1
|
Subcortical Structures in Demented Schizophrenia Patients: A Comparative Study. Biomedicines 2023; 11:biomedicines11010233. [PMID: 36672741 PMCID: PMC9855401 DOI: 10.3390/biomedicines11010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
There are few studies on dementia and schizophrenia in older patients looking for structural differences. This paper aims to describe relation between cognitive performance and brain volumes in older schizophrenia patients. Twenty schizophrenic outpatients -10 without-dementia (SND), 10 with dementia (SD)- and fifteen healthy individuals -as the control group (CG)-, older than 50, were selected. Neuropsychological tests were used to examine cognitive domains. Brain volumes were calculated with magnetic resonance images. Cognitive performance was significantly better in CG than in schizophrenics. Cognitive performance was worst in SD than SND, except in semantic memory and visual attention. Hippocampal volumes showed significant differences between SD and CG, with predominance on the right side. Left thalamic volume was smaller in SD group than in SND. Structural differences were found in the hippocampus, amygdala, and thalamus; more evident in the amygdala and thalamus, which were mainly related to dementia. In conclusion, cognitive performance and structural changes allowed us to differentiate between schizophrenia patients and CG, with changes being more pronounced in SD than in SND. When comparing SND with SD, the functional alterations largely coincide, although sometimes in the opposite direction. Moreover, volume lost in the hippocampus, amygdala, and thalamus may be related to the possibility to develop dementia in schizophrenic patients.
Collapse
|
2
|
Szyszko vel Chorazy K, Efkemann SA, Schneider U, Juckel G. Multi-dimensional recording of long-term treatment of patients with schizophrenic disorders compared to patients with major depression measured with the ASSESS battery. Heliyon 2022; 8:e11924. [DOI: 10.1016/j.heliyon.2022.e11924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/28/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022] Open
|
3
|
A multimodal study regarding neural correlates of the subjective well-being in healthy individuals. Sci Rep 2022; 12:13688. [PMID: 35953523 PMCID: PMC9372135 DOI: 10.1038/s41598-022-18013-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Although happiness or subjective well-being (SWB) has drawn much attention from researchers, the precise neural structural correlates of SWB are generally unknown. In the present study, we aimed to investigate the associations between gray matter (GM) volumes, white matter (WM) microstructures, and SWB in healthy individuals, mainly young adults using multimodal T1 and diffusion tensor imaging studies. We enrolled 70 healthy individuals using magnetic resonance imaging. We measured their SWB using the Concise Measure of Subjective Well-Being. Voxel-wise statistical analysis of GM volumes was performed using voxel-based morphometry, while fractional anisotropy (FA) values were analyzed using tract-based spatial statistics. In healthy individuals, higher levels of SWB were significantly correlated with increased GM volumes of the anterior insula and decreased FA values in clusters of the body of the corpus callosum, precuneus WM, and fornix cres/stria terminalis. A correlational analysis revealed that GM volumes and FA values in these significant regions were significantly correlated with severity of psychological symptoms such as depression, anxiety, and quality of life. Our findings indicate that GM volumes and WM microstructures in these regions may contribute to SWB, and could be the neural basis for psychological symptom severity as well as quality of life in healthy individuals.
Collapse
|
4
|
Chilla GS, Yeow LY, Chew QH, Sim K, Prakash KNB. Machine learning classification of schizophrenia patients and healthy controls using diverse neuroanatomical markers and Ensemble methods. Sci Rep 2022; 12:2755. [PMID: 35177708 PMCID: PMC8854385 DOI: 10.1038/s41598-022-06651-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a major psychiatric disorder that imposes enormous clinical burden on patients and their caregivers. Determining classification biomarkers can complement clinical measures and improve understanding of the neural basis underlying schizophrenia. Using neuroanatomical features, several machine learning based investigations have attempted to classify schizophrenia from healthy controls but the range of neuroanatomical measures employed have been limited in range to date. In this study, we sought to classify schizophrenia and healthy control cohorts using a diverse set of neuroanatomical measures (cortical and subcortical volumes, cortical areas and thickness, cortical mean curvature) and adopted Ensemble methods for better performance. Additionally, we correlated such neuroanatomical features with Quality of Life (QoL) assessment scores within the schizophrenia cohort. With Ensemble methods and diverse neuroanatomical measures, we achieved classification accuracies ranging from 83 to 87%, sensitivities and specificities varying between 90-98% and 65-70% respectively. In addition to lower QoL scores within schizophrenia cohort, significant correlations were found between specific neuroanatomical measures and psychological health, social relationship subscale domains of QoL. Our results suggest the utility of inclusion of subcortical and cortical measures and Ensemble methods to achieve better classification performance and their potential impact of parsing out neurobiological correlates of quality of life in schizophrenia.
Collapse
Affiliation(s)
- Geetha Soujanya Chilla
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore, 138667.
| | - Ling Yun Yeow
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore, 138667
| | - Qian Hui Chew
- Institute of Mental Health, Singapore, Singapore, 539747
| | - Kang Sim
- Institute of Mental Health, Singapore, Singapore, 539747
| | - K N Bhanu Prakash
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore, 138667.
| |
Collapse
|
5
|
Yamaguchi H, Hashimoto Y, Sugihara G, Miyata J, Murai T, Takahashi H, Honda M, Hishimoto A, Yamashita Y. Three-Dimensional Convolutional Autoencoder Extracts Features of Structural Brain Images With a "Diagnostic Label-Free" Approach: Application to Schizophrenia Datasets. Front Neurosci 2021; 15:652987. [PMID: 34305514 PMCID: PMC8294943 DOI: 10.3389/fnins.2021.652987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/07/2021] [Indexed: 01/17/2023] Open
Abstract
There has been increasing interest in performing psychiatric brain imaging studies using deep learning. However, most studies in this field disregard three-dimensional (3D) spatial information and targeted disease discrimination, without considering the genetic and clinical heterogeneity of psychiatric disorders. The purpose of this study was to investigate the efficacy of a 3D convolutional autoencoder (3D-CAE) for extracting features related to psychiatric disorders without diagnostic labels. The network was trained using a Kyoto University dataset including 82 patients with schizophrenia (SZ) and 90 healthy subjects (HS) and was evaluated using Center for Biomedical Research Excellence (COBRE) datasets, including 71 SZ patients and 71 HS. We created 16 3D-CAE models with different channels and convolutions to explore the effective range of hyperparameters for psychiatric brain imaging. The number of blocks containing two convolutional layers and one pooling layer was set, ranging from 1 block to 4 blocks. The number of channels in the extraction layer varied from 1, 4, 16, and 32 channels. The proposed 3D-CAEs were successfully reproduced into 3D structural magnetic resonance imaging (MRI) scans with sufficiently low errors. In addition, the features extracted using 3D-CAE retained the relation to clinical information. We explored the appropriate hyperparameter range of 3D-CAE, and it was suggested that a model with 3 blocks may be related to extracting features for predicting the dose of medication and symptom severity in schizophrenia.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Information Medicine, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Tokyo, Japan.,Department of Psychiatry, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yuki Hashimoto
- Department of Information Medicine, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Tokyo, Japan
| | - Genichi Sugihara
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Manabu Honda
- Department of Information Medicine, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Tokyo, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Tokyo, Japan
| |
Collapse
|
6
|
Brain structural correlates of functional capacity in first-episode psychosis. Sci Rep 2020; 10:17229. [PMID: 33056996 PMCID: PMC7560620 DOI: 10.1038/s41598-020-73553-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Impaired functional capacity is a core feature of schizophrenia and presents even in first-episode psychosis (FEP) patients. Impairments in daily functioning tend to persist despite antipsychotic therapy but their neural basis is less clear. Previous studies suggest that volume loss in frontal cortex might be an important contributor, but findings are inconsistent. We aimed to comprehensively investigate the brain structural correlates of functional capacity in FEP using MRI and a reliable objective measure of functioning [University of California, San Diego Performance-Based Skills Assessment (UPSA)]. In a sample of FEP (n = 39) and a well-matched control group (n = 21), we measured cortical thickness, gray matter volume, and white matter tract integrity (fractional anisotropy, FA) within brain regions implicated by previous work. The FEP group had thinner cortex in various frontal regions and fusiform, and reduced FA in inferior longitudinal fasciculus (ILF). In FEP, poorer functional capacity correlated with reduced superior frontal volume and lower FA in left ILF. Importantly, frontal brain volumes and integrity of the ILF were identified as the structural correlates of functional capacity in FEP, controlling for other relevant factors. These findings enhance mechanistic understanding of functional capacity deficits in schizophrenia by specifying the underlying neural correlates. In future, this could help inform intervention strategies.
Collapse
|
7
|
Kurachi M, Takahashi T, Sumiyoshi T, Uehara T, Suzuki M. Early Intervention and a Direction of Novel Therapeutics for the Improvement of Functional Outcomes in Schizophrenia: A Selective Review. Front Psychiatry 2018; 9:39. [PMID: 29515467 PMCID: PMC5826072 DOI: 10.3389/fpsyt.2018.00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A recent review reported that the median proportion of patients recovering from schizophrenia was 13.5% and that this did not change over time. Various factors including the duration of untreated psychosis, cognitive impairment, negative symptoms, and morphological changes in the brain influence the functional outcome of schizophrenia. The authors herein reviewed morphological changes in the brain of schizophrenia patients, effects of early intervention, and a direction of developing novel therapeutics to achieve significant improvement of the functional outcome. METHODS A selective review of the literature including studies from our department was performed. RESULTS Longitudinal structural neuroimaging studies on schizophrenia revealed that volume reductions in the peri-Sylvian regions (e.g., superior temporal gyrus and insula), which are related to positive psychotic symptoms, progress around the onset (critical stage) of schizophrenia, but become stable in the chronic stage. On the other hand, morphological changes in the fronto-thalamic regions and lateral ventricle, which are related to negative symptoms, neurocognitive dysfunction, and the functional outcome, progress during both the critical and chronic stages. These changes in the peri-Sylvian and fronto-thalamic regions may provide a pathophysiological basis for Crow's two-syndrome classification. Accumulated evidence from early intervention trials suggests that the transition risk from an at-risk mental state (ARMS) to psychosis is approximately 30%. Differences in the cognitive performance, event-related potentials (e.g., mismatch negativity), and brain morphology have been reported between ARMS subjects who later developed psychosis and those who did not. Whether early intervention for ARMS significantly improves the long-term recovery rate of schizophrenia patients remains unknown. With respect to the development of novel therapeutics, animal models of schizophrenia based on the N-methyl-d-aspartate receptor hypofunction hypothesis successfully mimicked behavioral changes associated with cognitive impairments characteristic of the disease. Furthermore, these animal models elicited histological changes in the brain similar to those observed in schizophrenia patients, i.e., decreased numbers of parvalbumin-positive interneurons and dendritic spines of pyramidal neurons in the frontal cortex. Some antioxidant compounds were found to ameliorate these behavioral and histological abnormalities. CONCLUSION Early intervention coupled with novel therapeutics may offer a promising approach for substantial improvement of the functional outcome of schizophrenia patients.
Collapse
Affiliation(s)
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Tomiki Sumiyoshi
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Uehara
- Department of Neuropsychiatry, Kanazawa Medical University, Kanazawa, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
8
|
Wojtalik JA, Smith MJ, Keshavan MS, Eack SM. A Systematic and Meta-analytic Review of Neural Correlates of Functional Outcome in Schizophrenia. Schizophr Bull 2017; 43:1329-1347. [PMID: 28204755 PMCID: PMC5737663 DOI: 10.1093/schbul/sbx008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Individuals with schizophrenia are burdened with impairments in functional outcome, despite existing interventions. The lack of understanding of the neurobiological correlates supporting adaptive function in the disorder is a significant barrier to developing more effective treatments. This research conducted a systematic and meta-analytic review of all peer-reviewed studies examining brain-functional outcome relationships in schizophrenia. A total of 53 (37 structural and 16 functional) brain imaging studies examining the neural correlates of functional outcome across 1631 individuals with schizophrenia were identified from literature searches in relevant databases occurring between January, 1968 and December, 2016. Study characteristics and results representing brain-functional outcome relationships were systematically extracted, reviewed, and meta-analyzed. Results indicated that better functional outcome was associated with greater fronto-limbic and whole brain volumes, smaller ventricles, and greater activation, especially during social cognitive processing. Thematic observations revealed that the dorsolateral prefrontal cortex, anterior cingulate, posterior cingulate, parahippocampal gyrus, superior temporal sulcus, and cerebellum may have role in functioning. The neural basis of functional outcome and disability is infrequently studied in schizophrenia. While existing evidence is limited and heterogeneous, these findings suggest that the structural and functional integrity of fronto-limbic brain regions is consistently related to functional outcome in individuals with schizophrenia. Further research is needed to understand the mechanisms and directionality of these relationships, and the potential for identifying neural targets to support functional improvement.
Collapse
Affiliation(s)
- Jessica A Wojtalik
- School of Social Work, University of Pittsburgh, Pittsburgh, PA,To whom correspondence should be addressed; School of Social Work, University of Pittsburgh, 2117 Cathedral of Learning, Pittsburgh, PA 15260, US; tel: 412-624-6304, e-mail:
| | - Matthew J Smith
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Shaun M Eack
- School of Social Work, University of Pittsburgh, Pittsburgh, PA,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
9
|
Onay A, Eser HY, Ulaşoğlu-Yıldız Ç, Aslan S, Talı ET. A combined VBM and DTI study of schizophrenia: bilateral decreased insula volume and cerebral white matter disintegrity corresponding to subinsular white matter projections unlinked to clinical symptomatology. Diagn Interv Radiol 2017; 23:390-397. [PMID: 28870884 PMCID: PMC5602366 DOI: 10.5152/dir.2017.16519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/18/2017] [Accepted: 04/07/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE Grey matter and white matter changes within the brain are well defined in schizophrenia. However, most studies focused on either grey matter changes or white matter integrity separately; only in limited number of studies these changes were interpreted in the same frame. In addition, the relationship of these findings with clinical variables is not clearly established. Here, we aimed to investigate the grey matter and white matter changes in schizophrenia patients and exhibit the relation of these imaging findings with clinical variables. METHODS A total of 20 schizophrenia patients and 16 matched healthy controls underwent magnetic resonance imaging to investigate the grey matter and white matter alterations that occur in schizophrenia patients using voxel-based morphometry (VBM) and whole brain voxel-wise analysis of diffusion tensor imaging (DTI) parameters with SPM8, respectively. While the preprocessing steps of VBM were performed with the default parameters of VBM8 toolbox, the preprocessing steps of DTI were carried out using FSL. Additionally, VBM results were correlated with clinical variables. RESULTS Bilateral insula showed decreased grey matter volume in schizophrenia patients compared with healthy controls (P < 0.01). The opposite contrast did not show a significant difference. Psychiatric scores, duration of illness, and age were not correlated with the decreased grey matter volume of insula in schizophrenia patients. DTI analysis revealed a significant increase in mean, radial, and axial diffusivity, mainly of the fibers of bilateral anterior thalamic radiation and superior longitudinal fasciculus with left predominance, which intersected with bilateral subinsular white matter (P < 0.05). CONCLUSION Our findings suggest that insula may be the main affected brain region in schizophrenia, which is also well supported by the literature. Our results were independent of disease duration and schizophrenia symptoms. White matter alterations were observed within bilateral anterior thalamic radiation and superior longitudinal fasciculus that intersects with subinsular white matter. Studies with larger sample sizes and more detailed clinical assessments are required to understand the function of insula in the neurobiology of schizophrenia.
Collapse
Affiliation(s)
| | | | - Çiğdem Ulaşoğlu-Yıldız
- From the Departments of Radiology (A.O. , ) and Psychiatry (H.Y.E.), Koç University School of Medicine, İstanbul, Turkey; Hulusi Behçet Life Sciences Research Center (Ç.U.Y.), İstanbul University İstanbul School of Medicine, İstanbul, Turkey; the Departments of Psychiatry (S.A.) and Radiology (E.T.T.), Gazi University School of Medicine, Ankara, Turkey
| | - Selçuk Aslan
- From the Departments of Radiology (A.O. , ) and Psychiatry (H.Y.E.), Koç University School of Medicine, İstanbul, Turkey; Hulusi Behçet Life Sciences Research Center (Ç.U.Y.), İstanbul University İstanbul School of Medicine, İstanbul, Turkey; the Departments of Psychiatry (S.A.) and Radiology (E.T.T.), Gazi University School of Medicine, Ankara, Turkey
| | - Erhan Turgut Talı
- From the Departments of Radiology (A.O. , ) and Psychiatry (H.Y.E.), Koç University School of Medicine, İstanbul, Turkey; Hulusi Behçet Life Sciences Research Center (Ç.U.Y.), İstanbul University İstanbul School of Medicine, İstanbul, Turkey; the Departments of Psychiatry (S.A.) and Radiology (E.T.T.), Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|
10
|
Ocklenburg S, Friedrich P, Güntürkün O, Genç E. Voxel-wise grey matter asymmetry analysis in left- and right-handers. Neurosci Lett 2016; 633:210-214. [DOI: 10.1016/j.neulet.2016.09.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022]
|
11
|
Torres US, Duran FLS, Schaufelberger MS, Crippa JAS, Louzã MR, Sallet PC, Kanegusuku CYO, Elkis H, Gattaz WF, Bassitt DP, Zuardi AW, Hallak JEC, Leite CC, Castro CC, Santos AC, Murray RM, Busatto GF. Patterns of regional gray matter loss at different stages of schizophrenia: A multisite, cross-sectional VBM study in first-episode and chronic illness. NEUROIMAGE-CLINICAL 2016; 12:1-15. [PMID: 27354958 PMCID: PMC4910144 DOI: 10.1016/j.nicl.2016.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022]
Abstract
Background: Structural brain abnormalities in schizophrenia have been repeatedly demonstrated in magnetic resonance imaging (MRI) studies, but it remains unclear whether these are static or progressive in nature. While longitudinal MRI studies have been traditionally used to assess the issue of progression of brain abnormalities in schizophrenia, information from cross-sectional neuroimaging studies directly comparing first-episode and chronic schizophrenia patients to healthy controls may also be useful to further clarify this issue. With the recent interest in multisite mega-analyses combining structural MRI data from multiple centers aiming at increased statistical power, the present multisite voxel-based morphometry (VBM) study was carried out to examine patterns of brain structural changes according to the different stages of illness and to ascertain which (if any) of such structural abnormalities would be specifically correlated to potential clinical moderators, including cumulative exposure to antipsychotics, age of onset, illness duration and overall illness severity. Methods: We gathered a large sample of schizophrenia patients (161, being 99 chronic and 62 first-episode) and controls (151) from four previous morphometric MRI studies (1.5 T) carried out in the same geographical region of Brazil. Image processing and analyses were conducted using Statistical Parametric Mapping (SPM8) software with the diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) algorithm. Group effects on regional gray matter (GM) volumes were investigated through whole-brain voxel-wise comparisons using General Linear Model Analysis of Co-variance (ANCOVA), always including total GM volume, scan protocol, age and gender as nuisance variables. Finally, correlation analyses were performed between the aforementioned clinical moderators and regional and global brain volumes. Results: First-episode schizophrenia subjects displayed subtle volumetric deficits relative to controls in a circumscribed brain regional network identified only in small volume-corrected (SVC) analyses (p < 0.05, FWE-corrected), including the insula, temporolimbic structures and striatum. Chronic schizophrenia patients, on the other hand, demonstrated an extensive pattern of regional GM volume decreases relative to controls, involving bilateral superior, inferior and orbital frontal cortices, right middle frontal cortex, bilateral anterior cingulate cortices, bilateral insulae and right superior and middle temporal cortices (p < 0.05, FWE-corrected over the whole brain). GM volumes in several of those brain regions were directly correlated with age of disease onset on SVC analyses for conjoined (first-episode and chronic) schizophrenia groups. There were also widespread foci of significant negative correlation between duration of illness and relative GM volumes, but such findings remained significant only for the right dorsolateral prefrontal cortex after accounting for the influence of age of disease onset. Finally, significant negative correlations were detected between life-time cumulative exposure to antipsychotics and total GM and white matter volumes in schizophrenia patients, but no significant relationship was found between indices of antipsychotic usage and relative GM volume in any specific brain region. Conclusion: The above data indicate that brain changes associated with the diagnosis of schizophrenia are more widespread in chronic schizophrenia compared to first-episode patients. Our findings also suggest that relative GM volume deficits may be greater in (presumably more severe) cases with earlier age of onset, as well as varying as a function of illness duration in specific frontal brain regions. Finally, our results highlight the potentially complex effects of the continued use of antipsychotic drugs on structural brain abnormalities in schizophrenia, as we found that cumulative doses of antipsychotics affected brain volumes globally rather than selectively on frontal-temporal regions. Structural brain changes are more widespread in chronic than first-episode schizophrenia. Regional GM deficits may be greater in cases with earlier age of onset. Illness duration seems to impact in some specific frontal structural brain changes. Antipsychotics seem to affect brain volumes globally rather than regionally.
Collapse
Affiliation(s)
- Ulysses S Torres
- Post-Graduation Program in Radiology, Institute of Radiology (INRAD), Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Fabio L S Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Maristela S Schaufelberger
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department of Neuroscience and Behaviour, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José A S Crippa
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department of Neuroscience and Behaviour, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mario R Louzã
- Department and Institute of Psychiatry, University of Sao Paulo Medical School, Brazil
| | - Paulo C Sallet
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department and Institute of Psychiatry, University of Sao Paulo Medical School, Brazil
| | | | - Helio Elkis
- Department and Institute of Psychiatry, University of Sao Paulo Medical School, Brazil
| | - Wagner F Gattaz
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department and Institute of Psychiatry, University of Sao Paulo Medical School, Brazil; Laboratory of Neuroscience (LIM 27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil
| | - Débora P Bassitt
- Department and Institute of Psychiatry, University of Sao Paulo Medical School, Brazil
| | - Antonio W Zuardi
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department of Neuroscience and Behaviour, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaime Eduardo C Hallak
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department of Neuroscience and Behaviour, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Claudia C Leite
- Post-Graduation Program in Radiology, Institute of Radiology (INRAD), Faculty of Medicine, University of São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Claudio C Castro
- Post-Graduation Program in Radiology, Institute of Radiology (INRAD), Faculty of Medicine, University of São Paulo, Brazil; Department of Diagnostic Imaging, Heart Institute (InCor), Faculty of Medicine, University of São Paulo, Brazil
| | - Antonio Carlos Santos
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department of Internal Medicine - Radiology Division, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK
| | - Geraldo F Busatto
- Post-Graduation Program in Radiology, Institute of Radiology (INRAD), Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department and Institute of Psychiatry, University of Sao Paulo Medical School, Brazil
| |
Collapse
|