1
|
Dinh KM, Kaspersen KA, Mikkelsen S, Kjerulff BD, Boldsen JK, Petersen MS, Burgdorf KS, Sørensen E, Aagaard B, Forman-Ankjær B, Bruun MT, Banasik K, Hansen TF, Nyegaard M, Rohde PD, Brunak S, Hjalgrim H, Ostrowski SR, Pedersen OB, Ullum H, Erikstrup LT, Erikstrup C. Impact of CCR5Δ32 on the risk of infection, Staphylococcus aureus carriage, and plasma concentrations of chemokines in Danish blood donors. EBioMedicine 2024; 109:105406. [PMID: 39437658 PMCID: PMC11536029 DOI: 10.1016/j.ebiom.2024.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The CC chemokine receptor 5 (CCR5) is a suggested receptor for Staphylococcus aureus leukotoxin ED. Homozygosity for the Δ32 deletion (CCR5Δ32) protects against human immunodeficiency virus infection and possibly also against leukotoxin ED. We examined the impact of CCR5Δ32 on the susceptibility to S. aureus infection, all-cause infections, and S. aureus nasal carriage, respectively, and on the concentrations of circulating chemokines in blood donors. METHODS We included 95,406 participants from the Danish Blood Donor Study (DBDS) genotyped for >650,000 single nucleotide polymorphisms. The CCR5Δ32 (rs333, MAF: 0.12) was imputed from a reference panel and validated. Infectious outcomes were identified by diagnosis codes and redeemed prescription of antibiotics in national health registers. Data on S. aureus nasal carriage and forty-seven inflammatory biomarkers were available for 6721 and 7811 participants, respectively. Cox, logistic, and linear regression models adjusted for relevant confounders were used to explore said associations. FINDINGS During more than 700,000 person-years of observation, we found that CCR5Δ32 was associated with neither an increased risk of redeemed dicloxacillin, hospital-treated S. aureus-associated infection (replicated in 345,996 Icelanders), redeemed antibiotics, all-cause infection, and nor with S. aureus nasal carriage. We discovered an association between CCR5Δ32 and elevated CCL4 concentrations, which were 1.26-fold higher in Δ32-heterozygotes (95%-CI: 1.23-1.30) and 2.64-fold higher in Δ32-homozygotes (95%-CI: 2.41-2.90) compared with wildtype homozygotes. Conversely, concentrations of CCL2, CXCL-10, and CCL11 were slightly lower among Δ32-heterozygotes. INTERPRETATION Results from this CCR5Δ32 high-prevalent cohort do not support the idea that CCR5Δ32 affects the risk of S. aureus carriage or infection to any relevant degree, in this northern European context. CCL4 was the main chemokine affected by CCR5Δ32 and was observed in higher concentration among Δ32-carriers. This study cannot rule out that S. aureus is a previous driver of CCR5Δ32 selection. FUNDING The Health Research Fund of Central Denmark Region, Aarhus University, Danish Administrative Regions, Bio- and Genome Bank Denmark, Danish Blood Donor Research Foundation, Aase & Ejnar Danielsens Foundation, Højmosegård Grant, National Institute of Allergy and Infectious Diseases, and A.P. Møller Foundation for the Advancement of Medical Science.
Collapse
Affiliation(s)
- Khoa Manh Dinh
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Kathrine Agergård Kaspersen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Bertram Dalskov Kjerulff
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark
| | - Jens Kjærgaard Boldsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark
| | | | | | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bitten Aagaard
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Folkmann Hansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Glostrup, Denmark
| | - Mette Nyegaard
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Palle Duun Rohde
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hjalgrim
- Danish Cancer Society Research Center, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Epidemiology Research, Statens Serum Institut; Department of Haematology, Copenhagen University Hospital, Rigshospitalet
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | | | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Hu W, Wang Y, Zhou L, Chu K, Jin P, Liang Q, Li J, Tan Z, Zhu F. Nasal Staphylococcus aureus Carriage and Antimicrobial Resistance Profiles Among Community-Dwelling Adults in Jiangsu, China. Infect Dis Ther 2024; 13:1215-1233. [PMID: 38700654 PMCID: PMC11128426 DOI: 10.1007/s40121-024-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 05/28/2024] Open
Abstract
INTRODUCTION Persistent nasal carriage has been associated with Staphylococcus aureus infection. Previous S. aureus studies in Asia have primarily focused on clinical patients, providing limited information on persistent nasal carriage among the general adult population. METHODS This study examined 143 healthy adults in a community in Jiangsu, China. Nasal swab samples were collected 10 times. The colonization status was identified using SPA typing. We also determined antimicrobial susceptibility, genotype, and genomic characteristics of S. aureus. RESULTS The prevalence of S. aureus nasal carriage among the community individuals was on average 16.78%. The carriage rates of methicillin-resistant S. aureus and multidrug-resistant S. aureus were 6.29% and 7.69%, respectively. We identified 8.39% persistent carriers, 39.16% intermittent carriers, and 52.45% noncarriers. Furthermore, family members displayed concordance in terms of genotype and genomic characteristics. CONCLUSION Persistent nasal sampling captured intermittent carriers that were missed during short-term sampling, thus highlighting the necessity for regular community testing. SPA typing can serve as a rapid method for determining S. aureus colonization. The potential for intrafamilial transmission of S. aureus is evident, with persistent carriers being the most probable source of infection.
Collapse
Affiliation(s)
- Wenjing Hu
- School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Yang Wang
- Department of Science and Education, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lu Zhou
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Kai Chu
- National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Innovation Center, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Pengfei Jin
- National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Innovation Center, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Qi Liang
- National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Innovation Center, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Jingxin Li
- National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Innovation Center, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Zhongming Tan
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China.
| | - Fengcai Zhu
- School of Public Health, Southeast University, Nanjing, Jiangsu, China.
- National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Innovation Center, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Cusick JK, Alcaide J, Shi Y. The RELT Family of Proteins: An Increasing Awareness of Their Importance for Cancer, the Immune System, and Development. Biomedicines 2023; 11:2695. [PMID: 37893069 PMCID: PMC10603948 DOI: 10.3390/biomedicines11102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
This review highlights Receptor Expressed in Lymphoid Tissues (RELT), a Tumor Necrosis Factor Superfamily member, and its two paralogs, RELL1 and RELL2. Collectively, these three proteins are referred to as RELTfms and have gained much interest in recent years due to their association with cancer and other human diseases. A thorough knowledge of their physiological functions, including the ligand for RELT, is lacking, yet emerging evidence implicates RELTfms in a variety of processes including cytokine signaling and pathways that either promote cell death or survival. T cells from mice lacking RELT exhibit increased responses against tumors and increased inflammatory cytokine production, and multiple lines of evidence indicate that RELT may promote an immunosuppressive environment for tumors. The relationship of individual RELTfms in different cancers is not universal however, as evidence indicates that individual RELTfms may be risk factors in certain cancers yet appear to be protective in other cancers. RELTfms are important for a variety of additional processes related to human health including microbial pathogenesis, inflammation, behavior, reproduction, and development. All three proteins have been strongly conserved in all vertebrates, and this review aims to provide a clearer understanding of the current knowledge regarding these interesting proteins.
Collapse
Affiliation(s)
- John K. Cusick
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Jessa Alcaide
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|
4
|
García-Sancha N, Corchado-Cobos R, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Blanco-Gómez A, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Mendiburu-Eliçabe M, Pérez-Losada J. Evolutionary Origins of Metabolic Reprogramming in Cancer. Int J Mol Sci 2022; 23:ijms232012063. [PMID: 36292921 PMCID: PMC9603151 DOI: 10.3390/ijms232012063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. These changes are not specific to tumors but also take place during the physiological growth of tissues. Indeed, the cellular and tissue mechanisms present in the tumor have their physiological counterpart in the repair of tissue lesions and wound healing. These molecular mechanisms have been acquired during metazoan evolution, first to eliminate the infection of the tissue injury, then to enter an effective regenerative phase. Cancer itself could be considered a phenomenon of antagonistic pleiotropy of the genes involved in effective tissue repair. Cancer and tissue repair are complex traits that share many intermediate phenotypes at the molecular, cellular, and tissue levels, and all of these are integrated within a Systems Biology structure. Complex traits are influenced by a multitude of common genes, each with a weak effect. This polygenic component of complex traits is mainly unknown and so makes up part of the missing heritability. Here, we try to integrate these different perspectives from the point of view of the metabolic changes observed in cancer.
Collapse
Affiliation(s)
- Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Adrián Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.M.-E.); (J.P.-L.)
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.M.-E.); (J.P.-L.)
| |
Collapse
|
5
|
Essigmann HT, Hanis CL, DeSantis SM, Perkison WB, Aguilar DA, Jun G, Robinson DA, Brown EL. Worsening Glycemia Increases the Odds of Intermittent but Not Persistent Staphylococcus aureus Nasal Carriage in Two Cohorts of Mexican American Adults. Microbiol Spectr 2022; 10:e0000922. [PMID: 35583495 PMCID: PMC9241628 DOI: 10.1128/spectrum.00009-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Numerous host and environmental factors contribute to persistent and intermittent nasal Staphylococcus aureus carriage in humans. The effects of worsening glycemia on the odds of S. aureus intermittent and persistent nasal carriage was established in two cohorts from an adult Mexican American population living in Starr County, Texas. The anterior nares were sampled at two time points and the presence of S. aureus determined by laboratory culture and spa-typing. Persistent carriers were defined by the presence of S. aureus of the same spa-type at both time points, intermittent carriers were S. aureus-positive for 1 of 2 swabs, and noncarriers were negative for S. aureus at both time points. Diabetes status was obtained through personal interview and physical examination that included a blood draw for the determination of percent glycated hemoglobin A1c (%HbA1c), fasting plasma glucose, and other blood chemistry values. Using logistic regression and general estimating equations, the odds of persistent and intermittent nasal carriage compared to noncarriers across the glycemic spectrum was determined controlling for covariates. Increasing fasting plasma glucose and %HbA1c in the primary and replication cohort, respectively, were significantly associated with increasing odds of S. aureus intermittent, but not persistent nasal carriage. These data suggest that increasing dysglycemia is a risk factor for intermittent S. aureus nasal carriage potentially placing those with poorly controlled diabetes at an increased risk of acquiring an S. aureus infection. IMPORTANCE Factors affecting nasal S. aureus colonization have been studied primarily in the context of persistent carriage. In contrast, few studies have examined factors affecting intermittent nasal carriage with this pathogen. This study demonstrates that the odds of intermittent but not persistent nasal carriage of S. aureus significantly increases with worsening measures of dysglycemia. This is important in the context of poorly controlled diabetes since the risk of becoming colonized with one of the primary organisms associated with diabetic foot infections can lead to increased morbidity and mortality.
Collapse
Affiliation(s)
- Heather T. Essigmann
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, USA
| | - Craig L. Hanis
- Human Genetics Center, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, USA
| | - Stacia M. DeSantis
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center, Houston, Texas, USA
| | - William B. Perkison
- Human Genetics Center, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, USA
| | - David A. Aguilar
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Goo Jun
- Human Genetics Center, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, USA
| | - D. Ashley Robinson
- Department of Microbiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Eric L. Brown
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
6
|
Mohamadipoor Saadatabadi L, Mohammadabadi M, Amiri Ghanatsaman Z, Babenko O, Stavetska R, Kalashnik O, Kucher D, Kochuk-Yashchenko O, Asadollahpour Nanaei H. Signature selection analysis reveals candidate genes associated with production traits in Iranian sheep breeds. BMC Vet Res 2021; 17:369. [PMID: 34861880 PMCID: PMC8641187 DOI: 10.1186/s12917-021-03077-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sheep were among the first animals to be domesticated. They are raised all over the world and produce a major scale of animal-based protein for human consumption and play an important role in agricultural economy. Iran is one of the important locations for sheep genetic resources in the world. Here, we compared the Illumina Ovine SNP50 BeadChip data of three Iranian local breeds (Moghani, Afshari and Gezel), as a population that does not undergone artificial breeding programs as yet, and five other sheep breeds namely East Friesian white, East Friesian brown, Lacaune, DorsetHorn and Texel to detect genetic mechanisms underlying economical traits and daptation to harsh environments in sheep. RESULTS To identify genomic regions that have been targeted by positive selection, we used fixation index (Fst) and nucleotide diversity (Pi) statistics. Further analysis indicated candidate genes involved in different important traits such as; wool production included crimp of wool (PTPN3, NBEA and KRTAP20-2 genes), fiber diameter (PIK3R4 gene), hair follicle development (LHX2 gene), the growth and development of fiber (COL17A1 gene)), adaptation to hot arid environments (CORIN gene), adaptive in deficit water status (CPQ gene), heat stress (PLCB4, FAM107B, NBEA, PIK3C2B and USP43 genes) in sheep. CONCLUSIONS We detected several candidate genes related to wool production traits and adaptation to hot arid environments in sheep that can be applicable for inbreeding goals. Our findings not only include the results of previous researches, but also identify a number of novel candidate genes related to studied traits. However, more works will be essential to acknowledge phenotype- genotype relationships of the identified genes in our study.
Collapse
Affiliation(s)
| | | | - Zeinab Amiri Ghanatsaman
- Department of Animal Science, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Shiraz, Iran
| | - Olena Babenko
- Department of Animal Science, Bila Tserkva National Agrarian University, Soborna, Bila Tserkva, Kyivska Oblast, Ukraine
| | - Ruslana Stavetska
- Department of Animal Science, Bila Tserkva National Agrarian University, Soborna, Bila Tserkva, Kyivska Oblast, Ukraine
| | - Oleksandr Kalashnik
- Department of Animal Science, Sumy National Agrarian University, Sumy, Ukraine
| | - Dmytro Kucher
- Department of Breeding, Animal Genetics and Biotechnology, Polissia National University, Zhytomyr, Ukraine
| | | | | |
Collapse
|
7
|
Van Belkum A, Gros MF, Ferry T, Lustig S, Laurent F, Durand G, Jay C, Rochas O, Ginocchio CC. Novel strategies to diagnose prosthetic or native bone and joint infections. Expert Rev Anti Infect Ther 2021; 20:391-405. [PMID: 34384319 DOI: 10.1080/14787210.2021.1967745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Bone and Joint Infections (BJI) are medically important, costly and occur in native and prosthetic joints. Arthroplasties will increase significantly in absolute numbers over time as well as the incidence of Prosthetic Joint Infections (PJI). Diagnosis of BJI and PJI is sub-optimal. The available diagnostic tests have variable effectiveness, are often below standard in sensitivity and/or specificity, and carry significant contamination risks during the collection of clinical samples. Improvement of diagnostics is urgently needed. AREAS COVERED We provide a narrative review on current and future diagnostic microbiology technologies. Pathogen identification, antibiotic resistance detection, and assessment of the epidemiology of infections via bacterial typing are considered useful for improved patient management. We confirm the continuing importance of culture methods and successful introduction of molecular, mass spectrometry-mediated and next-generation genome sequencing technologies. The diagnostic algorithms for BJI must be better defined, especially in the context of diversity of both disease phenotypes and clinical specimens rendered available. EXPERT OPINION Whether interventions in BJI or PJI are surgical or chemo-therapeutic (antibiotics and bacteriophages included), prior sensitive and specific pathogen detection remains a therapy-substantiating necessity. Innovative tests for earlier and more sensitive and specific detection of bacterial pathogens in BJI are urgently needed.
Collapse
Affiliation(s)
- Alex Van Belkum
- bioMérieux, Open Innovation and Partnerships, 3 Route De Port Michaud, La Balme Les Grottes, France
| | | | - Tristan Ferry
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre Interrégional De Référence Pour La Prise En Charge Des Infections Ostéo-articulaires Complexes (Crioac Lyon), Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | - Sebastien Lustig
- Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Service De Chirurgie Orthopédique, Hôpital De La Croix-Rousse, Lyon, France
| | - Frédéric Laurent
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | | | - Corinne Jay
- bioMérieux, BioFire Development Emea, Grenoble, France
| | - Olivier Rochas
- Corporate Business Development, bioMérieux, Marcy-l'Étoile, France
| | | |
Collapse
|
8
|
Bourgeois JS, Smith CM, Ko DC. These Are the Genes You're Looking For: Finding Host Resistance Genes. Trends Microbiol 2021; 29:346-362. [PMID: 33004258 PMCID: PMC7969353 DOI: 10.1016/j.tim.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Humanity's ongoing struggle with new, re-emerging and endemic infectious diseases serves as a frequent reminder of the need to understand host-pathogen interactions. Recent advances in genomics have dramatically advanced our understanding of how genetics contributes to host resistance or susceptibility to bacterial infection. Here we discuss current trends in defining host-bacterial interactions at the genome-wide level, including screens that harness CRISPR/Cas9 genome editing, natural genetic variation, proteomics, and transcriptomics. We report on the merits, limitations, and findings of these innovative screens and discuss their complementary nature. Finally, we speculate on future innovation as we continue to progress through the postgenomic era and towards deeper mechanistic insight and clinical applications.
Collapse
Affiliation(s)
- Jeffrey S Bourgeois
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, School of Medicine, Duke University Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Israelsson E, Chaussabel D, Fischer RSB, Moore HC, Robinson DA, Dunkle JW, Essigmann HT, Record S, Brown EL. Characterization of peripheral blood mononuclear cells gene expression profiles of pediatric Staphylococcus aureus persistent and non-carriers using a targeted assay. Microbes Infect 2020; 22:540-549. [PMID: 32758644 DOI: 10.1016/j.micinf.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/26/2020] [Accepted: 07/25/2020] [Indexed: 11/28/2022]
Abstract
Defects in innate immunity affect many different physiologic systems and several studies of patients with primary immunodeficiency disorders demonstrated the importance of innate immune system components in disease prevention or colonization of bacterial pathogens. To assess the role of the innate immune system on nasal colonization with Staphylococcus aureus, innate immune responses in pediatric S. aureus nasal persistent carriers (n = 14) and non-carriers (n = 15) were profiled by analyzing co-clustered gene sets (modules). We stimulated previously frozen peripheral blood mononuclear cells (PBMCs) from these subjects with i) a panel of TLR ligands, ii) live S. aureus (either a mixture of strains or stimulation with respective carriage isolates), or iii) heat-killed S. aureus. We found no difference in responses between carriers and non-carriers when PBMCs were stimulated with a panel of TLR ligands. However, PBMC gene expression profiles differed between persistent and non-S. aureus carriers following stimulation with either live or dead S. aureus. These observations suggest that individuals susceptible to persistent carriage with S. aureus may possess differences in their live/dead bacteria recognition pathway and that innate pathway signaling is different between persistent and non-carriers of S. aureus.
Collapse
Affiliation(s)
- Elisabeth Israelsson
- Department of Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Damien Chaussabel
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| | - Rebecca S B Fischer
- Texas A&M Health Science Center School of Public Health, Department of Epidemiology and Biostatistics, College Station, TX, USA
| | - Heather C Moore
- Baylor College of Medicine, Complex Care Clinic, Texas Children's Hospital, Houston, TX, USA
| | - D Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jesse W Dunkle
- Icahn School of Medicine, Mount Sinai Hospital, Institute for Advanced Medicine, New York, NY, USA
| | - Heather T Essigmann
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Sharron Record
- Texas Children's Hospital, Department of Pediatrics, TX, USA
| | - Eric L Brown
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
10
|
Silva AA, Silva DA, Silva FF, Costa CN, Silva HT, Lopes PS, Veroneze R, Thompson G, Carvalheira J. GWAS and gene networks for milk-related traits from test-day multiple lactations in Portuguese Holstein cattle. J Appl Genet 2020; 61:465-476. [PMID: 32607783 DOI: 10.1007/s13353-020-00567-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/07/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
This study focused on the identification of QTL regions, candidate genes, and network related genes based on the first 3 lactations (LAC3) of milk, fat, and protein yields, and somatic cell score (SCS) in Portuguese Holstein cattle. Additionally, the results were compared with those from only first lactation (LAC1) data. The analyses were performed using the weighted single-step GWAS under an autoregressive test-day (TD) multiple lactations model. A total of 11,434,294 and 4,725,673 TD records from LAC3 and LAC1, respectively, including 38,323 autosomal SNPs and 1338 genotyped animals were used in GWAS analyses. A total of 51 (milk), 5 (fat), 24 (protein), and 4 (SCS) genes were associated to previously annotated relevant QTL regions for LAC3. The CACNA2D1 at BTA4 explained the highest proportion of genetic variance respectively for milk, fat, and protein yields. For SCS, the TRNAG-CCC at BTA14, MAPK10, and PTPN3 genes, both at BTA6 were considered important candidate genes. The accessed network refined the importance of the reported genes. CACNA2D1 regulates calcium density and activation/inactivation kinetics of calcium transport in the mammary gland; whereas TRNAG-CCC, MAPK10, and PTPN3 are directly involved with inflammatory processes widely derived from mastitis. In conclusion, potential candidate genes (TRNAG-CCC, MAPK10, and PTPN3) associated with somatic cell were highlighted, which further validation studies are needed to clarify its mechanism action in response to mastitis. Moreover, most of the candidate genes identified were present in both (LAC3 and LAC1) for milk, fat and protein yields, except for SCS, in which no candidate genes were shared between LAC3 and LAC1. The larger phenotypic information provided by LAC3 dataset was more effective to identify relevant genes, providing a better understanding of the genetic architecture of these traits over all lactations simultaneously.
Collapse
Affiliation(s)
- Alessandra Alves Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Delvan Alves Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Fabyano Fonseca Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Hugo Teixeira Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paulo Sávio Lopes
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Renata Veroneze
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Gertrude Thompson
- Research Center in Biodiversity and Genetic Resources (CIBIO-InBio), University of Porto, Vairão, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Julio Carvalheira
- Research Center in Biodiversity and Genetic Resources (CIBIO-InBio), University of Porto, Vairão, Porto, Portugal. .,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
11
|
Tipton CD, Wolcott RD, Sanford NE, Miller C, Pathak G, Silzer TK, Sun J, Fleming D, Rumbaugh KP, Little TD, Phillips N, Phillips CD. Patient genetics is linked to chronic wound microbiome composition and healing. PLoS Pathog 2020; 16:e1008511. [PMID: 32555671 PMCID: PMC7302439 DOI: 10.1371/journal.ppat.1008511] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
The clinical importance of microbiomes to the chronicity of wounds is widely appreciated, yet little is understood about patient-specific processes shaping wound microbiome composition. Here, a two-cohort microbiome-genome wide association study is presented through which patient genomic loci associated with chronic wound microbiome diversity were identified. Further investigation revealed that alternative TLN2 and ZNF521 genotypes explained significant inter-patient variation in relative abundance of two key pathogens, Pseudomonas aeruginosa and Staphylococcus epidermidis. Wound diversity was lowest in Pseudomonas aeruginosa infected wounds, and decreasing wound diversity had a significant negative linear relationship with healing rate. In addition to microbiome characteristics, age, diabetic status, and genetic ancestry all significantly influenced healing. Using structural equation modeling to identify common variance among SNPs, six loci were sufficient to explain 53% of variation in wound microbiome diversity, which was a 10% increase over traditional multiple regression. Focusing on TLN2, genotype at rs8031916 explained expression differences of alternative transcripts that differ in inclusion of important focal adhesion binding domains. Such differences are hypothesized to relate to wound microbiomes and healing through effects on bacterial exploitation of focal adhesions and/or cellular migration. Related, other associated loci were functionally enriched, often with roles in cytoskeletal dynamics. This study, being the first to identify patient genetic determinants for wound microbiomes and healing, implicates genetic variation determining cellular adhesion phenotypes as important drivers of infection type. The identification of predictive biomarkers for chronic wound microbiomes may serve as risk factors and guide treatment by informing patient-specific tendencies of infection. Chronic, or non-healing, wounds represent a costly burden to patients, and bacterial infection of wounds is an important driver of chronicity. A variety of bacterial species often occur in chronic wounds, but it is unknown why certain species are observed in some wound infections and not others. In this study, genetic variation of wound clinic patients was compared to the bacteria observed in their infected wounds. Through these comparisons, genetic variation in the TLN2 and ZNF521 genes was found to be associated with both the number of bacteria observed in wounds and the abundance of common pathogens (primarily Pseudomonas aeruginosa and Staphylococcus epidermidis). Moreover, Pseudomonas infected wounds were found to have fewer species present and wounds with fewer species were slower to heal. Furthermore, patient genes associated with microbiomes commonly encode proteins known to be important for cellular structures important to healing and to which bacteria directly interact. Experimental investigation of one such gene, TLN2, identified genotype-dependent differences in the expression of functionally different versions of TLN2 that is hypothesized to shape differences in cellular adhesion structures. Finally, a new statistical approach is presented in which patient biomarkers are used to predict the number of species observed during infection. Overall, our results describe how patient genetic variation influence the types of bacteria likely to infect an individual as well as influence healing.
Collapse
Affiliation(s)
- Craig D Tipton
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America.,RTL Genomics, Lubbock, Texas, United States of America
| | - Randall D Wolcott
- Southwest Regional Wound Care Center, Lubbock, Texas, United States of America
| | - Nicholas E Sanford
- Southwest Regional Wound Care Center, Lubbock, Texas, United States of America
| | - Clint Miller
- Southwest Regional Wound Care Center, Lubbock, Texas, United States of America
| | - Gita Pathak
- Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Talisa K Silzer
- Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jie Sun
- Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Derek Fleming
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America.,Burn Center of Excellence, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Todd D Little
- Department of Educational Psychology, Texas Tech University, Lubbock, Texas, United States of America.,Optentia Research Focus Area, North West University, Vanderbijlpark, South Africa
| | - Nicole Phillips
- Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Caleb D Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America.,Natural Science Research Laboratory, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
12
|
Single nucleotide polymorphisms in piRNA-pathway genes: an insight into genetic determinants of human diseases. Mol Genet Genomics 2019; 295:1-12. [DOI: 10.1007/s00438-019-01612-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/22/2019] [Indexed: 12/23/2022]
|
13
|
Mozzi A, Pontremoli C, Sironi M. Genetic susceptibility to infectious diseases: Current status and future perspectives from genome-wide approaches. INFECTION GENETICS AND EVOLUTION 2017; 66:286-307. [PMID: 28951201 PMCID: PMC7106304 DOI: 10.1016/j.meegid.2017.09.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWASs) have been widely applied to identify genetic factors that affect complex diseases or traits. Presently, the GWAS Catalog includes > 2800 human studies. Of these, only a minority have investigated the susceptibility to infectious diseases or the response to therapies for the treatment or prevention of infections. Despite their limited application in the field, GWASs have provided valuable insights by pinpointing associations to both innate and adaptive immune response loci, as well as novel unexpected risk factors for infection susceptibility. Herein, we discuss some issues and caveats of GWASs for infectious diseases, we review the most recent findings ensuing from these studies, and we provide a brief summary of selected GWASs for infections in non-human mammals. We conclude that, although the general trend in the field of complex traits is to shift from GWAS to next-generation sequencing, important knowledge on infectious disease-related traits can be still gained by GWASs, especially for those conditions that have never been investigated using this approach. We suggest that future studies will benefit from the leveraging of information from the host's and pathogen's genomes, as well as from the exploration of models that incorporate heterogeneity across populations and phenotypes. Interactions within HLA genes or among HLA variants and polymorphisms located outside the major histocompatibility complex may also play an important role in shaping the susceptibility and response to invading pathogens. Relatively few GWASs for infectious diseases were performed. Phenotype heterogeneity and case/control misclassification can affect GWAS power. Adaptive and innate immunity loci were identified in several infectious disease GWASs. Unexpected loci (e.g., lncRNAs) were also associated with infection susceptibility. GWASs should integrate host and pathogen diversity and use complex association models.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy.
| |
Collapse
|
14
|
Moua P, Checketts M, Xu LG, Shu HB, Reyland ME, Cusick JK. RELT family members activate p38 and induce apoptosis by a mechanism distinct from TNFR1. Biochem Biophys Res Commun 2017; 491:25-32. [PMID: 28688764 DOI: 10.1016/j.bbrc.2017.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 12/19/2022]
Abstract
Receptor Expressed in Lymphoid Tissues (RELT) is a human Tumor Necrosis Factor Receptor (TNFR) family member that has two identified homologous binding partners, RELL1 and RELL2. This study sought to further understand the pattern of RELT expression, the functional role of RELT family members, and the mechanism of RELT-induced apoptosis. RELT protein expression was detected in the spleen, lymph node, brain, breast and peripheral blood leukocytes (PBLs). A smaller than expected size of RELT was observed in PBLs, suggesting a proteolytically cleaved form of RELT. RELL1 and RELL2 overexpression activated the p38 MAPK pathway more substantially than RELT in HEK-293 cells, and this activation of p38 by RELT family members was blocked by dominant-negative mutant forms of OSR1 or TRAF2, implicating these molecules in RELT family member signaling. RELT was previously shown to induce apoptosis in human epithelial cells despite lacking the characteristic death domain (DD) found in other TNFRs. Seven deletion mutants of RELT that lacked differing portions of the intracellular domain were created to assess whether RELT possesses a novel DD. None of the deletion mutants induced apoptosis as efficiently as full-length RELT, a result that is consistent with a novel DD being located at the carboxyl-terminus. Interestingly, induction of apoptotic morphology by RELT overexpression was not prevented when signaling by FADD or Caspase-8 was blocked, indicating RELT induces apoptosis by a pathway distinct from other death-inducing TNFRs such as TNFR1. Collectively, this study provides more insights into RELT expression, RELT family member function, and the mechanism of RELT-induced death.
Collapse
Affiliation(s)
- Pachai Moua
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA, USA
| | - Mathew Checketts
- University of Colorado School of Dental Medicine, Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Liang-Guo Xu
- National Jewish Health, Department of Immunology, 1400 Jackson Street, Denver, CO 80220, USA
| | - Hong-Bing Shu
- National Jewish Health, Department of Immunology, 1400 Jackson Street, Denver, CO 80220, USA
| | - Mary E Reyland
- University of Colorado School of Dental Medicine, Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - John K Cusick
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA, USA.
| |
Collapse
|
15
|
Hanis CL, Garrett KE, Essigmann HT, Robinson DA, Gunter SM, Nyitray AG, Brown EL. Household aggregation of Staphylococcus aureus by clonal complex and methicillin resistance profiles in Starr County, Texas. Eur J Clin Microbiol Infect Dis 2017; 36:1787-1793. [PMID: 28474178 DOI: 10.1007/s10096-017-2992-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/17/2017] [Indexed: 02/08/2023]
Abstract
Staphylococcus aureus is one of the most common causes of skin and soft tissue infections in health-care and community settings, but transmission of S. aureus in community-based populations is incompletely understood. S. aureus carriage phenotypes (persistent, intermittent, and non-carriers) were determined for households from Starr County, TX. Nasal swabs were collected from a cohort of 901 residents and screened for the presence of S. aureus. Isolated strains were spa-typed and assigned to clonal complexes. Of the 901 participants there were 134 pairs, 28 trios, 11 quartets, 3 quintets and 1 septet residing in the same household. There was a significant increase in "ever" carriers (persistent and intermittent carriers combined) in these households over that expected based on population frequencies (p = 0.029). There were 42 ever carrier pairs of individuals with 21 concordant for clonal complex type whereas only 4.7 were expected to be so (p = 6.9E-11). These results demonstrated clear aggregation of S. aureus carriage and concordance for strain types within households. As antibiotic-resistant S. aureus strains increase in community settings, it is important to better understand risk factors for colonization, mechanisms of transmission, clonal complexes present, and the role of household concordance/transmission.
Collapse
Affiliation(s)
- C L Hanis
- Human Genetics Center, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - K E Garrett
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - H T Essigmann
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - D A Robinson
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - S M Gunter
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, USA.,National School of Tropical Medicine, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - A G Nyitray
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - E L Brown
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
16
|
Reid MJA, Fischer RSB, Mannathoko N, Muthoga C, McHugh E, Essigmann H, Brown EL, Steenhoff AP. Prevalence of Staphylococcus aureus Nasal Carriage in Human Immunodeficiency Virus-Infected and Uninfected Children in Botswana: Prevalence and Risk Factors. Am J Trop Med Hyg 2017; 96:795-801. [PMID: 28167588 PMCID: PMC5392623 DOI: 10.4269/ajtmh.16-0650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/02/2017] [Indexed: 12/16/2022] Open
Abstract
AbstractStaphylococcus aureus is an important cause of morbidity and mortality in children in sub-Saharan Africa (SSA). A major risk factor for staphylococcal infection is S. aureus colonization of the anterior nares. We sought to define risk factors for S. aureus carriage and characterize antimicrobial resistance patterns in children in Botswana. A cross-sectional study was conducted at two clinical sites in southern Botswana. Patients under 18 years of age underwent two nasal swabs and brief interviews, 4 weeks apart. Standard microbiological techniques were used. For persistent carriers, S. aureus was isolated from swabs at both time points, and for intermittent carriers, S. aureus was isolated from only one swab. Poisson regression with robust variance estimator was used to compare prevalence of carriage and the resistance phenotypes. Among 56 enrollees, prevalence of S. aureus colonization was 55% (N = 31), of whom 42% (N = 13) were persistent carriers. Of human immunodeficiency virus-infected children, 64% (N = 9) were carriers. Risk factors for nasal carriage included a history of tuberculosis (prevalence ratio [PR] = 1.60; 95% confidence interval [CI] = 1.02, 2.51; P = 0.040) and closer proximity to health care (PR = 0.89; 95% CI = 0.80, 0.99; P = 0.048). Prior pneumonia was more common among persistent rather than intermittent carriers (PR = 2.64; 95% CI = 1.64, 4.23; P < 0.001). Methicillin-resistant S. aureus (MRSA) prevalence was 13%. Of isolates tested, 16% were resistant to three or more drugs (N = 7/44). In summary, children in southern Botswana are frequently colonized with S. aureus. Antibiotic resistance, especially MRSA, is also widespread. Antibiotic recommendations for treatment of staphylococcal infections in SSA should take cognizance of these resistance patterns.
Collapse
Affiliation(s)
| | - Rebecca S. B. Fischer
- The University of Texas Health Science Center School of Public Health, Houston, Texas
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | | | | | - Erin McHugh
- The University of Texas Health Science Center School of Public Health, Houston, Texas
| | - Heather Essigmann
- The University of Texas Health Science Center School of Public Health, Houston, Texas
| | - Eric L. Brown
- The University of Texas Health Science Center School of Public Health, Houston, Texas
| | - Andrew P. Steenhoff
- University of Botswana, Gaborone, Botswana
- Botswana-UPenn Partnership, Gaborone, Botswana
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Jackson KL, Mbagwu M, Pacheco JA, Baldridge AS, Viox DJ, Linneman JG, Shukla SK, Peissig PL, Borthwick KM, Carrell DA, Bielinski SJ, Kirby JC, Denny JC, Mentch FD, Vazquez LM, Rasmussen-Torvik LJ, Kho AN. Performance of an electronic health record-based phenotype algorithm to identify community associated methicillin-resistant Staphylococcus aureus cases and controls for genetic association studies. BMC Infect Dis 2016; 16:684. [PMID: 27855652 PMCID: PMC5114817 DOI: 10.1186/s12879-016-2020-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/11/2016] [Indexed: 12/25/2022] Open
Abstract
Background Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is one of the most common causes of skin and soft tissue infections in the United States, and a variety of genetic host factors are suspected to be risk factors for recurrent infection. Based on the CDC definition, we have developed and validated an electronic health record (EHR) based CA-MRSA phenotype algorithm utilizing both structured and unstructured data. Methods The algorithm was validated at three eMERGE consortium sites, and positive predictive value, negative predictive value and sensitivity, were calculated. The algorithm was then run and data collected across seven total sites. The resulting data was used in GWAS analysis. Results Across seven sites, the CA-MRSA phenotype algorithm identified a total of 349 cases and 7761 controls among the genotyped European and African American biobank populations. PPV ranged from 68 to 100% for cases and 96 to 100% for controls; sensitivity ranged from 94 to 100% for cases and 75 to 100% for controls. Frequency of cases in the populations varied widely by site. There were no plausible GWAS-significant (p < 5 E −8) findings. Conclusions Differences in EHR data representation and screening patterns across sites may have affected identification of cases and controls and accounted for varying frequencies across sites. Future work identifying these patterns is necessary. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-2020-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathryn L Jackson
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Michael Mbagwu
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Daniel J Viox
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Emory University School of Medicine, Atlanta, GA, USA
| | - James G Linneman
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | | | - Peggy L Peissig
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | | | - David A Carrell
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | | | - Jacqueline C Kirby
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Frank D Mentch
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lyam M Vazquez
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Abel N Kho
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|