby maximizing the therapeutic index with minimizing toxicity. The successful targeted drug delivery system works on four principles i.e. Retain, Evade, Target and Release, which means loading of sufficient drug into a suitable drug carrier, does not affect body secretions, long duration in circulation, reaching the targeted site and, drug release within the time for effective functioning of the drug. All techniques described in this paper have proven to show effective results.
Conclusion:
Oral Cancer is an emerging public health problem worldwide. Various conventional therapies are used for treating oral cancer, but they enclose variable degrees of side effects both on the body as well as the cellular microenvironment. With advanced technology, many other aids have been introduced in the field of oncology to treat oral cancer with minimal side effects. All techniques described in this paper have proven to show effective results in the therapeutic interventions of oral cancer. Moreover, they can be used even in combination with conventional drug therapy to show beneficial outcomes. Several clinical trials are being conducted and completed in this aspect to investigate definite results of these therapies, yet robust research is needed for further confirmation.
Collapse
|
5
|
Venkidasamy B, Govindasamy R, Krishnan M, Thiruvengadam M. Nanoformulated bioactive compounds: A potential approach for cancer therapy. Chem Biol Interact 2022; 366:110118. [PMID: 36027946 DOI: 10.1016/j.cbi.2022.110118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, 77, Tamil Nadu, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Chennai, 77, Tamil Nadu, India
| | - Murugesan Krishnan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, 77, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Qu J, Liu Q, You G, Ye L, Jin Y, Kong L, Guo W, Xu Q, Sun Y. Advances in ameliorating inflammatory diseases and cancers by andrographolide: Pharmacokinetics, pharmacodynamics, and perspective. Med Res Rev 2021; 42:1147-1178. [PMID: 34877672 DOI: 10.1002/med.21873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022]
Abstract
Andrographolide, a well-known natural lactone having a range of pharmacological actions in traditional Chinese medicine. It has long been used to cure a variety of ailments. In this review, we cover the pharmacokinetics and pharmacological activity of andrographolide which supports its further clinical application in cancers and inflammatory diseases. Growing evidence shows a good therapeutic effect in inflammatory diseases, including liver diseases, joint diseases, respiratory system diseases, nervous system diseases, heart diseases, inflammatory bowel diseases, and inflammatory skin diseases. As a result, the effects of andrographolide on immune cells and the processes that underpin them are discussed. The preclinical use of andrographolide to different organs in response to malignancies such as colorectal, liver, gastric, breast, prostate, lung, and oral cancers has also been reviewed. In addition, several clinical trials of andrographolide in inflammatory diseases and cancers have been summarized. This review highlights recent advances in ameliorating inflammatory diseases as well as cancers by andrographolide and its analogs, providing a new perspective for subsequent research of this traditional natural product.
Collapse
Affiliation(s)
- Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Guoquan You
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Ling Ye
- Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Lin ZY, Yun QZ, Wu L, Zhang TW, Yao TZ. Pharmacological basis and new insights of deguelin concerning its anticancer effects. Pharmacol Res 2021; 174:105935. [PMID: 34644595 DOI: 10.1016/j.phrs.2021.105935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Deguelin is a rotenoid of the flavonoid family, which can be extracted from Lonchocarpus, Derris, or Tephrosia. It possesses the inhibition of cancer cell proliferation by inducing apoptosis through regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, the NF-κB signaling pathway, the Wnt signaling pathway, the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway and epidermal growth factor receptor (EGFR) signaling, activating the p38 mitogen-activated protein kinase (MAPK) pathway, repression of Bmi1, targeting cyclooxygenase-2 (COX-2), targeting galectin-1, promotion of glycogen synthase kinase-3β (GSK3β)/FBW7-mediated Mcl-1 destabilization and targeting mitochondria via down-regulating Hexokinases II-mediated glycolysis, PUMA-mediation, which are some crucial molecules which modulate closely cancer cell growth and metastasis. Deguelin inhibits tumor cell propagation and malignant transformation through targeting angiogenesis, targeting lymphangiogenesis, targeting focal adhesion kinase (FAK), inhibiting the CtsZ/FAK signaling pathway, targeting epithelial-mesenchymal transition (EMT), the NF-κB signaling pathway, regulating NIMA-related kinase 2 (NEK2). In addition, deguelin possesses other biological activities, such as targeting cell cycle arrest, modulation of autophagy, inhibition of hedgehog pathway, inducing differentiation of mutated NPM1 acute myeloid leukemia etc. Therefore, deguelin is a promising chemopreventive agent for cancer therapy.
Collapse
Affiliation(s)
- Zhu Yue Lin
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Qu Zhen Yun
- Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Liu Wu
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tian Wen Zhang
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tang Ze Yao
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
8
|
Xie L, Zhu G, Shang J, Chen X, Zhang C, Ji X, Zhang Q, Wei Y. An overview on the biological activity and anti-cancer mechanism of lovastatin. Cell Signal 2021; 87:110122. [PMID: 34438015 DOI: 10.1016/j.cellsig.2021.110122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Lovastatin, a secondary metabolite isolated from fungi, is often used as a representative drug to reduce blood lipid concentration and treat hypercholesterolemia. Its structure is similar to that of HMG-CoA. Lovastatin inhibits the binding of the substrate to HMG-CoA reductase, and strongly competes with HMG-CoA reductase (HMGR), thereby exerting a hypolipidemic effect. Further, its safety has been confirmed in vivo and in vitro. Lovastatin also has anti-inflammatory, anti-cancer, and neuroprotective effects. Therefore, the biological activity of lovastatin, especially its anti-cancer effect, has garnered research attention. Several in vitro studies have confirmed that lovastatin has a significant inhibitory effect on cancer cell viability in a variety of cancers (such as breast, liver, cervical, lung, and colon cancer). At the same time, lovastatin can also increase the sensitivity of some types of cancer cells to chemotherapeutic drugs and strengthen their therapeutic effect. Lovastatin inhibits cell proliferation and regulates cancer cell signaling pathways, thereby inducing apoptosis and cell cycle arrest. This article reviews the structure, biosynthetic pathways, and applications of lovastatin, focusing on the anti-cancer effects and mechanisms of action.
Collapse
Affiliation(s)
- Liguo Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Guodong Zhu
- Yunnan Minzu University, Library, Kunming 650500, China.
| | - Junjie Shang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuemei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chunting Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
9
|
Vetvicka V, Vannucci L. Biological properties of andrographolide, an active ingredient of Andrographis Paniculata: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1186. [PMID: 34430627 PMCID: PMC8350652 DOI: 10.21037/atm-20-7830] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Andrographolide is a labdane diterpenoid isolated from Andrographis paniculata and traditionally used in Chinese and Indian medicine. Reported effects include anti-bacterial, anti-inflammatory and anti-cancer functions. Most of the studies support the hypothesis that andrographolide supplementation stimulates immune system, so the observed effects migh in fact be secondary to the stimulation of defense reactions. As andrographolide is involved in regulation of inflammation, it is not surprising that it is also evaluated in inflammation-mediated diseases such as ulcerative colitis. Anticancer effects of the andrographolide have been tested on various cancer panels. Colon cancer, breast cancer, and head and neck carcinomas were the most investigated, followed by prostate cancer and glioblastoma. The results looked promising. However, problems with solubility and low level of active substance in natural extract leads to preparation of chemical analogs. Objective of this short review is to summarize current knowledge of the biological effects of andragrapholide. We conclude that despite documented effects and some partly characterized mechanisms of action, more research is clearly needed. At present, the doses, types of treatment and possible negative side effects are not yet established. In addition, various isolations and compound formulas have been used for treatment of various diseases, making final conclusions problematic.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Luca Vannucci
- Department of Immunology, Institute of Microbiology, Prague, Czech Republic
| |
Collapse
|
10
|
Abstract
This review provides the feasible literature on drug discovery through ML tools and techniques that are enforced in every phase of drug development to accelerate the research process and deduce the risk and expenditure in clinical trials. Machine learning techniques improve the decision-making in pharmaceutical data across various applications like QSAR analysis, hit discoveries, de novo drug architectures to retrieve accurate outcomes. Target validation, prognostic biomarkers, digital pathology are considered under problem statements in this review. ML challenges must be applicable for the main cause of inadequacy in interpretability outcomes that may restrict the applications in drug discovery. In clinical trials, absolute and methodological data must be generated to tackle many puzzles in validating ML techniques, improving decision-making, promoting awareness in ML approaches, and deducing risk failures in drug discovery.
Collapse
Affiliation(s)
- Suresh Dara
- Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, 502313 Telangana India
| | - Swetha Dhamercherla
- Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, 502313 Telangana India
| | - Surender Singh Jadav
- Centre for Molecular Cancer Research (CMCR) and Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Medak, 502313 Telangana India
| | - CH Madhu Babu
- Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, 502313 Telangana India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, 302023 Rajasthan India
| |
Collapse
|
11
|
Mir MA, Mehraj U, Sheikh BA. Recent Advances in Chemotherapeutic Implications of Deguelin: A Plant-Derived Retinoid. ACTA ACUST UNITED AC 2021. [DOI: 10.2174/2210315510666200128125950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deguelin, a plant retinoid has emerged to be a promising therapeutic agent in the treatment
of different cancers. Recent studies demonstrate that deguelin has potential as an angiogenesis
antagonist in malignant and endothelial cells by specifically targeting HGF-c-Met and VEGFVEGFR
pathways. It is reported to have profound therapeutic effects in pancreatic cancer by inactivation
of the hedgehog (Hh) signalling pathway and suppresses the expression of matrix metalloproteinases
such as MMP-2 and MMP-9. The basic underlying mechanisms for deguelin mediated anti-
NSCLC effects were uncovered through its induction of elevated intracellular Reactive Oxygen Species
(ROS) levels and suppression of the PI3K /Akt-HK2 signalling pathway. Deguelin induces cell
apoptosis by targeting various pathways most notably regulating the expression of galectin-1 and
binding directly to anti-apoptotic Bcl-2 (B-cell lymphoma 2), Bcl-xl (B-cell lymphoma-extralarge)
and Mcl-1 (Myeloid Cell Leukemia Sequence 1) in the hydrophobic grooves thereby liberating BAD
and BAX from binding with these proteins. These results derived from the effect of Deguelin on various
cancer cell lines have further elucidated its role as a novel anti-tumorigenic agent targeting angiogenesis,
apoptosis, cell proliferation and migration for cancer chemoprevention. In this review, an
attempt has been made to highlight the potential therapeutic effects of Deguelin in destroying the
cancer cells by inhibiting various tumour promoting pathways and its uses as a therapeutic agent
alone or in combination.
Collapse
Affiliation(s)
- Manzoor A. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Bashir A. Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
12
|
Alam M, Mishra R. Bcl-xL expression and regulation in the progression, recurrence, and cisplatin resistance of oral cancer. Life Sci 2021; 280:119705. [PMID: 34111459 DOI: 10.1016/j.lfs.2021.119705] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bcl-xL is an anti-apoptotic molecule, but its role in the progression and recurrent/ drug-resistant oral squamous cell carcinoma (OSCC) is poorly understood. MATERIALS AND METHODS A total of one hundred twenty-five human OSCC tissue specimens including twenty-nine adjacent normals (AN), sixty-nine primary tumors (PT), twenty-seven recurrent chemoradiation resistance (RCRT) samples, and oral tongue SCC derived cisplatin-resistant (CisR SCC-4/-9) cells were used, for this study. Protein/mRNA expression levels of Bcl-xL and its regulation by ERK1/2, Stat-3, p53, NFκB, AP-1 (components: c-Jun, c-Fos, and Fra-2) molecules, and cell viability were measured by immunohistochemistry, Western blot, RT-PCR, and MTT analysis. Further, the individual and synergistic effects of Fra-2 (siRNA) and nimbolide were tested in CisR SCC-4/-9 cells. RESULTS Progressive increase of Bcl-xL expression and its transcriptional-deregulation was observed with OSCC progression and resistance. Among all the possible upstream regulators of Bcl-xL, such as ERK1/2, Stat-3, p53, AP-1, and NFκB, the TF AP-1 (r = 0.644, p = 0.0001) showed maximum association with Bcl-xL mRNA expression. Though differential expression of AP-1 components were detected in OSCC specimens, with more striking positive-correction of c-Jun (r = 0.381, p = 0.049), c-Fos (r = 0.139, p = 0.488, ns) and Fra-2 (r = 0.664, p = 0.0001) with Bcl-xL expression observed stronger in RCRT tumor subgroup. Further, knockdown of Fra-2 and the application of plant-based phytochemical nimbolide decreased Bcl-xL expression and induced apoptosis in CisR SCC-4/-9 cells. CONCLUSION Collectively, we have demonstrated the role of Bcl-xL and AP-1 (Fra-2), causing OSCC progression and cisplatin resistance. Targeting Bcl-xL upstream pathway along with the application of nimbolide might be beneficial in eliminating drug-resistant OSCC.
Collapse
Affiliation(s)
- Manzar Alam
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| |
Collapse
|
13
|
Nagini S, Nivetha R, Palrasu M, Mishra R. Nimbolide, a Neem Limonoid, Is a Promising Candidate for the Anticancer Drug Arsenal. J Med Chem 2021; 64:3560-3577. [PMID: 33739088 DOI: 10.1021/acs.jmedchem.0c02239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nimbolide, a major limonoid constituent of Azadirachta indica, commonly known as neem, has attracted increasing research attention owing to its wide spectrum of pharmacological properties, predominantly anticancer activity. Nimbolide is reported to exert potent antiproliferative effects on a myriad cancer cell lines and chemotherapeutic efficacy in preclinical animal tumor models. The potentiality of nimbolide to circumvent multidrug resistance and aid in targeted protein degradation broaden its utility in enhancing therapeutic modalities and outcome. Accumulating evidence indicates that nimbolide prevents the acquisition of cancer hallmarks such as sustained proliferation, apoptosis evasion, invasion, angiogenesis, metastasis, and inflammation by modulating kinase-driven oncogenic signaling networks. Nimbolide has been demonstrated to abrogate aberrant activation of cellular signaling by influencing the subcellular localization of transcription factors and phosphorylation of kinases in addition to influencing the epigenome. Nimbolide, with its ever-expanding repertoire of molecular targets, is a valuable addition to the anticancer drug arsenal.
Collapse
Affiliation(s)
- Siddavaram Nagini
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Ramesh Nivetha
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Manikandan Palrasu
- Department of Surgery, University of Miami Miller School of Medicine, Rosenstiel Medical Sciences Building, Suite 4116, 1600 NW 10th Avenue, Miami, Florida 33136, United States
| | - Rajakishore Mishra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand 835205, India
| |
Collapse
|
14
|
Mauro M, Lazzara V, Punginelli D, Arizza V, Vazzana M. Antitumoral compounds from vertebrate sister group: A review of Mediterranean ascidians. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103669. [PMID: 32192994 DOI: 10.1016/j.dci.2020.103669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Among the diseases that afflict the human population, cancer is one for which many drug treatments are not yet known or effective. Moreover, the pharmacological treatments used often create serious side effects in sick patients and for this reason, it is essential to find effective and less harmful treatments. To date, marine biodiversity is a real source of metabolites with antitumoral activity and among invertebrates' ascidians have been the main source to obtain them. Mediterranean area is the richest in biodiversity and contains several ascidian species used in drugs development during the years. However, many more Mediterranean ascidian species have not been studied and could be a source of useful bioactive compounds. This review aims to summarize the scientific studies that analyzed the antitumor compounds obtained from different Mediterranean ascidians species, encouraging them to search further compounds in other new species to improve pharmacological treatments and human population life.
Collapse
Affiliation(s)
- Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18-90123 Palermo, Italy.
| | - Valentina Lazzara
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18-90123 Palermo, Italy
| | - Diletta Punginelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18-90123 Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18-90123 Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18-90123 Palermo, Italy
| |
Collapse
|
15
|
Ghawanmeh AA, Al-Bajalan HM, Mackeen MM, Alali FQ, Chong KF. Recent developments on (−)-colchicine derivatives: Synthesis and structure-activity relationship. Eur J Med Chem 2020; 185:111788. [DOI: 10.1016/j.ejmech.2019.111788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 12/18/2022]
|
16
|
WITHDRAWN: Metabolite profiling, molecular docking and in vitro anticancer potential of marine ascidian Didemnum sp. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Pouyfung P, Choonate S, Wongnoppavich A, Rongnoparut P, Chairatvit K. Anti-proliferative effect of 8α-tigloyloxyhirsutinolide-13-O-acetate (8αTGH) isolated from Vernonia cinerea on oral squamous cell carcinoma through inhibition of STAT3 and STAT2 phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:238-246. [PMID: 30599904 DOI: 10.1016/j.phymed.2018.09.211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/23/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The high mortality rate of oral cancers has stimulated the search for effective herbal medicines and their pharmacological targets. Vernonia cinerea, a perennial tropical herb, is wildly used as a traditional folk medicine for treatment of intestinal diseases and various skin diseases in addition to possessing anti-cancer activity. However, the effect of 8α-tigloyloxyhirsutinolide-13-O-acetate (8αTGH) as a major sesquiterpene lactone compound found in V. cinerea and the underlying mechanism of its action on oral cancer cells remains unknown. PURPOSE To investigate the anti-cancer activity of 8αTGH extracted from V. cinerea and the underlying mechanism of its action in oral cancer cells. METHODS The anti-proliferative effect of 8αTGH on oral squamous cell carcinoma (HSC4) and lung carcinoma (A549) was determined using the SRB colorimetric method. The molecular mechanism of 8αTGH was explored using kinase inhibitors, followed by Western blotting or RT-qPCR. Flow cytometry and Western blotting were used to assess cell cycle arrest. RESULTS 8αTGH inhibited cancer cell growth more effectively on HSC4 than A549 and was much less effective on tested normal oral cells. 8αTGH inhibited STAT3 phosphorylation on both cancer cells. Notably, 8αTGH was able to suppress the constantly activated STAT2 found only in HSC4. The STAT2 inhibition by 8αTGH consequently caused down-regulation of ISG15 and ISG15 conjugates. As a result, decreased expression of CDK1/2 and Cyclin B1 was detected leading to G2/M cell cycle arrest. CONCLUSION 8αTGH isolated from V. cinerea preferentially inhibits the proliferation of oral cancer cells by causing G2/M cell cycle arrest via inhibition of both STAT3 and STAT2 phosphorylation. The results provide molecular bases for developing 8αTGH as a drug candidate or a complementary treatment of oral cancer.
Collapse
Affiliation(s)
- Phisit Pouyfung
- Department of Biochemistry, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Sirinthip Choonate
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Ratchathevi, Bangkok 10400, Thailand
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornpimol Rongnoparut
- Department of Biochemistry, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Kongthawat Chairatvit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Ratchathevi, Bangkok 10400, Thailand.
| |
Collapse
|
18
|
Alam M, Kashyap T, Mishra P, Panda AK, Nagini S, Mishra R. Role and regulation of proapoptotic Bax in oral squamous cell carcinoma and drug resistance. Head Neck 2019; 41:185-197. [PMID: 30549344 DOI: 10.1002/hed.25471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 05/19/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Bax, a proapoptotic protein but its regulation during oral cancer progression and resistance remains elusive. METHODS A total of 127 samples including adjacent normal, primary tumor, and resistance to chemoradiation therapy (RCRT) samples from oral squamous cell carcinoma (OSCC) patients were used. The status of Bax was analyzed at DNA/mRNA/protein levels and the results were correlated with p53 and Akt expression in tissue samples/cisplatin-resistant oral tongue SCC (SCC9/SCC4-CisR) cell line. RESULTS Frequent progressive decrease of Bax expression with infrequent promoter methylation, polymorphisms G(-248)A, and mutations was observed in OSCC progression/resistance. Furthermore, by targeting Akt pathway, induction of Bax-dependent cell death was observed and this was further enhanced with nimbolide treatment in SCC9/SCC4-CisR cells. CONCLUSION Hence, the Bax gene alteration and its deregulation through p53/Akt pathway are important for OSCC progression and drug resistance. Akt Inhibitor VIII and nimbolide synergistically induce Bax, and it is therefore beneficial for chemosensitizing cisplatin-resistant human OSCC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Tanushree Kashyap
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Prajna Mishra
- Centre for Applied Chemistry, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Aditya K Panda
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Rajakishore Mishra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| |
Collapse
|
19
|
Srivastava S, Mohammad S, Gupta S, Mahdi AA, Dixit RK, Singh V, Samadi FM. Chemoprotective effect of nanocurcumin on 5-fluorouracil-induced-toxicity toward oral cancer treatment. Natl J Maxillofac Surg 2018; 9:160-166. [PMID: 30546230 PMCID: PMC6251302 DOI: 10.4103/njms.njms_27_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction Cancer of oral cavity is the uncontrolled expansion of damaged cell within the mouth cavity. 5-fluorouracil (5-FU) chemotherapy was focused to kill the cancer cell, but it would affect the surrounding normal cells during oral cancer treatment. This study included the evaluation of chemoprotective effects of curcumin (CU), as an herbal remedy, on 5-FU-induced-cytotoxicity toward oral cancer treatment, loaded within a nanocarrier system. CU was combined with 5-FU chemotherapy as a combinational drug-delivery system to evaluate synergistic effects. Materials and Methods Nanoformulation of CU (nano-CU) and nanoformulation of 5-FU (nano-FU) were prepared by employing homogenization with high-energy sonication. The characterizations of prepared nanoformulations were evaluated on the basis of particle size, zeta potential, and polydispersity index (PDI) values. The chemopreventive effect of nano-CU on 5-FU induced-toxicity and synergistic efficacy were optimized through different in-vitro assays. Results The average particle size of nano-CU and nano-FU were up to 200 nm, negatively-charged, and shown up to 4th-day control release of the drug within the acceptable concentration. IC50 value for growth inhibition was calculated as 47.89 and 26.19 μg/ml, respectively, for nano-CU and nano-FU. OCC was pretreated with nano-CU and shown the protective effect by reducing 5-FU induced-cytotoxicity by preventing normal cells through reduced viability. The DPPH-indicated fluorescence-tagged cells had quantified for antioxidant effect as it reduces intracellular reactive oxygen species level in OCC. Along with alteration in cell protein expression, Blc2, and Bax, shows enhanced apoptosis rate in OCC. Conclusion Nano-CU provides chemoprotective nature towards 5-FU induced-toxicity, along with synergistic effects in oral cancer treatment.
Collapse
Affiliation(s)
- Saurabh Srivastava
- Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shadab Mohammad
- Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shalini Gupta
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar Dixit
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Vibha Singh
- Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Fahad Mansoor Samadi
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
20
|
The role of p53 status on the synergistic effect of CKD-602 and cisplatin on oral squamous cell carcinoma cell lines. Mol Biol Rep 2018; 46:617-625. [DOI: 10.1007/s11033-018-4517-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
21
|
Sophia J, Kowshik J, Dwivedi A, Bhutia SK, Manavathi B, Mishra R, Nagini S. Nimbolide, a neem limonoid inhibits cytoprotective autophagy to activate apoptosis via modulation of the PI3K/Akt/GSK-3β signalling pathway in oral cancer. Cell Death Dis 2018; 9:1087. [PMID: 30352996 PMCID: PMC6199248 DOI: 10.1038/s41419-018-1126-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/24/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Of late, nimbolide, a limonoid from the neem tree (Azadirachta indica) has gained increasing research attention owing to its potent antiproliferative and apoptosis-inducing effects. The present study was designed to investigate the effect of nimbolide on autophagy and the time point at which the phosphorylation status of GSK-3β and PI3K dictate the choice between autophagy and apoptosis in SCC131 and SCC4 oral cancer cells. Additionally, we analysed changes in the expression of proteins involved in autophagy and apoptosis after therapeutic intervention with nimbolide in a hamster model of oral oncogenesis. Furthermore, we also demonstrate changes in the expression of key genes involved in apoptosis and autophagy during the stepwise evolution of hamster and human OSCCs. Nimbolide-induced stereotypical changes in oral cancer cells characteristic of both apoptosis and autophagy. Time-course experiments revealed that nimbolide induces autophagy as an early event and then switches over to apoptosis. Nimbolide negatively regulates PI3K/Akt signalling with consequent increase in p-GSK-3βTyr216, the active form of GSK-3β that inhibits autophagy. Downregulation of HOTAIR, a competing endogenous RNA that sponges miR-126 may be a major contributor to the inactivation of PI3K/Akt/GSK3 signalling by nimbolide. Analysis of key markers of apoptosis and autophagy as well as p-AktSer473 during sequential progression of hamster and human OSCC revealed a gradual evolution to a pro-autophagic and antiapoptotic phenotype that could confer a survival advantage to tumors. In summary, the results of the present study provide insights into the molecular mechanisms by which nimbolide augments apoptosis by overcoming the shielding effects of cytoprotective autophagy through modulation of the phosphorylation status of Akt and GSK-3β as well as the ncRNAs miR-126 and HOTAIR. Development of phytochemicals such as nimbolide that target the complex interaction between proteins and ncRNAs that regulate the autophagy/apoptosis flux is of paramount importance in cancer prevention and therapeutics.
Collapse
Affiliation(s)
- Josephraj Sophia
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India
| | - Jaganathan Kowshik
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India
| | - Anju Dwivedi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rajakishore Mishra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, 835205, Jharkhand, India
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
22
|
Modeling association detection in order to discover compounds to inhibit oral cancer. J Biomed Inform 2018; 84:159-163. [PMID: 30004020 DOI: 10.1016/j.jbi.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 11/24/2022]
Abstract
In the past, algorithms exploiting varying semantics in interactions between biological objects such as genes and diseases have been used in bioinformatics to uncover latent relationships within biological datasets. In this paper, we consider the algorithm Medusa in parallel with binary classification in order to find potential compounds to inhibit oral cancer. Oral cancer affects the mouth and pharynx and has a high mortality rate due to its late discovery. Current methods of oral cancer treatment, such as chemoradiation and surgery, fail to provide better chances for survival, warranting an alternative approach. By running Medusa on a data fusion graph consisting of biological objects, we incorporate binary classification to model the algorithm's association detection to discover compounds with the potential to mitigate the effects of oral cancer.
Collapse
|
23
|
Srivastava S, Mohammad S, Pant AB, Mishra PR, Pandey G, Gupta S, Farooqui S. Co-delivery of 5-Fluorouracil and Curcumin Nanohybrid Formulations for Improved Chemotherapy Against Oral Squamous Cell Carcinoma. J Maxillofac Oral Surg 2018; 17:597-610. [PMID: 30344406 DOI: 10.1007/s12663-018-1126-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 01/10/2023] Open
Abstract
Purpose The chemotherapeutics agent, 5-fluorouracil (5-FU), and curcumin (Cur), a natural antioxidant, has a wide pharmacological window to treat oral carcinoma; however, both drugs have limited bioavailability. This research study designs to develop a nanoemulsions (NEs) formulation by combining 5-FU and Cur to improve anticancer activity against oral cavity squamous cell carcinoma (OSCC) cells from the diversified origin for in vitro analysis, SCC090 (human tongue) and SCC152 (human hypo-pharynx). Methodology NEs formulated through homogenization, applying high-energy ultrasonication technique. The prepared 5-FUNE/Cur-NE/5-FU-Cur-NE were characterized and optimized by different in vitro assays to evaluate release system and treatment of OSCC cells to monitor cellular acceptability, such as in vitro anticancer activity by MTT assay, cell uptake studies and protein expression associated apoptotic study. Results 5-FUNE/Cur-NE/5-FU-Cur-NE successfully formulated and show mean-value of the particle size (150-200 nm), surface charge (- 25.70 to - 37.91 mV), and PDI (0.194). In vitro release of 5-FUNE/Cur-NE/5-FU-Cur-NEs was monitored over a course of 04 days, where acidic pH shows higher release as compared to alkaline pH, along with acceptable stability data. Cytotoxicity study has shown higher-dose-dependent anticancer effect with a reduced IC50 value of NEs as compared to BLNE. Cellular uptake study of 5-FUNE/Cur-NE/5-FU-Cur-NEs upgraded many folds, comparatively BLNE and show potential cell arrest. Additionally, the cell protein (Blc2, Bax, P53, and P21) expression was revised and raised cell apoptosis. Conclusion The combinational loaded, 5-FU and Cur in nanoformulation system have proven their potency to deliver improved anticancer activity, against oral cancer.
Collapse
Affiliation(s)
- Saurabh Srivastava
- 1Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, UP India
| | - Shadab Mohammad
- 1Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, UP India
| | - Aditya Bhushan Pant
- 2In Vitro Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, UP India
| | | | - Gitu Pandey
- 3Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP India
| | - Shalini Gupta
- 4Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow, UP India
| | - Sana Farooqui
- 1Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, UP India
| |
Collapse
|
24
|
Chang HP, Lu CC, Chiang JH, Tsai FJ, Juan YN, Tsao JW, Chiu HY, Yang JS. Pterostilbene modulates the suppression of multidrug resistance protein 1 and triggers autophagic and apoptotic mechanisms in cisplatin-resistant human oral cancer CAR cells via AKT signaling. Int J Oncol 2018; 52:1504-1514. [PMID: 29512708 PMCID: PMC5873834 DOI: 10.3892/ijo.2018.4298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/20/2018] [Indexed: 01/12/2023] Open
Abstract
Pterostilbene is a natural polyphenolic compound that is primarily found in fruits, such as blueberries and has a similar structure to resveratrol. Pterostilbene exhibits antioxidant, anti-inflammatory and antitumor activity but the effects of pterostilbene on drug-resistant oral cancer cells and its underlying mechanisms of action have not yet been explored. Therefore, the present study was performed to clarify the anticancer effects of pterostilbene on cisplatin-resistant human oral cancer CAR cells. The results demonstrated that CAR cells exhibited marked shrinkage, cell membrane breakage and autophagic vacuole formation following treatment with pterostilbene. Pterostilbene also effectively inhibited cell viability and suppressed cell confluence in a time- and concentration-dependent manner. Probing with acridine orange, monodansylcadaverine and LysoTracker Red demonstrated that the number of acidic vesicular organelles was increased, indicating increased autophagy. Furthermore, Heochst 33342 staining determined that DNA condensation, a characteristic of apoptosis, was enhanced following treatment with pterostilbene. Furthermore, pterostilbene upregulated mRNA levels of LC3-II and Atg12, as well as the expression of Atgs/Beclin-1/LC3-associated signaling, suggesting that it enhances autophagy. The autophagy inhibitors 3-methyladenine and chloroquine were used to confirm that pterostilbene induces autophagy. It was also determined that pterostilbene triggered caspase-dependent apoptosis by directly testing DNA breakage and using the pan-caspase inhibitor carbobenzoxyvalyl-alanyl-aspartyl fluoromethyl ketone. The results demonstrated that pterostilbene mediates the apoptosis of CAR cells via the intrinsic apoptotic cascade. In addition, pterostilbene inhibited MDR1 expression and the phosphorylation of AKT on the Ser473 site in CAR cells. Therefore, pterostilbene may elicit an oral anticancer response in drug-resistant cells and may be used as a chemotherapeutic adjuvant to treat patients with oral cancer.
Collapse
Affiliation(s)
- Hui-Ping Chang
- Department of Traditional Chinese Medicine, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan 701, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jo-Hua Chiang
- Department of Nursing, Chung Jen Catholic Junior College, Chiayi 622, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Je-Wei Tsao
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
25
|
Islam MT, Ali ES, Uddin SJ, Islam MA, Shaw S, Khan IN, Saravi SSS, Ahmad S, Rehman S, Gupta VK, Găman MA, Găman AM, Yele S, Das AK, de Castro E Sousa JM, de Moura Dantas SMM, Rolim HML, de Carvalho Melo-Cavalcante AA, Mubarak MS, Yarla NS, Shilpi JA, Mishra SK, Atanasov AG, Kamal MA. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer. Cancer Lett 2018; 420:129-145. [PMID: 29408515 DOI: 10.1016/j.canlet.2018.01.074] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
Abstract
The diterpene lactone andrographolide, isolated from Andrographis paniculata, has been proven to possess several important protective biological activities, including antioxidant, anti-inflammatory, immunomodulatory, antiseptic, antimicrobial, cytotoxic, hypolipidemic, cardioprotective, hepatoprotective, and neuroprotective effects. In addition, it has been reported to play a therapeutic role in the treatment of major human diseases, such as Parkinson's disease, rheumatoid arthritis, and colitis. This systematic review aims to highlight andrographolide as a promising agent in cancer treatment. To this purpose, a number of databases were used to search for the cytotoxic/anticancer effects of andrographolide in pre-clinical and clinical studies. Among 1703 identified literature articles, 139 were included in this review; 109 were investigated as non-clinical, whereas 24, 3, and 3 were pre-clinical, clinical, and non-pre-clinical trials, respectively. Among the model systems, cultured cell lines appeared as the most frequently (79.14%) used, followed by in vivo models using rodents, among others. Furthermore, andrographolide was found to exert cytotoxic/anticancer effects on almost all types of cell lines with the underlying mechanisms involving oxidative stress, cell cycle arrest, anti-inflammatory and immune system mediated effects, apoptosis, necrosis, autophagy, inhibition of cell adhesion, proliferation, migration, invasion, anti-angiogenic activity, and other miscellaneous actions. After careful consideration of the relevant evidence, we suggest that andrographolide can be one of the potential agents in the treatment of cancer in the near future.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Eunüs S Ali
- Gaco Pharmaceuticals and Research Laboratory, Dhaka, 1000, Bangladesh; College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Md Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Subrata Shaw
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Seyed Soheil Saeedi Saravi
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, USA; Department of Toxicology-Pharmacology, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Saheem Ahmad
- Department of Bio-Sciences, Integral University, Lucknow, U.P., 226026, India
| | - Shahnawaz Rehman
- Department of Bio-Sciences, Integral University, Lucknow, U.P., 226026, India
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Mihnea-Alexandru Găman
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Facoltà di Medicina e Chirurgia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Amelia Maria Găman
- Department of Pathophysiology, Research Center of Experimental and Clinical Medicine, University of Medicine and Pharmacy of Craiova, Romania; Department of Haematology, Filantropia City Hospital of Craiova, Craiova, Romania
| | - Santosh Yele
- School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, India
| | - Asish Kumar Das
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | | | | | - Hercília Maria Lins Rolim
- Laboratory of Pharmaceutical Nanosystems (NANOSFAR), Postgraduate Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | - Nagendra Sastry Yarla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500003, T.N., India
| | - Jamil A Shilpi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University, Sagar, 470003, M.P., India
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria.
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia.
| |
Collapse
|
26
|
Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genomics Proteomics 2018; 15:41-51. [PMID: 29275361 PMCID: PMC5822181 DOI: 10.21873/cgp.20063] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 12/23/2022] Open
Abstract
Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better understanding of cancer driver genes. Herein we reviewed the recent progress of SVMs in cancer genomic studies. We intend to comprehend the strength of the SVM learning and its future perspective in cancer genomic applications.
Collapse
Affiliation(s)
- Shujun Huang
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Canada
| | - Nianguang Cai
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Canada
| | - Pedro Penzuti Pacheco
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Canada
| | - Shavira Narrandes
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Canada
- Departments of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Yang Wang
- Department of Computer Science, Faculty of Sciences, University of Manitoba, Winnipeg, Canada
| | - Wayne Xu
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Canada
- Departments of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
27
|
Wang YL, Shen Y, Xu JP, Han K, Zhou Y, Yang S, Yin JY, Min DL, Hu HY. Pterostilbene suppresses human endometrial cancer cells in vitro by down-regulating miR-663b. Acta Pharmacol Sin 2017; 38:1394-1400. [PMID: 28552912 DOI: 10.1038/aps.2017.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
Resveratrol has long been known as an antioxidant and a chemopreventive agent. Similar to resveratrol, pterostilbene (PT) is also a phenolic compound extracted from the Vitis species. However, there are few studies on the antitumor effect of PT. Thus, we investigated the effects of PT on the endometrial cancer (EC) cells in vitro and the related molecular mechanisms. Treatment of EC cell lines HTB-111 and Ishikawa with PT (25-100 μmol/L) dose-dependently suppressed the cell viability and induced apoptosis. Using miR microarrays, we examined the miR expression profile in Ishikawa cells with or without PT, and revealed that miR-663b was the most decreased in PT-treated Ishikawa cells. Furthermore, we predicted and verified that the pro-apoptosis factor BCL2L14 is the direct target of miR-663b. Over-expression of miR-663b and knock-down of BCL2L14 counteracted the suppressing effects of PT on HTB-111 and Ishikawa cells. In addition, we evaluated the miR-663b levels in EC tissues of 51 patients using an in situ hybridization technique. With the median of the score of miR-663b as a cut-off value, these EC patients were divided into two groups, and the patients with high miR-663b expression had significantly poor prognosis.
Collapse
|
28
|
Zhao D, Han W, Liu X, Cui D, Chen Y. Deguelin inhibits epithelial-to-mesenchymal transition and metastasis of human non-small cell lung cancer cells by regulating NIMA-related kinase 2. Thorac Cancer 2017; 8:320-327. [PMID: 28509438 PMCID: PMC5494456 DOI: 10.1111/1759-7714.12444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 12/30/2022] Open
Abstract
Background Non‐small cell lung cancer is a lethal malignancy with a high mortality rate. Deguelin displays an anti‐tumor effect and inhibits metastasis in various cancers. The aberrant expression of NIMA‐related kinase 2 (NEK2) indicates poor prognosis and induces epithelial‐to‐mesenchymal transition (EMT) and metastasis processes. However, the underlying mechanism between deguelin and NEK2 has remained elusive. Methods NSCLC cell lines were treated with deguelin. Wound‐healing and invasion assays were applied to study the inhibitory effect of deguelin on NSCLC cells. EMT markers, E‐cadherin and Vimentin, were also detected by Western blot. NEK2 protein and messenger RNA expression levels were evaluated when NSCLC cells were treated with different concentrations of deguelin. The effect of NEK2 on NSCLC cell metastasis was evaluated through NEK2 knockdown. To investigate whether deguelin induced EMT by regulating NEK2, we overexpressed NEK2 in both NCI‐H520 and SK‐MES‐1 cell lines, and then used real time‐PCR to study the E‐cadherin and Vimentin messenger RNA expression in both NSCLC cells. Results Deguelin inhibited migration and invasion processes in NSCLC cell lines and decreased NEK2 expression in a concentration‐dependent manner. Furthermore, NEK2 knockdown inhibited NSCLC cell migration and invasion. Finally, overexpressing NEK2 in NCI‐H520 and SK‐MES‐1 cells could restore the inhibition of metastasis induced by deguelin. Conclusions Deguelin could inhibit EMT and metastasis, while overexpression of NEK2 promotes these processes. Deguelin could decrease NEK2 expression, while NEK2 overexpression could restore deguelin‐induced inhibition of metastasis.
Collapse
Affiliation(s)
- Dejian Zhao
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Wenzheng Han
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Xia Liu
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Dawei Cui
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Yu Chen
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| |
Collapse
|
29
|
Chronic hepatitis following short-term colchicine use in a child. EGYPTIAN LIVER JOURNAL 2016. [DOI: 10.1097/01.elx.0000514232.66608.f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Yan B, Zhao D, Yao Y, Bao Z, Lu G, Zhou J. Deguelin Induces the Apoptosis of Lung Squamous Cell Carcinoma Cells through Regulating the Expression of Galectin-1. Int J Biol Sci 2016; 12:850-60. [PMID: 27313498 PMCID: PMC4910603 DOI: 10.7150/ijbs.14773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/16/2016] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality around the world. Despite advances in the targeted therapy, patients with lung squamous cell carcinoma(SCC) still benefit few from it, and the search for potential effective therapies is imperative. Here, we demonstrated that deguelin induced significant apoptosis of lung SCC cells in vitro. Importantly, we found deguelin down-regulated the expression of galectin-1, which was involved in a wide range of tumorous physiologic process. Thus, we both over-expressed and down-regulated galectin-1 to perform its role in deguelin-induced apoptosis. We found that increased galectin-1 attenuated apoptosis of SCC cells exposed to deguelin, while galectin-1 knockdown sensitized lung cancer cells to deguelin treatment. Additionally, we observed that down-regulation of galectin-1 resulted in suppression of Ras/Raf/ERK pathway which was involved in deguelin-induced cell apoptosis. We also found that deguelin had a significant anti-tumor ability with decline of galectin-1 in vivo. In conclusion, these findings confirm that deguelin may act as a new chemo-preventive agent through inducing apoptosis of lung SCC cells in a galectin-1 dependent manner.
Collapse
Affiliation(s)
- Bing Yan
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dejian Zhao
- 2. Department of Clinical Laboratory, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhang Bao
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|