1
|
Rode KD, Van Hemert C, Wilson RR, Woodruff SP, Pabilonia K, Ballweber L, Kwok O, Dubey JP. Increased pathogen exposure of a marine apex predator over three decades. PLoS One 2024; 19:e0310973. [PMID: 39441768 PMCID: PMC11498681 DOI: 10.1371/journal.pone.0310973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Environmental changes associated with global warming create new opportunities for pathogen and parasite transmission in Arctic wildlife. As an apex predator ranging over large, remote areas, changes in pathogens and parasites in polar bears are a useful indicator of changing transmission dynamics in Arctic ecosystems. We examined prevalence and risk factors associated with exposure to parasites and viral and bacterial pathogens in Chukchi Sea polar bears. Serum antibodies to six pathogens were detected and prevalence increased between 1987-1994 and 2008-2017 for five: Toxoplasma gondii, Neospora caninum, Francisella tularensis, Brucella abortus/suis, and canine distemper virus. Although bears have increased summer land use, this behavior was not associated with increased exposure. Higher prevalence of F. tularensis, Coxiella burnetii, and B. abortus/suis antibodies in females compared to males, however, could be associated with terrestrial denning. Exposure was related to diet for several pathogens indicating increased exposure in the food web. Elevated white blood cell counts suggest a possible immune response to some pathogens. Given that polar bears face multiple stressors in association with climate change and are a subsistence food, further work is warranted to screen for signs of disease.
Collapse
Affiliation(s)
- Karyn D. Rode
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Caroline Van Hemert
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Ryan R. Wilson
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, Alaska, United States of America
| | - Susannah P. Woodruff
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, Alaska, United States of America
| | - Kristy Pabilonia
- Colorado State University Veterinary Diagnostic Laboratory, Fort Collins, Colorado, United States of America
| | - Lora Ballweber
- Colorado State University Veterinary Diagnostic Laboratory, Fort Collins, Colorado, United States of America
| | - Oliver Kwok
- US Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Jitender P. Dubey
- US Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| |
Collapse
|
2
|
Ross TR, Thiemann GW, Kirschhoffer BJ, Kirschhoffer J, York G, Derocher AE, Johnson AC, Lunn NJ, McGeachy D, Trim V, Northrup JM. Telemetry without collars: performance of fur- and ear-mounted satellite tags for evaluating the movement and behaviour of polar bears. ANIMAL BIOTELEMETRY 2024; 12:18. [PMID: 39022453 PMCID: PMC11249465 DOI: 10.1186/s40317-024-00373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
The study of animal movement provides insights into underlying ecological processes and informs analyses of behaviour and resource use, which have implications for species management and conservation. The tools used to study animal movement have evolved over the past decades, allowing for data collection from a variety of species, including those living in remote environments. Satellite-linked radio and GPS collars have been used to study polar bear (Ursus maritimus) ecology and movements throughout the circumpolar Arctic for over 50 years. However, due to morphology and growth constraints, only adult female polar bears can be reliably collared. Collars have proven to be safe, but there has been opposition to their use, resulting in a deficiency in data across much of the species' range. To bolster knowledge of movement characteristics and behaviours for polar bears other than adult females, while also providing an alternative to collars, we tested the use of fur- and ear-mounted telemetry tags that can be affixed to polar bears of any sex and age. We tested three fur tag designs (SeaTrkr, tribrush and pentagon tags), which we affixed to 15 adult and 1 subadult male polar bears along the coast of Hudson Bay during August-September 2021-2022. Fur tags were compared with ear tags deployed on 42 subadult and adult male polar bears captured on the coast or the sea ice between 2016 and 2022. We used data from the tags to quantify the amount of time subadult and adult males spent resting versus traveling while on land. Our results show the three fur tag designs remained functional for shorter mean durations (SeaTrkr = 58 days; tribrush = 47 days; pentagon = 22 days) than ear tags (121 days), but positional error estimates were comparable among the Argos-equipped tags. The GPS/Iridium-equipped SeaTrkr fur tags provided higher resolution and more frequent location data. Combined, the tags provided sufficient data to model different behavioural states. Furthermore, as hypothesized, subadult and adult male polar bears spent the majority of their time resting while on land, increasing time spent traveling as temperatures cooled. Fur tags show promise as a short-term means of collecting movement data from free-ranging polar bears. Supplementary Information The online version contains supplementary material available at 10.1186/s40317-024-00373-2.
Collapse
Affiliation(s)
- Tyler R. Ross
- Department of Biology, York University, Toronto, ON Canada
| | - Gregory W. Thiemann
- Faculty of Environmental and Urban Change, York University, Toronto, ON Canada
| | | | | | - Geoff York
- Polar Bears International, Bozeman, MT USA
| | - Andrew E. Derocher
- Department of Biological Sciences, University of Alberta, Edmonton, AB Canada
| | - Amy C. Johnson
- Department of Biological Sciences, University of Alberta, Edmonton, AB Canada
- Ecofish Research Ltd., Courtenay, BC Canada
| | | | - David McGeachy
- Environment and Climate Change Canada, Edmonton, AB Canada
| | - Vicki Trim
- Department of Agriculture and Resource Development, Manitoba Sustainable Development, Thompson, MB Canada
| | - Joseph M. Northrup
- Ontario Ministry of Natural Resources and Forestry, Peterborough, ON Canada
| |
Collapse
|
3
|
Westbury MV, Brown SC, Lorenzen J, O’Neill S, Scott MB, McCuaig J, Cheung C, Armstrong E, Valdes PJ, Samaniego Castruita JA, Cabrera AA, Blom SK, Dietz R, Sonne C, Louis M, Galatius A, Fordham DA, Ribeiro S, Szpak P, Lorenzen ED. Impact of Holocene environmental change on the evolutionary ecology of an Arctic top predator. SCIENCE ADVANCES 2023; 9:eadf3326. [PMID: 37939193 PMCID: PMC10631739 DOI: 10.1126/sciadv.adf3326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/09/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
The Arctic is among the most climatically sensitive environments on Earth, and the disappearance of multiyear sea ice in the Arctic Ocean is predicted within decades. As apex predators, polar bears are sentinel species for addressing the impact of environmental variability on Arctic marine ecosystems. By integrating genomics, isotopic analysis, morphometrics, and ecological modeling, we investigate how Holocene environmental changes affected polar bears around Greenland. We uncover reductions in effective population size coinciding with increases in annual mean sea surface temperature, reduction in sea ice cover, declines in suitable habitat, and shifts in suitable habitat northward. Furthermore, we show that west and east Greenlandic polar bears are morphologically, and ecologically distinct, putatively driven by regional biotic and genetic differences. Together, we provide insights into the vulnerability of polar bears to environmental change and how the Arctic marine ecosystem plays a vital role in shaping the evolutionary and ecological trajectories of its inhabitants.
Collapse
Affiliation(s)
- Michael V. Westbury
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Stuart C. Brown
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
- Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department for Environment and Water, Adelaide, South Australia, Australia
| | - Julie Lorenzen
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Stuart O’Neill
- Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael B. Scott
- Department of Anthropology, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L0G2, Canada
| | - Julia McCuaig
- Department of Anthropology, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L0G2, Canada
| | - Christina Cheung
- Department of Anthropology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Edward Armstrong
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Paul J. Valdes
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | | | - Andrea A. Cabrera
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Stine Keibel Blom
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Rune Dietz
- Arctic Research Centre (ARC), Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, Roskilde DK-4000, Denmark
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark
| | - Christian Sonne
- Arctic Research Centre (ARC), Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, Roskilde DK-4000, Denmark
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark
| | - Marie Louis
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
- Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, Nuuk 3900, Denmark
| | - Anders Galatius
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark
| | - Damien A. Fordham
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
- Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Sofia Ribeiro
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
- Glaciology and Climate Department, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen DK-1350, Denmark
| | - Paul Szpak
- Department of Anthropology, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L0G2, Canada
| | - Eline D. Lorenzen
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| |
Collapse
|
4
|
Barratclough A, Ferguson SH, Lydersen C, Thomas PO, Kovacs KM. A Review of Circumpolar Arctic Marine Mammal Health-A Call to Action in a Time of Rapid Environmental Change. Pathogens 2023; 12:937. [PMID: 37513784 PMCID: PMC10385039 DOI: 10.3390/pathogens12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The impacts of climate change on the health of marine mammals are increasingly being recognised. Given the rapid rate of environmental change in the Arctic, the potential ramifications on the health of marine mammals in this region are a particular concern. There are eleven endemic Arctic marine mammal species (AMMs) comprising three cetaceans, seven pinnipeds, and the polar bear (Ursus maritimus). All of these species are dependent on sea ice for survival, particularly those requiring ice for breeding. As air and water temperatures increase, additional species previously non-resident in Arctic waters are extending their ranges northward, leading to greater species overlaps and a concomitant increased risk of disease transmission. In this study, we review the literature documenting disease presence in Arctic marine mammals to understand the current causes of morbidity and mortality in these species and forecast future disease issues. Our review highlights potential pathogen occurrence in a changing Arctic environment, discussing surveillance methods for 35 specific pathogens, identifying risk factors associated with these diseases, as well as making recommendations for future monitoring for emerging pathogens. Several of the pathogens discussed have the potential to cause unusual mortality events in AMMs. Brucella, morbillivirus, influenza A virus, and Toxoplasma gondii are all of concern, particularly with the relative naivety of the immune systems of endemic Arctic species. There is a clear need for increased surveillance to understand baseline disease levels and address the gravity of the predicted impacts of climate change on marine mammal species.
Collapse
Affiliation(s)
- Ashley Barratclough
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, CA 92106, USA
| | - Steven H. Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada;
| | - Christian Lydersen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| | - Peter O. Thomas
- Marine Mammal Commission, 4340 East-West Highway, Room 700, Bethesda, MD 20814, USA;
| | - Kit M. Kovacs
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| |
Collapse
|
5
|
Rode KD, Taras BD, Stricker CA, Atwood TC, Boucher NP, Durner GM, Derocher AE, Richardson ES, Cherry SG, Quakenbush L, Horstmann L, Bromaghin JF. Diet energy density estimated from isotopes in predator hair associated with survival, habitat, and population dynamics. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2751. [PMID: 36151883 DOI: 10.1002/eap.2751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Sea ice loss is fundamentally altering the Arctic marine environment. Yet there is a paucity of data on the adaptability of food webs to ecosystem change, including predator-prey interactions. Polar bears (Ursus maritimus) are an important subsistence resource for Indigenous people and an apex predator that relies entirely on the under-ice food web to meet its energy needs. In this study, we assessed whether polar bears maintained dietary energy density by prey switching in response to spatiotemporal variation in prey availability. We compared the macronutrient composition of diets inferred from stable carbon and nitrogen isotopes in polar bear guard hair (primarily representing summer/fall diet) during periods when bears had low and high survival (2004-2016), between bears that summered on land versus pack ice, and between bears occupying different regions of the Alaskan and Canadian Beaufort Sea. Polar bears consumed diets with lower energy density during periods of low survival, suggesting that concurrent increased dietary proportions of beluga whales (Delphinapterus leucas) did not offset reduced proportions of ringed seals (Pusa hispida). Diets with the lowest energy density and proportions from ringed seal blubber were consumed by bears in the western Beaufort Sea (Alaska) during a period when polar bear abundance declined. Intake required to meet energy requirements of an average free-ranging adult female polar bear was 2.1 kg/day on diets consumed during years with high survival but rose to 3.0 kg/day when survival was low. Although bears that summered onshore in the Alaskan Beaufort Sea had higher-fat diets than bears that summered on the pack ice, access to the remains of subsistence-harvested bowhead whales (Balaena mysticetus) contributed little to improving diet energy density. Because most bears in this region remain with the sea ice year round, prey switching and consumption of whale carcasses onshore appear insufficient to augment diets when availability of their primary prey, ringed seals, is reduced. Our results show that a strong predator-prey relationship between polar bears and ringed seals continues in the Beaufort Sea. The method of estimating dietary blubber using predator hair, demonstrated here, provides a new metric to monitor predator-prey relationships that affect individual health and population demographics.
Collapse
Affiliation(s)
- Karyn D Rode
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Brian D Taras
- Alaska Department of Fish and Game, Fairbanks, Alaska, USA
| | - Craig A Stricker
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Nicole P Boucher
- University of Alberta, Edmonton, Alberta, Canada
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - George M Durner
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | | | - Evan S Richardson
- Environment and Climate Change Canada, Science and Technology Branch, Winnipeg, Manitoba, Canada
| | - Seth G Cherry
- University of Alberta, Edmonton, Alberta, Canada
- Parks Canada, East Kootenay, British Columbia, Canada
| | | | - Lara Horstmann
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | | |
Collapse
|
6
|
Wilder JM, Mangipane LS, Atwood T, Kochnev A, Smith T, Vongraven D. Efficacy of bear spray as a deterrent against polar bears. WILDLIFE SOC B 2022. [DOI: 10.1002/wsb.1403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- James M. Wilder
- U.S. Fish and Wildlife Service, Marine Mammals Management 1011 E. Tudor Road Anchorage AK 99503 USA
| | - Lindsey S. Mangipane
- U.S. Fish and Wildlife Service, Marine Mammals Management 1011 E. Tudor Road Anchorage AK 99503 USA
| | - Todd Atwood
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive Anchorage Alaska 99508 USA
| | - Anatoly Kochnev
- Russian Academy of Sciences, Far East Branch, Institute of Biological Problems of the North, Mammals Ecology Lab, 18 Portovaya Street 685000 Magadan Russia
- Beringia National Park, 10 Naberezhnaya Dezhneva 89251 Provideniya Russia
| | - Tom Smith
- Wildlife and Wildlands Conservation Program Brigham Young University 5050 Life Sciences Building Provo Utah 84602 USA
| | - Dag Vongraven
- Norwegian Polar Institute, Fram Center N‐9296 Tromsø Norway
| |
Collapse
|
7
|
Rode KD, Douglas D, Atwood T, Durner G, Wilson R, Pagano A. Observed and forecasted changes in land use by polar bears in the Beaufort and Chukchi Seas, 1985–2040. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Hostetter NJ, Regehr EV, Wilson RR, Royle JA, Converse SJ. Modeling spatiotemporal abundance and movement dynamics using an integrated spatial capture-recapture movement model. Ecology 2022; 103:e3772. [PMID: 35633152 PMCID: PMC9787655 DOI: 10.1002/ecy.3772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022]
Abstract
Animal movement is a fundamental ecological process affecting the survival and reproduction of individuals, the structure of populations, and the dynamics of communities. Methods to quantify animal movement and spatiotemporal abundances, however, are generally separate and therefore omit linkages between individual-level and population-level processes. We describe an integrated spatial capture-recapture (SCR) movement model to jointly estimate (1) the number and distribution of individuals in a defined spatial region and (2) movement of those individuals through time. We applied our model to a study of polar bears (Ursus maritimus) in a 28,125 km2 survey area of the eastern Chukchi Sea, USA in 2015 that incorporated capture-recapture and telemetry data. In simulation studies, the model provided unbiased estimates of movement, abundance, and detection parameters using a bivariate normal random walk and correlated random walk movement process. Our case study provided detailed evidence of directional movement persistence for both male and female bears, where individuals regularly traversed areas larger than the survey area during the 36-day study period. Scaling from individual- to population-level inferences, we found that densities varied from <0.75 bears/625 km2 grid cell/day in nearshore cells to 1.6-2.5 bears/grid cell/day for cells surrounded by sea ice. Daily abundance estimates ranged from 53 to 69 bears, with no trend across days. The cumulative number of unique bears that used the survey area increased through time due to movements into and out of the area, resulting in an estimated 171 individuals using the survey area during the study (95% credible interval 124-250). Abundance estimates were similar to a previous multiyear integrated population model using capture-recapture and telemetry data (2008-2016; Regehr et al., Scientific Reports 8:16780, 2018). Overall, the SCR-movement model successfully quantified both individual- and population-level space use, including the effects of landscape characteristics on movement, abundance, and detection, while linking the movement and abundance processes to directly estimate density within a prescribed spatial region and temporal period. Integrated SCR-movement models provide a generalizable approach to incorporate greater movement realism into population dynamics and link movement to emergent properties including spatiotemporal densities and abundances.
Collapse
Affiliation(s)
- Nathan J. Hostetter
- Washington Cooperative Fish and Wildlife Research Unit, School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA,Present address:
United States Geological Survey, North Carolina Cooperative Fish and Wildlife Research Unit, Department of Applied EcologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Eric V. Regehr
- Applied Physics LaboratoryPolar Science Center, University of WashingtonSeattleWashingtonUSA
| | - Ryan R. Wilson
- Marine Mammals ManagementUnited States Fish and Wildlife ServiceAnchorageAlaskaUSA
| | - J. Andrew Royle
- United States Geological SurveyEastern Ecological Science CenterLaurelMarylandUSA
| | - Sarah J. Converse
- United States Geological Survey, Washington Cooperative Fish and Wildlife Research Unit, School of Environmental and Forest Sciences and School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
9
|
Patil VP, Durner GM, Douglas DC, Atwood TC. Modeling the spatial and temporal dynamics of land‐based polar bear denning in Alaska. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vijay P. Patil
- Alaska Science Center U.S. Geological Survey 4210 University Drive Anchorage AK 99508 USA
| | - George M. Durner
- Alaska Science Center U.S. Geological Survey 4210 University Drive Anchorage AK 99508 USA
| | - David C. Douglas
- Alaska Science Center U.S. Geological Survey 250 Egan Drive Juneau AK 99801 USA
| | - Todd C. Atwood
- Alaska Science Center U.S. Geological Survey 4210 University Drive Anchorage AK 99508 USA
| |
Collapse
|
10
|
Anthropogenic food: an emerging threat to polar bears. ORYX 2022. [DOI: 10.1017/s0030605322000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Supplemental food from anthropogenic sources is a source of conflict with humans for many wildlife species. Food-seeking behaviours by black bears Ursus americanus and brown bears Ursus arctos can lead to property damage, human injury and mortality of the offending bears. Such conflicts are a well-known conservation management issue wherever people live in bear habitats. In contrast, the use of anthropogenic foods by the polar bear Ursus maritimus is less common historically but is a growing conservation and management issue across the Arctic. Here we present six case studies that illustrate how negative food-related interactions between humans and polar bears can become either chronic or ephemeral and unpredictable. Our examination suggests that attractants are an increasing problem, exacerbated by climate change-driven sea-ice losses that cause increased use of terrestrial habitats by bears. Growing human populations and increased human visitation increase the likelihood of human–polar bear conflict. Efforts to reduce food conditioning in polar bears include attractant management, proactive planning and adequate resources for northern communities to reduce conflicts and improve human safety. Permanent removal of unsecured sources of nutrition, to reduce food conditioning, should begin immediately at the local level as this will help to reduce polar bear mortality.
Collapse
|
11
|
Wilson RR, Martin MS, Regehr EV, Rode KD. Intrapopulation differences in polar bear movement and step selection patterns. MOVEMENT ECOLOGY 2022; 10:25. [PMID: 35606849 PMCID: PMC9128121 DOI: 10.1186/s40462-022-00326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The spatial ecology of individuals often varies within a population or species. Identifying how individuals in different classes interact with their environment can lead to a better understanding of population responses to human activities and environmental change and improve population estimates. Most inferences about polar bear (Ursus maritimus) spatial ecology are based on data from adult females due to morphological constraints on applying satellite radio collars to other classes of bears. Recent studies, however, have provided limited movement data for adult males and sub-adults of both sexes using ear-mounted and glue-on tags. We evaluated class-specific movements and step selection patterns for polar bears in the Chukchi Sea subpopulation during spring. METHODS We developed hierarchical Bayesian models to evaluate polar bear movement (i.e., step length and directional persistence) and step selection at the scale of 4-day step lengths. We assessed differences in movement and step selection parameters among the three classes of polar bears (i.e., adult males, sub-adults, and adult females without cubs-of-the-year). RESULTS Adult males had larger step lengths and less directed movements than adult females. Sub-adult movement parameters did not differ from the other classes but point estimates were most similar to adult females. We did not detect differences among polar bear classes in step selection parameters and parameter estimates were consistent with previous studies. CONCLUSIONS Our findings support the use of estimated step selection patterns from adult females as a proxy for other classes of polar bears during spring. Conversely, movement analyses indicated that using data from adult females as a proxy for the movements of adult males is likely inappropriate. We recommend that researchers consider whether it is valid to extend inference derived from adult female movements to other classes, based on the questions being asked and the spatial and temporal scope of the data. Because our data were specific to spring, these findings highlight the need to evaluate differences in movement and step selection during other periods of the year, for which data from ear-mounted and glue-on tags are currently lacking.
Collapse
Affiliation(s)
- Ryan R Wilson
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, AK, USA.
| | - Michelle St Martin
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, AK, USA
- U.S. Fish and Wildlife Service, Portland, OR, 97266, USA
| | - Eric V Regehr
- Polar Science Center, University of Washington, Seattle, WA, USA
| | - Karyn D Rode
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| |
Collapse
|
12
|
Summer/fall diet and macronutrient assimilation in an Arctic predator. Oecologia 2022; 198:917-931. [PMID: 35412091 DOI: 10.1007/s00442-022-05155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Free-ranging predator diet estimation is commonly achieved by applying molecular-based tracers because direct observation is not logistically feasible or robust. However, tracers typically do not represent all dietary macronutrients, which likely obscures resource use as prey proximate composition varies and tissue consumption can be specific. For example, polar bears (Ursus maritimus) preferentially consume blubber, yet diets have been estimated using fatty acids based on prey blubber or stable isotopes of lipid-extracted prey muscle, neither of which represent both protein and lipid macronutrient contributions. Further, additional bias can be introduced because dietary fat is known to be flexibly routed beyond short-term energy production and storage. We address this problem by simultaneously accounting for protein and lipid assimilation using carbon and nitrogen isotope compositions of lipid-containing prey muscle and blubber to infer summer/fall diet composition and macronutrient proportions from Chukchi Sea polar bear guard hair (n = 229) sampled each spring between 2008 and 2017. Inclusion of blubber (85-95% lipid by dry mass) expanded the isotope mixing space and improved separation among prey species. Ice-associated seals, including nutritionally dependent pups, were the primary prey in summer/fall diets with lower contributions by Pacific walruses (Odobenus rosmarus) and whales. Percent blubber estimates confirmed preferential selection of this tissue and represented the highest documented lipid assimilation for any animal species. Our results offer an improved understanding of summer/fall prey macronutrient usage by Chukchi Sea polar bears which likely coincides with a nutritional bottleneck as the sea ice minimum is approached.
Collapse
|
13
|
Babiy UV, Salomashkina VV, Kulemeev PS, Kholodova MV, Gruzdev AR, Regehr EV. First evidence of a brown bear on Wrangel Island, Russia. URSUS 2022. [DOI: 10.2192/ursus-d-20-00024.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | | | | | - Eric V. Regehr
- Polar Science Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Woodruff SP, Andersen EM, Wilson RR, Mangipane LS, Miller SB, Klein KJ, Lemons PR. Classifying the effects of human disturbance on denning polar bears. ENDANGER SPECIES RES 2022. [DOI: 10.3354/esr01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Regehr EV, Runge MC, Von Duyke A, Wilson RR, Polasek L, Rode KD, Hostetter NJ, Converse SJ. Demographic risk assessment for a harvested species threatened by climate change: polar bears in the Chukchi Sea. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02461. [PMID: 34582601 PMCID: PMC9286533 DOI: 10.1002/eap.2461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/09/2021] [Accepted: 04/05/2021] [Indexed: 06/13/2023]
Abstract
Climate change threatens global biodiversity. Many species vulnerable to climate change are important to humans for nutritional, cultural, and economic reasons. Polar bears Ursus maritimus are threatened by sea-ice loss and represent a subsistence resource for Indigenous people. We applied a novel population modeling-management framework that is based on species life history and accounts for habitat loss to evaluate subsistence harvest for the Chukchi Sea (CS) polar bear subpopulation. Harvest strategies followed a state-dependent approach under which new data were used to update the harvest on a predetermined management interval. We found that a harvest strategy with a starting total harvest rate of 2.7% (˜85 bears/yr at current abundance), a 2:1 male-to-female ratio, and a 10-yr management interval would likely maintain subpopulation abundance above maximum net productivity level for the next 35 yr (approximately three polar bear generations), our primary criterion for sustainability. Plausible bounds on starting total harvest rate were 1.7-3.9%, where the range reflects uncertainty due to sampling variation, environmental variation, model selection, and differing levels of risk tolerance. The risk of undesired demographic outcomes (e.g., overharvest) was positively related to harvest rate, management interval, and projected declines in environmental carrying capacity; and negatively related to precision in population data. Results reflect several lines of evidence that the CS subpopulation has been productive in recent years, although it is uncertain how long this will last as sea-ice loss continues. Our methods provide a template for balancing trade-offs among protection, use, research investment, and other factors. Demographic risk assessment and state-dependent management will become increasingly important for harvested species, like polar bears, that exhibit spatiotemporal variation in their response to climate change.
Collapse
Affiliation(s)
- Eric V. Regehr
- Polar Science CenterApplied Physics LaboratoryUniversity of WashingtonSeattleWashington98105USA
| | - Michael C. Runge
- Patuxent Wildlife Research CenterU.S. Geological SurveyLaurelMaryland20708USA
| | - Andrew Von Duyke
- Department of Wildlife ManagementNorth Slope BoroughUtqiaġvikAlaska99723USA
| | - Ryan R. Wilson
- Marine Mammals ManagementU.S. Fish and Wildlife ServiceAnchorageAlaska99503USA
| | - Lori Polasek
- Division of Wildlife ConservationAlaska Department of Fish and GameJuneauAlaska99802USA
| | - Karyn D. Rode
- Alaska Science CenterU.S. Geological SurveyAnchorageAlaska99508USA
| | - Nathan J. Hostetter
- Washington Cooperative Fish and Wildlife Research UnitSchool of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington98105USA
| | - Sarah J. Converse
- Washington Cooperative Fish and Wildlife Research UnitSchool of Environmental and Forest Sciences (SEFS) & School of Aquatic and Fishery Sciences (SAFS)U.S. Geological SurveyUniversity of WashingtonSeattleWashington98105USA
| |
Collapse
|
16
|
Pagano AM, Durner GM, Atwood TC, Douglas DC. Effects of sea ice decline and summer land use on polar bear home range size in the Beaufort Sea. Ecosphere 2021. [DOI: 10.1002/ecs2.3768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Anthony M. Pagano
- U.S. Geological Survey Alaska Science Center Anchorage Alaska 99508 USA
| | - George M. Durner
- U.S. Geological Survey Alaska Science Center Anchorage Alaska 99508 USA
| | - Todd C. Atwood
- U.S. Geological Survey Alaska Science Center Anchorage Alaska 99508 USA
| | - David C. Douglas
- U.S. Geological Survey Alaska Science Center Juneau Alaska 99801 USA
| |
Collapse
|
17
|
Stempniewicz L, Kulaszewicz I, Aars J. Yes, they can: polar bears Ursus maritimus successfully hunt Svalbard reindeer Rangifer tarandus platyrhynchus. Polar Biol 2021. [DOI: 10.1007/s00300-021-02954-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe polar bear Ursus maritimus is one of the species most endangered by the rapidly declining sea–ice cover in the Arctic, which they use as a platform to hunt fatty, high-energy seals. In recent decades, more polar bears have been forced to remain longer on land, so their access to seals is limited. The importance of terrestrial food to polar bears is disputable, and more data are needed. Terrestrial ungulates could be an attractive substitute prey for them. Svalbard reindeer Rangifer tarandus platyrhynchus are prevalent and their distribution is completely within the range of polar bears. They constitute an attractive potential prey offering a significant energy return. Pre-2000 sources state that polar bears do not attack Svalbard reindeer. This report is the first description and documentation of the complete course of a polar bear hunt for adult reindeer in Hornsund, SW Spitsbergen, and also of the bear’s hunting behaviour and the reindeer’s response. Further, we report several other recent instances of bear–reindeer interactions in Svalbard, suggesting that polar bears now hunt reindeer more frequently than they used to. This increase in hunting is probably linked to the reduced ice cover, with bears spending more time on land, and a growing reindeer population. This study adds to earlier papers on how polar bears in Svalbard have increasingly shifted to a more terrestrial diet, and indicates that they may have an enhanced role as an apex predator in the terrestrial ecosystem.
Collapse
|
18
|
Bromaghin JF, Douglas DC, Durner GM, Simac KS, Atwood TC. Survival and abundance of polar bears in Alaska's Beaufort Sea, 2001-2016. Ecol Evol 2021; 11:14250-14267. [PMID: 34707852 PMCID: PMC8525099 DOI: 10.1002/ece3.8139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
The Arctic Ocean is undergoing rapid transformation toward a seasonally ice-free ecosystem. As ice-adapted apex predators, polar bears (Ursus maritimus) are challenged to cope with ongoing habitat degradation and changes in their prey base driven by food-web response to climate warming. Knowledge of polar bear response to environmental change is necessary to understand ecosystem dynamics and inform conservation decisions. In the southern Beaufort Sea (SBS) of Alaska and western Canada, sea ice extent has declined since satellite observations began in 1979 and available evidence suggests that the carrying capacity of the SBS for polar bears has trended lower for nearly two decades. In this study, we investigated the population dynamics of polar bears in Alaska's SBS from 2001 to 2016 using a multistate Cormack-Jolly-Seber mark-recapture model. States were defined as geographic regions, and we used location data from mark-recapture observations and satellite-telemetered bears to model transitions between states and thereby explain heterogeneity in recapture probabilities. Our results corroborate prior findings that the SBS subpopulation experienced low survival from 2003 to 2006. Survival improved modestly from 2006 to 2008 and afterward rebounded to comparatively high levels for the remainder of the study, except in 2012. Abundance moved in concert with survival throughout the study period, declining substantially from 2003 and 2006 and afterward fluctuating with lower variation around an average of 565 bears (95% Bayesian credible interval [340, 920]) through 2015. Even though abundance was comparatively stable and without sustained trend from 2006 to 2015, polar bears in the Alaska SBS were less abundant over that period than at any time since passage of the U.S. Marine Mammal Protection Act. The potential for recovery is likely limited by the degree of habitat degradation the subpopulation has experienced, and future reductions in carrying capacity are expected given current projections for continued climate warming.
Collapse
Affiliation(s)
| | | | | | | | - Todd C. Atwood
- U.S. Geological SurveyAlaska Science CenterAnchorageAKUSA
| |
Collapse
|
19
|
Petherick AS, Reuther JD, Shirar SJ, Anderson SL, DeSantis LRG. Dietary ecology of Alaskan polar bears (Ursus maritimus) through time and in response to Arctic climate change. GLOBAL CHANGE BIOLOGY 2021; 27:3109-3119. [PMID: 33793039 DOI: 10.1111/gcb.15573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Arctic climate change poses serious threats to polar bears (Ursus maritimus) as reduced sea ice makes seal prey inaccessible and marine ecosystems undergo bottom-up reorganization. Polar bears' elongated skulls and reduced molar dentition, as compared to their sister species the grizzly bear (Ursus arctos), are adaptations associated with hunting seals on sea ice and a soft, lipid-rich diet of blubber and meat. With significant declines in sea ice, it is unclear if and how polar bears may be altering their diets. Clarifying polar bear dietary responses to changing climates, both today and in the past, is critical to proper conservation and management of this apex predator. This is particularly important when a dietary strategy may be maladaptive. Here, we test the hypothesis that hard-food consumption (i.e., less preferred foods including bone), inferred from dental microwear texture analysis, increased with Arctic warming. We find that polar bears demonstrate a conserved absence of hard-object feeding in Alaska through time (including approximately 1000 years ago), until the 21st century, consistent with a highly conserved and specialized diet of soft blubber and flesh. Notably, our results also suggest that some 21st-century polar bears may be consuming harder foods (e.g., increased carcass utilization, terrestrial foods including garbage), despite having skulls and metabolisms poorly suited for such a diet. Prior to the 21st century, only polar bears with larger mandibles demonstrated increased hard-object feeding, though to a much lower degree than closely related grizzly bears which regularly consume mechanically challenging foods. Polar bears, being morphologically specialized, have biomechanical constraints which may limit their ability to consume mechanically challenging diets, with dietary shifts occurring only under the most extreme scenarios. Collectively, the highly specialized diets and cranial morphology of polar bears may severely limit their ability to adapt to a warming Arctic.
Collapse
Affiliation(s)
- Ansley S Petherick
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Joshua D Reuther
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
- Department of Anthropology, University of Alaska, Fairbanks, AK, USA
| | - Scott J Shirar
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Shelby L Anderson
- Department of Anthropology, Portland State University, Portland, OR, USA
| | - Larisa R G DeSantis
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
20
|
Lomac-MacNair K, Wisdom S, Pedro De Andrade J, Stepanuk JE, Esteves E. Polar bear behavioral response to vessel surveys in northeastern Chukchi Sea, 2008–2014. URSUS 2021. [DOI: 10.2192/ursus-d-20-00023.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kate Lomac-MacNair
- CCMAR, Centro de Ciências do Mar, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sheyna Wisdom
- Fairweather Science LLC, 301 Calista Court, Anchorage, AK 99518, USA
| | - José Pedro De Andrade
- CCMAR, Centro de Ciências do Mar, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Julia E. Stepanuk
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Eduardo Esteves
- CCMAR, Centro de Ciências do Mar and Instituto Superior de Engenharia, Universidade do Algarve Campus da Penha, 8005-139 Faro, Portugal
| |
Collapse
|
21
|
Bohart AM, Lunn NJ, Derocher AE, McGeachy D. Migration dynamics of polar bears ( Ursus maritimus) in western Hudson Bay. Behav Ecol 2021. [DOI: 10.1093/beheco/araa140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Migration is predicted to change both spatially and temporally as climate change alters seasonal resource availability. Species in extreme environments are especially susceptible to climate change; hence, it is important to determine environmental and biological variables that influence their migration. Polar bears (Ursus maritimus) are an Arctic apex carnivore whose migration phenology has been affected by climate change and is vulnerable to future changes. Here, we used satellite-linked telemetry collar data from adult female polar bears in western Hudson Bay from 2004 to 2016 and multivariate response regression models to demonstrate that 1) spatial and temporal migration metrics are correlated, 2) ice concentration and wind are important environmental variables that influence polar bear migration in seasonal ice areas, and 3) migration did not vary across the years of our study, highlighting the importance of continued monitoring. Specifically, we found that ice concentration, wind speed, and wind direction affected polar bear migration onto ice during freeze-up and ice concentration and wind direction affected migration onto land during breakup. Bears departed from land earlier with increased wind speed and the effect of wind direction on migration may be linked to prey searching and ice drift. Low ice concentration was associated with higher movement during freeze-up and breakup. Our findings suggest that migration movement may increase in response to climate change as ice concentration and access to prey declines, potentially increasing nutritional stress on bears.
Collapse
Affiliation(s)
- Alyssa M Bohart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nicholas J Lunn
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew E Derocher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David McGeachy
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Rode KD, Regehr EV, Bromaghin JF, Wilson RR, St Martin M, Crawford JA, Quakenbush LT. Seal body condition and atmospheric circulation patterns influence polar bear body condition, recruitment, and feeding ecology in the Chukchi Sea. GLOBAL CHANGE BIOLOGY 2021; 27:2684-2701. [PMID: 33644944 DOI: 10.1111/gcb.15572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Polar bears (Ursus maritimus) are experiencing loss of sea ice habitats used to access their marine mammal prey. Simultaneously, ocean warming is changing ecosystems that support marine mammal populations. The interactive effects of sea ice and prey are not well understood yet may explain spatial-temporal variation in the response of polar bears to sea ice loss. Here, we examined the potential combined effects of sea ice, seal body condition, and atmospheric circulation patterns on the body condition, recruitment, diet, and feeding probability of 469 polar bears captured in the Chukchi Sea, 2008-2017. The body condition of ringed seals (Pusa hispida), the primary prey of females and subadults, was related to dietary proportions of ringed seal, feeding probability, and the body condition of females and cubs. In contrast, adult males consumed more bearded seals (Erignathus barbatus) and exhibited better condition when bearded seal body condition was higher. The litter size, number of yearlings per adult female, and the condition of dependent young were higher following winters characterized by low Arctic Oscillation conditions, consistent with a growing number of studies. Body condition, recruitment, and feeding probability were either not associated or negatively associated with sea ice conditions, suggesting that, unlike some subpopulations, Chukchi Sea bears are not currently limited by sea ice availability. However, spring sea ice cover declined 2% per year during our study reaching levels not previously observed in the satellite record and resulting in the loss of polar bear hunting and seal pupping habitat. Our study suggests that the status of ice seal populations is likely an important factor that can either compound or mitigate the response of polar bears to sea ice loss over the short term. In the long term, neither polar bears nor their prey are likely robust to limitless loss of their sea ice habitat.
Collapse
Affiliation(s)
- Karyn D Rode
- Alaska Science Center, U.S. Geological Survey, Anchorage, AK, USA
| | - Eric V Regehr
- Polar Science Center, University of Washington, Seattle, WA, USA
| | | | - Ryan R Wilson
- Marine Mammals Management, U.S. Fish and Wildlife Service, Anchorage, AK, USA
| | - Michelle St Martin
- Marine Mammals Management, U.S. Fish and Wildlife Service, Anchorage, AK, USA
| | | | | |
Collapse
|
23
|
Reimers E, Eftestøl S, Colman JE. Vigilance in reindeer (Rangifer tarandus); evolutionary history, predation and human interference. Polar Biol 2021. [DOI: 10.1007/s00300-021-02857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractTo elucidate genetic variability in vigilance behaviour for reindeer with historical differences in their interactions with predators and humans, we measured vigilance frequency and duration for grazing reindeer in Southern Norway (Rondane and Norefjell-Reinsjøfjell), Svalbard (Edgeøya and Nordenskiöld Land) and Barf/Royal Bay and Busen in the southern Hemisphere (South Georgia). Averaged for all areas, frequency and duration of vigilance bouts were less than 0.5 and 2.5 s, respectively. Frequency was insignificantly 1.3 times higher in Rondane than Edgeøya, and significantly 2.0, 3.5, 5.2 and 12.4 times higher than Norefjell, Nordenskiöld Land, Barf/Royal Bay and Busen, respectively. Duration per vigilance bout was not different amongst the areas. Thus, while frequency varied considerably, duration remained constant, supporting a hard-wired adaptation to, among other suggestions, an open landscape. Plasticity in frequency allows for flexible behavioral responses to environmental factors with predation, domestication and hunting key drivers for reindeer. Other factors include (1) the open, treeless alpine/Arctic environment inhabited by Rangifer subspecies allowing warning time, (2) grouping behaviour, (3) relative low density of predators and (4) the anatomy and physiology of ungulate vision.
Collapse
|
24
|
Jagielski PM, Dey CJ, Gilchrist HG, Richardson ES, Love OP, Semeniuk CAD. Polar bears are inefficient predators of seabird eggs. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210391. [PMID: 33868701 PMCID: PMC8025307 DOI: 10.1098/rsos.210391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Climate-mediated sea-ice loss is disrupting the foraging ecology of polar bears (Ursus maritimus) across much of their range. As a result, there have been increased reports of polar bears foraging on seabird eggs across parts of their range. Given that polar bears have evolved to hunt seals on ice, they may not be efficient predators of seabird eggs. We investigated polar bears' foraging performance on common eider (Somateria mollissima) eggs on Mitivik Island, Nunavut, Canada to test whether bear decision-making heuristics are consistent with expectations of optimal foraging theory. Using aerial-drones, we recorded multiple foraging bouts over 11 days, and found that as clutches were depleted to completion, bears did not exhibit foraging behaviours matched to resource density. As the season progressed, bears visited fewer nests overall, but marginally increased their visitation to nests that were already empty. Bears did not display different movement modes related to nest density, but became less selective in their choice of clutches to consume. Lastly, bears that capitalized on visual cues of flushing eider hens significantly increased the number of clutches they consumed; however, they did not use this strategy consistently or universally. The foraging behaviours exhibited by polar bears in this study suggest they are inefficient predators of seabird eggs, particularly in the context of matching behaviours to resource density.
Collapse
Affiliation(s)
- Patrick M. Jagielski
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON Canada, N9B 3P4
| | - Cody J. Dey
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON Canada, N9B 3P4
| | - H. Grant Gilchrist
- Science and Technology Branch, Environment and Climate Change Canada, Ottawa, ON Canada
| | - Evan S. Richardson
- Science and Technology Branch, Environment and Climate Change Canada, Winnipeg, MB Canada
| | - Oliver P. Love
- Department of Integrative Biology, University of Windsor, Windsor, ON Canada
| | - Christina A. D. Semeniuk
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON Canada, N9B 3P4
| |
Collapse
|
25
|
Rode KD, Atwood TC, Thiemann GW, St. Martin M, Wilson RR, Durner GM, Regehr EV, Talbot SL, Sage GK, Pagano AM, Simac KS. Identifying reliable indicators of fitness in polar bears. PLoS One 2020; 15:e0237444. [PMID: 32813753 PMCID: PMC7437918 DOI: 10.1371/journal.pone.0237444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
Animal structural body size and condition are often measured to evaluate individual health, identify responses to environmental change and food availability, and relate food availability to effects on reproduction and survival. A variety of condition metrics have been developed but relationships between these metrics and vital rates are rarely validated. Identifying an optimal approach to estimate the body condition of polar bears is needed to improve monitoring of their response to decline in sea ice habitat. Therefore, we examined relationships between several commonly used condition indices (CI), body mass, and size with female reproductive success and cub survival among polar bears (Ursus maritimus) measured in two subpopulations over three decades. To improve measurement and application of morphometrics and CIs, we also examined whether CIs are independent of age and structural size–an important assumption for monitoring temporal trends—and factors affecting measurement precision and accuracy. Maternal CIs and mass measured the fall prior to denning were related to cub production. Similarly, maternal CIs, mass, and length were related to the mass of cubs or yearlings that accompanied her. However, maternal body mass, but not CIs, measured in the spring was related to cub production and only maternal mass and length were related to the probability of cub survival. These results suggest that CIs may not be better indicators of fitness than body mass in part because CIs remove variation associated with body size that is important in affecting fitness. Further, CIs exhibited variable relationships with age for growing bears and were lower for longer bears despite body length being related to cub survival and female reproductive success. These results are consistent with findings from other species indicating that body mass is a useful metric to link environmental conditions and population dynamics.
Collapse
Affiliation(s)
- Karyn D. Rode
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
- * E-mail:
| | - Todd C. Atwood
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | | | - Michelle St. Martin
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, Alaska, United States of America
| | - Ryan R. Wilson
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, Alaska, United States of America
| | - George M. Durner
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Eric V. Regehr
- University of Washington, Polar Science Center, Seattle, Washington, United States of America
| | - Sandra L. Talbot
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - George K. Sage
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Anthony M. Pagano
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Kristin S. Simac
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| |
Collapse
|
26
|
Berger J, Wangchuk T, Briceño C, Vila A, Lambert JE. Disassembled Food Webs and Messy Projections: Modern Ungulate Communities in the Face of Unabating Human Population Growth. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Laidre KL, Atkinson S, Regehr EV, Stern HL, Born EW, Wiig Ø, Lunn NJ, Dyck M. Interrelated ecological impacts of climate change on an apex predator. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02071. [PMID: 31925853 PMCID: PMC7317597 DOI: 10.1002/eap.2071] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/12/2019] [Accepted: 11/11/2019] [Indexed: 05/29/2023]
Abstract
Climate change has broad ecological implications for species that rely on sensitive habitats. For some top predators, loss of habitat is expected to lead to cascading behavioral, nutritional, and reproductive changes that ultimately accelerate population declines. In the case of the polar bear (Ursus maritimus), declining Arctic sea ice reduces access to prey and lengthens seasonal fasting periods. We used a novel combination of physical capture, biopsy darting, and visual aerial observation data to project reproductive performance for polar bears by linking sea ice loss to changes in habitat use, body condition (i.e., fatness), and cub production. Satellite telemetry data from 43 (1991-1997) and 38 (2009-2015) adult female polar bears in the Baffin Bay subpopulation showed that bears now spend an additional 30 d on land (90 d in total) in the 2000s compared to the 1990s, a change closely correlated with changes in spring sea ice breakup and fall sea ice formation. Body condition declined for all sex, age, and reproductive classes and was positively correlated with sea ice availability in the current and previous year. Furthermore, cub litter size was positively correlated with maternal condition and spring breakup date (i.e., later breakup leading to larger litters), and negatively correlated with the duration of the ice-free period (i.e., longer ice-free periods leading to smaller litters). Based on these relationships, we projected reproductive performance three polar bear generations into the future (approximately 35 yr). Results indicate that two-cub litters, previously the norm, could largely disappear from Baffin Bay as sea ice loss continues. Our findings demonstrate how concurrent analysis of multiple data types collected over long periods from polar bears can provide a mechanistic understanding of the ecological implications of climate change. This information is needed for long-term conservation planning, which includes quantitative harvest risk assessments that incorporate estimated or assumed trends in future environmental carrying capacity.
Collapse
Affiliation(s)
- Kristin L. Laidre
- Polar Science CenterApplied Physics LaboratoryUniversity of WashingtonSeattleWashington98105USA
| | - Stephen Atkinson
- Wildlife Research SectionDepartment of EnvironmentGovernment of NunavutP.O. Box 209IgloolikNunavutX0A 0L0Canada
| | - Eric V. Regehr
- Polar Science CenterApplied Physics LaboratoryUniversity of WashingtonSeattleWashington98105USA
| | - Harry L. Stern
- Polar Science CenterApplied Physics LaboratoryUniversity of WashingtonSeattleWashington98105USA
| | - Erik W. Born
- Greenland Institute of Natural ResourcesP.O. Box 5703900NuukGreenland
| | - Øystein Wiig
- Natural History MuseumUniversity of OsloP.O. Box 1172BlindernN‐0318OsloNorway
| | - Nicholas J. Lunn
- Environment and Climate Change CanadaCW‐422 Biological Sciences BuildingUniversity of AlbertaEdmontonAlbertaT6G 2E9Canada
| | - Markus Dyck
- Wildlife Research SectionDepartment of EnvironmentGovernment of NunavutP.O. Box 209IgloolikNunavutX0A 0L0Canada
| |
Collapse
|
28
|
A phenological comparison of grizzly (Ursus arctos) and polar bears (Ursus maritimus) as waterfowl nest predators in Wapusk National Park. Polar Biol 2020. [DOI: 10.1007/s00300-020-02647-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Ware JV, Rode KD, Robbins CT, Leise T, Weil CR, Jansen HT. The Clock Keeps Ticking: Circadian Rhythms of Free-Ranging Polar Bears. J Biol Rhythms 2020; 35:180-194. [DOI: 10.1177/0748730419900877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Life in the Arctic presents organisms with multiple challenges, including extreme photic conditions, cold temperatures, and annual loss and daily movement of sea ice. Polar bears ( Ursus maritimus) evolved under these unique conditions, where they rely on ice to hunt their main prey, seals. However, very little is known about the dynamics of their daily and seasonal activity patterns. For many organisms, activity is synchronized (entrained) to the earth’s day/night cycle, in part via an endogenous (circadian) timekeeping mechanism. The present study used collar-mounted accelerometer and global positioning system data from 122 female polar bears in the Chukchi and Southern Beaufort Seas collected over an 8-year period to characterize activity patterns over the calendar year and to determine if circadian rhythms are expressed under the constant conditions found in the Arctic. We reveal that the majority of polar bears (80%) exhibited rhythmic activity for the duration of their recordings. Collectively within the rhythmic bear cohort, circadian rhythms were detected during periods of constant daylight (June-August; 24.40 ± 1.39 h, mean ± SD) and constant darkness (23.89 ± 1.72 h). Exclusive of denning periods (November-April), the time of peak activity remained relatively stable (acrophases: ~1200-1400 h) for most of the year, suggesting either entrainment or masking. However, activity patterns shifted during the spring feeding and seal pupping season, as evidenced by an acrophase inversion to ~2400 h in April, followed by highly variable timing of activity across bears in May. Intriguingly, despite the dynamic environmental photoperiodic conditions, unpredictable daily timing of prey availability, and high between-animal variability, the average duration of activity (alpha) remained stable (11.2 ± 2.9 h) for most of the year. Together, these results reveal a high degree of behavioral plasticity in polar bears while also retaining circadian rhythmicity. Whether this degree of plasticity will benefit polar bears faced with a loss of sea ice remains to be determined.
Collapse
Affiliation(s)
- Jasmine V. Ware
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
- Department of Environment, Government of Nunavut, Igloolik, NU, Canada
| | - Karyn D. Rode
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Charles T. Robbins
- School of the Environment and School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Tanya Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts, USA
| | - Colby R. Weil
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Heiko T. Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| |
Collapse
|
30
|
Post E, Alley RB, Christensen TR, Macias-Fauria M, Forbes BC, Gooseff MN, Iler A, Kerby JT, Laidre KL, Mann ME, Olofsson J, Stroeve JC, Ulmer F, Virginia RA, Wang M. The polar regions in a 2°C warmer world. SCIENCE ADVANCES 2019; 5:eaaw9883. [PMID: 31840060 PMCID: PMC6892626 DOI: 10.1126/sciadv.aaw9883] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/26/2019] [Indexed: 05/21/2023]
Abstract
Over the past decade, the Arctic has warmed by 0.75°C, far outpacing the global average, while Antarctic temperatures have remained comparatively stable. As Earth approaches 2°C warming, the Arctic and Antarctic may reach 4°C and 2°C mean annual warming, and 7°C and 3°C winter warming, respectively. Expected consequences of increased Arctic warming include ongoing loss of land and sea ice, threats to wildlife and traditional human livelihoods, increased methane emissions, and extreme weather at lower latitudes. With low biodiversity, Antarctic ecosystems may be vulnerable to state shifts and species invasions. Land ice loss in both regions will contribute substantially to global sea level rise, with up to 3 m rise possible if certain thresholds are crossed. Mitigation efforts can slow or reduce warming, but without them northern high latitude warming may accelerate in the next two to four decades. International cooperation will be crucial to foreseeing and adapting to expected changes.
Collapse
Affiliation(s)
- Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Richard B. Alley
- Department of Geosciences, and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Torben R. Christensen
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Marc Macias-Fauria
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
| | - Bruce C. Forbes
- Arctic Centre, University of Lapland, Box 122, FI-96101 Rovaniemi, Finland
| | - Michael N. Gooseff
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80303, USA
| | - Amy Iler
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA
| | - Jeffrey T. Kerby
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
- Neukom Institute for Computational Science, Institute of Arctic Studies, and Environmental Studies Program, Dartmouth College, Hanover, NH 03755, USA
| | - Kristin L. Laidre
- Polar Science Center, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA
| | - Michael E. Mann
- Department of Meteorology and Atmospheric Science and Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Johan Olofsson
- Department of Ecology and Environmental Science, Umeå University, S-901 87 Umeå, Sweden
| | - Julienne C. Stroeve
- University College London, Bloomsbury, London, UK
- National Snow and Ice Data Center, Boulder, CO 80303, USA
| | - Fran Ulmer
- Chair, U.S. Arctic Research Commission, 420 L Street, Suite 315 Anchorage, AK 99501, USA
- Chair, U.S. Artic Research Commission, 4350 N. Fairfax Drive, Suite 510, Arlington, VA 22203, USA
- Belfer Center for Science and International Affairs John F. Kennedy School of Government, Harvard University, Cambridge, MA 02138, USA
| | - Ross A. Virginia
- Institute of Arctic Studies, and Environmental Studies Program, Dartmouth College, Hanover, NH 03755, USA
| | - Muyin Wang
- Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA 98195, USA
- National Oceanic and Atmospheric Administration Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA
| |
Collapse
|
31
|
Scharf HR, Hooten MB, Wilson RR, Durner GM, Atwood TC. Accounting for phenology in the analysis of animal movement. Biometrics 2019; 75:810-820. [PMID: 30859552 DOI: 10.1111/biom.13052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022]
Abstract
The analysis of animal tracking data provides important scientific understanding and discovery in ecology. Observations of animal trajectories using telemetry devices provide researchers with information about the way animals interact with their environment and each other. For many species, specific geographical features in the landscape can have a strong effect on behavior. Such features may correspond to a single point (eg, dens or kill sites), or to higher dimensional subspaces (eg, rivers or lakes). Features may be relatively static in time (eg, coastlines or home-range centers), or may be dynamic (eg, sea ice extent or areas of high-quality forage for herbivores). We introduce a novel model for animal movement that incorporates active selection for dynamic features in a landscape. Our approach is motivated by the study of polar bear (Ursus maritimus) movement. During the sea ice melt season, polar bears spend much of their time on sea ice above shallow, biologically productive water where they hunt seals. The changing distribution and characteristics of sea ice throughout the year mean that the location of valuable habitat is constantly shifting. We develop a model for the movement of polar bears that accounts for the effect of this important landscape feature. We introduce a two-stage procedure for approximate Bayesian inference that allows us to analyze over 300 000 observed locations of 186 polar bears from 2012 to 2016. We use our model to estimate a spatial boundary of interest to wildlife managers that separates two subpopulations of polar bears from the Beaufort and Chukchi seas.
Collapse
Affiliation(s)
- Henry R Scharf
- Department of Statistics, Colorado State University, Fort Collins, Colorado
| | - Mevin B Hooten
- Department of Statistics, Colorado State University, Fort Collins, Colorado.,Department of Fish, Wildlife, and Conservation Biology, Colorado Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey, Fort Collins, Colorado
| | - Ryan R Wilson
- Marine Mammals Management, U.S. Fish and Wildlife Service, Anchorage, Alaska
| | - George M Durner
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska
| | - Todd C Atwood
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska
| |
Collapse
|
32
|
Affiliation(s)
- Théo Michelot
- School of Mathematics and StatisticsUniversity of Sheffield Sheffield UK
| | - Paul G. Blackwell
- School of Mathematics and StatisticsUniversity of Sheffield Sheffield UK
| |
Collapse
|
33
|
Whiteman JP, Harlow HJ, Durner GM, Regehr EV, Amstrup SC, Ben-David M. Heightened Immune System Function in Polar Bears Using Terrestrial Habitats. Physiol Biochem Zool 2019; 92:1-11. [DOI: 10.1086/698996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Kochnev AA. Distribution and Abundance of Polar Bear (Ursus Maritimus) Dens in Chukotka (Based on Inquiries of Representatives of Native Peoples). BIOL BULL+ 2018. [DOI: 10.1134/s1062359018080058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Regehr EV, Hostetter NJ, Wilson RR, Rode KD, Martin MS, Converse SJ. Integrated Population Modeling Provides the First Empirical Estimates of Vital Rates and Abundance for Polar Bears in the Chukchi Sea. Sci Rep 2018; 8:16780. [PMID: 30429493 PMCID: PMC6235872 DOI: 10.1038/s41598-018-34824-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022] Open
Abstract
Large carnivores are imperiled globally, and characteristics making them vulnerable to extinction (e.g., low densities and expansive ranges) also make it difficult to estimate demographic parameters needed for management. Here we develop an integrated population model to analyze capture-recapture, radiotelemetry, and count data for the Chukchi Sea subpopulation of polar bears (Ursus maritimus), 2008-2016. Our model addressed several challenges in capture-recapture studies for polar bears by including a multievent structure reflecting location and life history states, while accommodating state uncertainty. Female breeding probability was 0.83 (95% credible interval [CRI] = 0.71-0.90), with litter sizes of 2.18 (95% CRI = 1.71-2.82) for age-zero and 1.61 (95% CRI = 1.46-1.80) for age-one cubs. Total adult survival was 0.90 (95% CRI = 0.86-0.92) for females and 0.89 (95% CRI = 0.83-0.93) for males. Spring on-ice densities west of Alaska were 0.0030 bears/km2 (95% CRI = 0.0016-0.0060), similar to 1980s-era density estimates although methodological differences complicate comparison. Abundance of the Chukchi Sea subpopulation, derived by extrapolating density from the study area using a spatially-explicit habitat metric, was 2,937 bears (95% CRI = 1,552-5,944). Our findings are consistent with other lines of evidence suggesting the Chukchi Sea subpopulation has been productive in recent years, although it is uncertain how long this will continue given sea-ice loss due to climate change.
Collapse
Affiliation(s)
- Eric V Regehr
- Marine Mammals Management, U.S. Fish and Wildlife Service, Anchorage, AK, USA.
- Polar Science Center, University of Washington, Seattle, WA, USA.
| | - Nathan J Hostetter
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, USA
| | - Ryan R Wilson
- Marine Mammals Management, U.S. Fish and Wildlife Service, Anchorage, AK, USA
| | - Karyn D Rode
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Michelle St Martin
- Marine Mammals Management, U.S. Fish and Wildlife Service, Anchorage, AK, USA
| | - Sarah J Converse
- U.S. Geological Survey, Washington Cooperative Fish and Wildlife Research Unit, School of Environmental and Forest Sciences (SEFS) & School of Aquatic and Fishery Sciences (SAFS), University of Washington, Seattle, WA, USA
| |
Collapse
|
36
|
Russell JC, Hanks EM, Haran M, Hughes D. A spatially varying stochastic differential equation model for animal movement. Ann Appl Stat 2018. [DOI: 10.1214/17-aoas1113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Wilson RR, Perham C, French-McCay DP, Balouskus R. Potential impacts of offshore oil spills on polar bears in the Chukchi Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:652-659. [PMID: 29339335 DOI: 10.1016/j.envpol.2017.12.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 05/23/2023]
Abstract
Sea ice decline is anticipated to increase human access to the Arctic Ocean allowing for offshore oil and gas development in once inaccessible areas. Given the potential negative consequences of an oil spill on marine wildlife populations in the Arctic, it is important to understand the magnitude of impact a large spill could have on wildlife to inform response planning efforts. In this study we simulated oil spills that released 25,000 barrels of oil for 30 days in autumn originating from two sites in the Chukchi Sea (one in Russia and one in the U.S.) and tracked the distribution of oil for 76 days. We then determined the potential impact such a spill might have on polar bears (Ursus maritimus) and their habitat by overlapping spills with maps of polar bear habitat and movement trajectories. Only a small proportion (1-10%) of high-value polar bear sea ice habitat was directly affected by oil sufficient to impact bears. However, 27-38% of polar bears in the region were potentially exposed to oil. Oil consistently had the highest probability of reaching Wrangel and Herald islands, important areas of denning and summer terrestrial habitat. Oil did not reach polar bears until approximately 3 weeks after the spills. Our study found the potential for significant impacts to polar bears under a worst case discharge scenario, but suggests that there is a window of time where effective containment efforts could minimize exposure to bears. Our study provides a framework for wildlife managers and planners to assess the level of response that would be required to treat exposed wildlife and where spill response equipment might be best stationed. While the size of spill we simulated has a low probability of occurring, it provides an upper limit for planners to consider when crafting response plans.
Collapse
Affiliation(s)
- Ryan R Wilson
- U.S. Fish and Wildlife Service, 1011 E Tudor Rd., Anchorage, AK 99503, USA.
| | - Craig Perham
- U.S. Fish and Wildlife Service, 1011 E Tudor Rd., Anchorage, AK 99503, USA.
| | | | | |
Collapse
|
38
|
Rode KD, Olson J, Eggett D, Douglas DC, Durner GM, Atwood TC, Regehr EV, Wilson RR, Smith T, St. Martin M. Den phenology and reproductive success of polar bears in a changing climate. J Mammal 2018. [DOI: 10.1093/jmammal/gyx181] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karyn D Rode
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Jay Olson
- Brigham Young University, Plant and Wildlife Sciences, Provo, UT, USA
| | - Dennis Eggett
- Center for Collaborative Research and Statistical Consulting, Department of Statistics, Brigham Young University, Provo, UT, USA
| | - David C Douglas
- U.S. Geological Survey, Alaska Science Center, Juneau, AK, USA
| | - George M Durner
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Eric V Regehr
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, AK, USA
| | - Ryan R Wilson
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, AK, USA
| | - Tom Smith
- Brigham Young University, Plant and Wildlife Sciences, Provo, UT, USA
| | - Michelle St. Martin
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, AK, USA
| |
Collapse
|
39
|
Rode KD, Wilson RR, Douglas DC, Muhlenbruch V, Atwood TC, Regehr EV, Richardson ES, Pilfold NW, Derocher AE, Durner GM, Stirling I, Amstrup SC, St Martin M, Pagano AM, Simac K. Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity. GLOBAL CHANGE BIOLOGY 2018; 24:410-423. [PMID: 28994242 DOI: 10.1111/gcb.13933] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/02/2017] [Indexed: 05/27/2023]
Abstract
The effects of declining Arctic sea ice on local ecosystem productivity are not well understood but have been shown to vary inter-specifically, spatially, and temporally. Because marine mammals occupy upper trophic levels in Arctic food webs, they may be useful indicators for understanding variation in ecosystem productivity. Polar bears (Ursus maritimus) are apex predators that primarily consume benthic and pelagic-feeding ice-associated seals. As such, their productivity integrates sea ice conditions and the ecosystem supporting them. Declining sea ice availability has been linked to negative population effects for polar bears but does not fully explain observed population changes. We examined relationships between spring foraging success of polar bears and sea ice conditions, prey productivity, and general patterns of ecosystem productivity in the Beaufort and Chukchi Seas (CSs). Fasting status (≥7 days) was estimated using serum urea and creatinine levels of 1,448 samples collected from 1,177 adult and subadult bears across three subpopulations. Fasting increased in the Beaufort Sea between 1983-1999 and 2000-2016 and was related to an index of ringed seal body condition. This change was concurrent with declines in body condition of polar bears and observed changes in the diet, condition and/or reproduction of four other vertebrate consumers within the food chain. In contrast, fasting declined in CS polar bears between periods and was less common than in the two Beaufort Sea subpopulations consistent with studies demonstrating higher primary productivity and maintenance or improved body condition in polar bears, ringed seals, and bearded seals despite recent sea ice loss in this region. Consistency between regional and temporal variation in spring polar bear fasting and food web productivity suggests that polar bears may be a useful indicator species. Furthermore, our results suggest that spatial and temporal ecological variation is important in affecting upper trophic-level productivity in these marine ecosystems.
Collapse
Affiliation(s)
- Karyn D Rode
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Ryan R Wilson
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, AK, USA
| | - David C Douglas
- U.S. Geological Survey, Alaska Science Center, Juneau, AK, USA
| | | | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Eric V Regehr
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, AK, USA
| | - Evan S Richardson
- Wildlife Research Division, Science and Technology Branch, Environment Canada, Edmonton, AB, Canada
| | - Nicholas W Pilfold
- Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - Andrew E Derocher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - George M Durner
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Ian Stirling
- Wildlife Research Division, Science and Technology Branch, Environment Canada, Edmonton, AB, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Steven C Amstrup
- Polar Bears International, Bozeman, MT, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Michelle St Martin
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, AK, USA
| | - Anthony M Pagano
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Kristin Simac
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| |
Collapse
|
40
|
Wilson RR, Regehr EV, Rode KD, St Martin M. Invariant polar bear habitat selection during a period of sea ice loss. Proc Biol Sci 2017; 283:rspb.2016.0380. [PMID: 27534959 DOI: 10.1098/rspb.2016.0380] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/26/2016] [Indexed: 11/12/2022] Open
Abstract
Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.
Collapse
Affiliation(s)
- Ryan R Wilson
- US Fish and Wildlife Service, 1011 E Tudor Road, Anchorage, AK 99503, USA
| | - Eric V Regehr
- US Fish and Wildlife Service, 1011 E Tudor Road, Anchorage, AK 99503, USA
| | - Karyn D Rode
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| | - Michelle St Martin
- US Fish and Wildlife Service, 1011 E Tudor Road, Anchorage, AK 99503, USA
| |
Collapse
|
41
|
Durner GM, Douglas DC, Albeke SE, Whiteman JP, Amstrup SC, Richardson E, Wilson RR, Ben-David M. Increased Arctic sea ice drift alters adult female polar bear movements and energetics. GLOBAL CHANGE BIOLOGY 2017; 23:3460-3473. [PMID: 28586523 DOI: 10.1111/gcb.13746] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/17/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987-1998 and 1999-2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%-9.6%) or by increasing their travel speed (8.5%-8.9%). This increased their calculated annual energy expenditure by 1.8%-3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1-3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic.
Collapse
Affiliation(s)
- George M Durner
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - David C Douglas
- U.S. Geological Survey, Alaska Science Center, Juneau, AK, USA
| | - Shannon E Albeke
- Wyoming Geographic Information Science Center, University of Wyoming, Laramie, WY, USA
| | - John P Whiteman
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | | | - Evan Richardson
- Environment and Climate Change Canada, University of Alberta, Edmonton, AB, Canada
| | - Ryan R Wilson
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, AK, USA
| | - Merav Ben-David
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
42
|
Identifying shifts in maternity den phenology and habitat characteristics of polar bears (Ursus maritimus) in Baffin Bay and Kane Basin. Polar Biol 2017. [DOI: 10.1007/s00300-017-2172-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Wilder JM, Vongraven D, Atwood T, Hansen B, Jessen A, Kochnev A, York G, Vallender R, Hedman D, Gibbons M. Polar bear attacks on humans: Implications of a changing climate. WILDLIFE SOC B 2017. [DOI: 10.1002/wsb.783] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- James M. Wilder
- U.S. Fish and Wildlife Service, Marine Mammals Management; 1011 E. Tudor Road Anchorage AK 99503 USA
| | - Dag Vongraven
- Norwegian Polar Institute, Fram Center; N-9296 Tromsø Norway
| | - Todd Atwood
- U.S. Geological Survey, Alaska Science Center; 4210 University Road Anchorage AK 99508 USA
| | - Bob Hansen
- Government of Nunavut; Igloolik NU X0A 0L0 Canada
| | - Amalie Jessen
- Government of Greenland, Department of Wildlife and Agriculture; P.O. Box 269 3900 Nuuk Greenland
| | - Anatoly Kochnev
- Russian Academy of Sciences, Far East Branch, Institute of Biological Problems of the North, Mammals Ecology Lab; 18 Portovaya Street 685000 Magadan Russia
| | - Geoff York
- Polar Bears International; PO Box 3008 Bozeman MT 59772 USA
| | - Rachel Vallender
- Canadian Wildlife Service, Environment Canada; 351 St. Joseph Boulevard Gatineau QC K1A 0H3 Canada
| | - Daryll Hedman
- Manitoba Conservation and Water Stewardship; Northeast Region, Box 28 Thompson MB R8N 1N2 Canada
| | - Melissa Gibbons
- Wapusk National Park and Manitoba North National Historic Sites, Parks Canada; Box 127 Churchill MB R0B 0E0 Canada
| |
Collapse
|
44
|
Bromaghin JF, Budge SM, Thiemann GW, Rode KD. Simultaneous estimation of diet composition and calibration coefficients with fatty acid signature data. Ecol Evol 2017; 7:6103-6113. [PMID: 28861216 PMCID: PMC5574754 DOI: 10.1002/ece3.3179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/05/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022] Open
Abstract
Knowledge of animal diets provides essential insights into their life history and ecology, although diet estimation is challenging and remains an active area of research. Quantitative fatty acid signature analysis (QFASA) has become a popular method of estimating diet composition, especially for marine species. A primary assumption of QFASA is that constants called calibration coefficients, which account for the differential metabolism of individual fatty acids, are known. In practice, however, calibration coefficients are not known, but rather have been estimated in feeding trials with captive animals of a limited number of model species. The impossibility of verifying the accuracy of feeding trial derived calibration coefficients to estimate the diets of wild animals is a foundational problem with QFASA that has generated considerable criticism. We present a new model that allows simultaneous estimation of diet composition and calibration coefficients based only on fatty acid signature samples from wild predators and potential prey. Our model performed almost flawlessly in four tests with constructed examples, estimating both diet proportions and calibration coefficients with essentially no error. We also applied the model to data from Chukchi Sea polar bears, obtaining diet estimates that were more diverse than estimates conditioned on feeding trial calibration coefficients. Our model avoids bias in diet estimates caused by conditioning on inaccurate calibration coefficients, invalidates the primary criticism of QFASA, eliminates the need to conduct feeding trials solely for diet estimation, and consequently expands the utility of fatty acid data to investigate aspects of ecology linked to animal diets.
Collapse
Affiliation(s)
| | - Suzanne M Budge
- Process Engineering and Applied Science Dalhousie University Halifax NS Canada
| | | | - Karyn D Rode
- Alaska Science Center U.S. Geological Survey Anchorage AK USA
| |
Collapse
|
45
|
Hauser DDW, Laidre KL, Stafford KM, Stern HL, Suydam RS, Richard PR. Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation. GLOBAL CHANGE BIOLOGY 2017; 23:2206-2217. [PMID: 28001336 DOI: 10.1111/gcb.13564] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 05/08/2023]
Abstract
Migrations are often influenced by seasonal environmental gradients that are increasingly being altered by climate change. The consequences of rapid changes in Arctic sea ice have the potential to affect migrations of a number of marine species whose timing is temporally matched to seasonal sea ice cover. This topic has not been investigated for Pacific Arctic beluga whales (Delphinapterus leucas) that follow matrilineally maintained autumn migrations in the waters around Alaska and Russia. For the sympatric Eastern Chukchi Sea ('Chukchi') and Eastern Beaufort Sea ('Beaufort') beluga populations, we examined changes in autumn migration timing as related to delayed regional sea ice freeze-up since the 1990s, using two independent data sources (satellite telemetry data and passive acoustics) for both populations. We compared dates of migration between 'early' (1993-2002) and 'late' (2004-2012) tagging periods. During the late tagging period, Chukchi belugas had significantly delayed migrations (by 2 to >4 weeks, depending on location) from the Beaufort and Chukchi seas. Spatial analyses also revealed that departure from Beaufort Sea foraging regions by Chukchi whales was postponed in the late period. Chukchi beluga autumn migration timing occurred significantly later as regional sea ice freeze-up timing became later in the Beaufort, Chukchi, and Bering seas. In contrast, Beaufort belugas did not shift migration timing between periods, nor was migration timing related to freeze-up timing, other than for southward migration at the Bering Strait. Passive acoustic data from 2008 to 2014 provided independent and supplementary support for delayed migration from the Beaufort Sea (4 day yr-1 ) by Chukchi belugas. Here, we report the first phenological study examining beluga whale migrations within the context of their rapidly transforming Pacific Arctic ecosystem, suggesting flexible responses that may enable their persistence yet also complicate predictions of how belugas may fare in the future.
Collapse
Affiliation(s)
- Donna D W Hauser
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98105, USA
- Polar Science Center, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA, 98105, USA
| | - Kristin L Laidre
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98105, USA
- Polar Science Center, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA, 98105, USA
| | - Kathleen M Stafford
- Applied Physics Laboratory, University of Washington, Seattle, WA, 98105, USA
| | - Harry L Stern
- Polar Science Center, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA, 98105, USA
| | - Robert S Suydam
- North Slope Borough, Department of Wildlife Management, PO Box 69, Barrow, AK, 99723, USA
| | - Pierre R Richard
- Freshwater Institute, Fisheries & Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| |
Collapse
|
46
|
Hamilton CD, Kovacs KM, Ims RA, Aars J, Lydersen C. An Arctic predator-prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals. J Anim Ecol 2017; 86:1054-1064. [PMID: 28415134 DOI: 10.1111/1365-2656.12685] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/06/2017] [Indexed: 01/30/2023]
Abstract
Climate change is impacting different species at different rates, leading to alterations in biological interactions with ramifications for wider ecosystem functioning. Understanding these alterations can help improve predictive capacity and inform management efforts designed to mitigate against negative impacts. We investigated how the movement and space use patterns of polar bears (Ursus maritimus) in coastal areas in Svalbard, Norway, have been altered by a sudden decline in sea ice that occurred in 2006. We also investigated whether the spatial overlap between polar bears and their traditionally most important prey, ringed seals (Pusa hispida), has been affected by the sea-ice decline, as polar bears are dependent on a sea-ice platform for hunting seals. We attached biotelemetry devices to ringed seals (n = 60, both sexes) and polar bears (n = 67, all females) before (2002-2004) and after (2010-2013) a sudden decline in sea ice in Svalbard. We used linear mixed-effects models to evaluate the association of these species to environmental features and an approach based on Time Spent in Area to investigate changes in spatial overlap between the two species. Following the sea-ice reduction, polar bears spent the same amount of time close to tidal glacier fronts in the spring but less time in these areas during the summer and autumn. However, ringed seals did not alter their association with glacier fronts during summer, leading to a major decrease in spatial overlap values between these species in Svalbard's coastal areas. Polar bears now move greater distances daily and spend more time close to ground-nesting bird colonies, where bear predation can have substantial local effects. Our results indicate that sea-ice declines have impacted the degree of spatial overlap and hence the strength of the predator-prey relationship between polar bears and ringed seals, with consequences for the wider Arctic marine and terrestrial ecosystems. Shifts in ecological interactions are likely to become more widespread in many ecosystems as both predators and prey respond to changing environmental conditions induced by global warming, highlighting the importance of multi-species studies.
Collapse
Affiliation(s)
- Charmain D Hamilton
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway.,Department of Arctic and Marine Biology, Arctic University of Norway, Tromsø, Norway
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - Rolf A Ims
- Department of Arctic and Marine Biology, Arctic University of Norway, Tromsø, Norway
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | | |
Collapse
|
47
|
Dey CJ, Richardson E, McGeachy D, Iverson SA, Gilchrist HG, Semeniuk CAD. Increasing nest predation will be insufficient to maintain polar bear body condition in the face of sea ice loss. GLOBAL CHANGE BIOLOGY 2017; 23:1821-1831. [PMID: 27614094 DOI: 10.1111/gcb.13499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/11/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Climate change can influence interspecific interactions by differentially affecting species-specific phenology. In seasonal ice environments, there is evidence that polar bear predation of Arctic bird eggs is increasing because of earlier sea ice breakup, which forces polar bears into nearshore terrestrial environments where Arctic birds are nesting. Because polar bears can consume a large number of nests before becoming satiated, and because they can swim between island colonies, they could have dramatic influences on seabird and sea duck reproductive success. However, it is unclear whether nest foraging can provide an energetic benefit to polar bear populations, especially given the capacity of bird populations to redistribute in response to increasing predation pressure. In this study, we develop a spatially explicit agent-based model of the predator-prey relationship between polar bears and common eiders, a common and culturally important bird species for northern peoples. Our model is composed of two types of agents (polar bear agents and common eider hen agents) whose movements and decision heuristics are based on species-specific bioenergetic and behavioral ecological principles, and are influenced by historical and extrapolated sea ice conditions. Our model reproduces empirical findings that polar bear predation of bird nests is increasing and predicts an accelerating relationship between advancing ice breakup dates and the number of nests depredated. Despite increases in nest predation, our model predicts that polar bear body condition during the ice-free period will continue to decline. Finally, our model predicts that common eider nests will become more dispersed and will move closer to the mainland in response to increasing predation, possibly increasing their exposure to land-based predators and influencing the livelihood of local people that collect eider eggs and down. These results show that predator-prey interactions can have nonlinear responses to changes in climate and provides important predictions of ecological change in Arctic ecosystems.
Collapse
Affiliation(s)
- Cody J Dey
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Evan Richardson
- Environment and Climate Change Canada, Science and Technology Branch, Wildlife Research Division, CW405 Biological Sciences BLDG, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - David McGeachy
- Environment and Climate Change Canada, Science and Technology Branch, Wildlife Research Division, CW405 Biological Sciences BLDG, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Samuel A Iverson
- Environment and Climate Change Canada, Canadian Wildlife Service, 335 River Road, Ottawa, ON, K1A 0H3, Canada
| | - Hugh G Gilchrist
- Environment and Climate Change Canada, National Wildlife Research Center, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada
| | - Christina A D Semeniuk
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
48
|
Ware JV, Rode KD, Bromaghin JF, Douglas DC, Wilson RR, Regehr EV, Amstrup SC, Durner GM, Pagano AM, Olson J, Robbins CT, Jansen HT. Habitat degradation affects the summer activity of polar bears. Oecologia 2017; 184:87-99. [PMID: 28247129 DOI: 10.1007/s00442-017-3839-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/09/2017] [Indexed: 01/24/2023]
Abstract
Understanding behavioral responses of species to environmental change is critical to forecasting population-level effects. Although climate change is significantly impacting species' distributions, few studies have examined associated changes in behavior. Polar bear (Ursus maritimus) subpopulations have varied in their near-term responses to sea ice decline. We examined behavioral responses of two adjacent subpopulations to changes in habitat availability during the annual sea ice minimum using activity data. Location and activity sensor data collected from 1989 to 2014 for 202 adult female polar bears in the Southern Beaufort Sea (SB) and Chukchi Sea (CS) subpopulations were used to compare activity in three habitat types varying in prey availability: (1) land; (2) ice over shallow, biologically productive waters; and (3) ice over deeper, less productive waters. Bears varied activity across and within habitats with the highest activity at 50-75% sea ice concentration over shallow waters. On land, SB bears exhibited variable but relatively high activity associated with the use of subsistence-harvested bowhead whale carcasses, whereas CS bears exhibited low activity consistent with minimal feeding. Both subpopulations had fewer observations in their preferred shallow-water sea ice habitats in recent years, corresponding with declines in availability of this substrate. The substantially higher use of marginal habitats by SB bears is an additional mechanism potentially explaining why this subpopulation has experienced negative effects of sea ice loss compared to the still-productive CS subpopulation. Variability in activity among, and within, habitats suggests that bears alter their behavior in response to habitat conditions, presumably in an attempt to balance prey availability with energy costs.
Collapse
Affiliation(s)
- Jasmine V Ware
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164-7620, USA.
| | - Karyn D Rode
- Alaska Science Center, U.S. Geological Survey, 4210 University Dr., Anchorage, AK, 99508, USA
| | - Jeffrey F Bromaghin
- Alaska Science Center, U.S. Geological Survey, 4210 University Dr., Anchorage, AK, 99508, USA
| | - David C Douglas
- Alaska Science Center, U.S. Geological Survey, 250 Egan Drive, Juneau, AK, 99801, USA
| | - Ryan R Wilson
- U.S. Fish and Wildlife Service, 1011 East Tudor Road, MS 341, Anchorage, AK, 99503, USA
| | - Eric V Regehr
- U.S. Fish and Wildlife Service, 1011 East Tudor Road, MS 341, Anchorage, AK, 99503, USA
| | | | - George M Durner
- Alaska Science Center, U.S. Geological Survey, 4210 University Dr., Anchorage, AK, 99508, USA
| | - Anthony M Pagano
- Alaska Science Center, U.S. Geological Survey, 4210 University Dr., Anchorage, AK, 99508, USA
| | - Jay Olson
- Department of Plant and Wildlife Sciences, Brigham Young University, 5049 LSB, Provo, UT, 84602, USA
| | - Charles T Robbins
- School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Heiko T Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164-7620, USA
| |
Collapse
|
49
|
Pilfold NW, Hedman D, Stirling I, Derocher AE, Lunn NJ, Richardson E. Mass Loss Rates of Fasting Polar Bears. Physiol Biochem Zool 2016; 89:377-88. [DOI: 10.1086/687988] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Pongracz JD, Derocher AE. Summer refugia of polar bears (Ursus maritimus) in the southern Beaufort Sea. Polar Biol 2016. [DOI: 10.1007/s00300-016-1997-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|