1
|
Gao Z, Santos RB, Rupert J, Van Drunen R, Yu Y, Eckel‐Mahan K, Kolonin MG. Endothelial-specific telomerase inactivation causes telomere-independent cell senescence and multi-organ dysfunction characteristic of aging. Aging Cell 2024; 23:e14138. [PMID: 38475941 PMCID: PMC11296101 DOI: 10.1111/acel.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
It has remained unclear how aging of endothelial cells (EC) contributes to pathophysiology of individual organs. Cell senescence results in part from inactivation of telomerase (TERT). Here, we analyzed mice with Tert knockout specifically in EC. Tert loss in EC induced transcriptional changes indicative of senescence and tissue hypoxia in EC and in other cells. We demonstrate that EC-Tert-KO mice have leaky blood vessels. The blood-brain barrier of EC-Tert-KO mice is compromised, and their cognitive function is impaired. EC-Tert-KO mice display reduced muscle endurance and decreased expression of enzymes responsible for oxidative metabolism. Our data indicate that Tert-KO EC have reduced mitochondrial content and function, which results in increased dependence on glycolysis. Consistent with this, EC-Tert-KO mice have metabolism changes indicative of increased glucose utilization. In EC-Tert-KO mice, expedited telomere attrition is observed for EC of adipose tissue (AT), while brain and skeletal muscle EC have normal telomere length but still display features of senescence. Our data indicate that the loss of Tert causes EC senescence in part through a telomere length-independent mechanism undermining mitochondrial function. We conclude that EC-Tert-KO mice is a model of expedited vascular senescence recapitulating the hallmarks aging, which can be useful for developing revitalization therapies.
Collapse
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Rafael Bravo Santos
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Joseph Rupert
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Rachel Van Drunen
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Kristin Eckel‐Mahan
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| |
Collapse
|
2
|
Kumar D, Aggarwal N, Deep A, Kumar H, Chopra H, Marwaha RK, Cavalu S. An Understanding of Mechanism-Based Approaches for 1,3,4-Oxadiazole Scaffolds as Cytotoxic Agents and Enzyme Inhibitors. Pharmaceuticals (Basel) 2023; 16:254. [PMID: 37259401 PMCID: PMC9963071 DOI: 10.3390/ph16020254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 07/30/2023] Open
Abstract
The world's health system is plagued by cancer and a worldwide effort is underway to find new drugs to treat cancer. There has been a significant improvement in understanding the pathogenesis of cancer, but it remains one of the leading causes of death. The imperative 1,3,4-oxadiazole scaffold possesses a wide variety of biological activities, particularly for cancer treatment. In the development of novel 1,3,4-oxadiazole-based drugs, structural modifications are important to ensure high cytotoxicity towards malignant cells. These structural modification strategies have shown promising results when combined with outstanding oxadiazole scaffolds, which selectively interact with nucleic acids, enzymes, and globular proteins. A variety of mechanisms, such as the inhibition of growth factors, enzymes, and kinases, contribute to their antiproliferative effects. The activity of different 1,3,4-oxadiazole conjugates were tested on the different cell lines of different types of cancer. It is demonstrated that 1,3,4-oxadiazole hybridization with other anticancer pharmacophores have different mechanisms of action by targeting various enzymes (thymidylate synthase, HDAC, topoisomerase II, telomerase, thymidine phosphorylase) and many of the proteins that contribute to cancer cell proliferation. The focus of this review is to highlight the anticancer potential, molecular docking, and SAR studies of 1,3,4-oxadiazole derivatives by inhibiting specific cancer biological targets, such as inhibiting telomerase activity, HDAC, thymidylate synthase, and the thymidine phosphorylase enzyme. The purpose of this review is to summarize recent developments and discoveries in the field of anticancer drugs using 1,3,4-oxadiazoles.
Collapse
Affiliation(s)
- Davinder Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Harsh Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
3
|
Liu T, Gonzalez De Los Santos F, Rinke AE, Fang C, Flaherty KR, Phan SH. B7H3-dependent myeloid-derived suppressor cell recruitment and activation in pulmonary fibrosis. Front Immunol 2022; 13:901349. [PMID: 36045668 PMCID: PMC9420866 DOI: 10.3389/fimmu.2022.901349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease without effective curative therapy. Recent evidence shows increased circulating myeloid-derived suppressor cells (MDSCs) in cancer, inflammation, and fibrosis, with some of these cells expressing B7H3. We sought to investigate the role of MDSCs in IPF and its potential mediation via B7H3. Here we prospectively collected peripheral blood samples from IPF patients to analyze for circulating MDSCs and B7H3 expression to assess their clinical significance and potential impact on co-cultured lung fibroblasts and T-cell activation. In parallel, we assess MDSC recruitment and potential B7H3 dependence in a mouse model of pulmonary fibrosis. Expansion of MDSCs in IPF patients correlated with disease severity. Co-culture of soluble B7H3 (sB7H3)-treated mouse monocytic MDSCs (M-MDSCs), but not granulocytic MDSCs (G-MDSCs), activated lung fibroblasts and myofibroblast differentiation. Additionally, sB7H3 significantly enhanced MDSC suppression of T-cell proliferation. Activated M-MDSCs displayed elevated TGFβ and Arg1 expression relative to that in G-MDSCs. Treatment with anti-B7H3 antibodies inhibited bone marrow-derived MDSC recruitment into the bleomycin-injured lung, accompanied by reduced expression of inflammation and fibrosis markers. Selective telomerase reverse transcriptase (TERT) deficiency in myeloid cells also diminished MDSC recruitment associated with the reduced plasma level of sB7H3, lung recruitment of c-Kit+ hematopoietic progenitors, myofibroblast differentiation, and fibrosis. Lung single-cell RNA sequencing (scRNA-seq) revealed fibroblasts as a predominant potential source of sB7H3, and indeed the conditioned medium from activated mouse lung fibroblasts had a chemotactic effect on bone marrow (BM)-MDSC, which was abolished by B7H3 blocking antibody. Thus, in addition to their immunosuppressive activity, TERT and B7H3-dependent MDSC expansion/recruitment from BM could play a paracrine role to activate myofibroblast differentiation during pulmonary fibrosis with potential significance for disease progression mediated by sB7H3.
Collapse
Affiliation(s)
- Tianju Liu
- Departments of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- *Correspondence: Sem H. Phan, ; Tianju Liu,
| | | | - Andrew E. Rinke
- Departments of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chuling Fang
- Departments of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kevin R. Flaherty
- Division of Pulmonary/Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sem H. Phan
- Departments of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- *Correspondence: Sem H. Phan, ; Tianju Liu,
| |
Collapse
|
4
|
Ma H, Wu X, Li Y, Xia Y. Research Progress in the Molecular Mechanisms, Therapeutic Targets, and Drug Development of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:963054. [PMID: 35935869 PMCID: PMC9349351 DOI: 10.3389/fphar.2022.963054] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Recent studies have identified the key role of crosstalk between dysregulated epithelial cells, mesenchymal, immune, and endothelial cells in IPF. In addition, genetic mutations and environmental factors (e.g., smoking) have also been associated with the development of IPF. With the recent development of sequencing technology, epigenetics, as an intermediate link between gene expression and environmental impacts, has also been reported to be implicated in pulmonary fibrosis. Although the etiology of IPF is unknown, many novel therapeutic targets and agents have emerged from clinical trials for IPF treatment in the past years, and the successful launch of pirfenidone and nintedanib has demonstrated the promising future of anti-IPF therapy. Therefore, we aimed to gain an in-depth understanding of the underlying molecular mechanisms and pathogenic factors of IPF, which would be helpful for the diagnosis of IPF, the development of anti-fibrotic drugs, and improving the prognosis of patients with IPF. In this study, we summarized the pathogenic mechanism, therapeutic targets and clinical trials from the perspective of multiple cell types, gene mutations, epigenetic and environmental factors.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
5
|
Kant S, Tran KV, Kvandova M, Caliz AD, Yoo HJ, Learnard H, Dolan AC, Craige SM, Hall JD, Jiménez JM, St. Hilaire C, Schulz E, Kröller-Schön S, Keaney JF. PGC1α Regulates the Endothelial Response to Fluid Shear Stress via Telomerase Reverse Transcriptase Control of Heme Oxygenase-1. Arterioscler Thromb Vasc Biol 2022; 42:19-34. [PMID: 34789002 PMCID: PMC8702461 DOI: 10.1161/atvbaha.121.317066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Fluid shear stress (FSS) is known to mediate multiple phenotypic changes in the endothelium. Laminar FSS (undisturbed flow) is known to promote endothelial alignment to flow, which is key to stabilizing the endothelium and rendering it resistant to atherosclerosis and thrombosis. The molecular pathways responsible for endothelial responses to FSS are only partially understood. In this study, we determine the role of PGC1α (peroxisome proliferator gamma coactivator-1α)-TERT (telomerase reverse transcriptase)-HMOX1 (heme oxygenase-1) during shear stress in vitro and in vivo. Approach and Results: Here, we have identified PGC1α as a flow-responsive gene required for endothelial flow alignment in vitro and in vivo. Compared with oscillatory FSS (disturbed flow) or static conditions, laminar FSS (undisturbed flow) showed increased PGC1α expression and its transcriptional coactivation. PGC1α was required for laminar FSS-induced expression of TERT in vitro and in vivo via its association with ERRα(estrogen-related receptor alpha) and KLF (Kruppel-like factor)-4 on the TERT promoter. We found that TERT inhibition attenuated endothelial flow alignment, elongation, and nuclear polarization in response to laminar FSS in vitro and in vivo. Among the flow-responsive genes sensitive to TERT status, HMOX1 was required for endothelial alignment to laminar FSS. CONCLUSIONS These data suggest an important role for a PGC1α-TERT-HMOX1 axis in the endothelial stabilization response to laminar FSS.
Collapse
Affiliation(s)
- Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Equal contribution
| | - Khanh-Van Tran
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
- Equal contribution
| | - Miroslava Kvandova
- Department of Cardiology, University Medical Center, Mainz, Germany
- Equal contribution
| | - Amada D. Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Hyung-Jin Yoo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Heather Learnard
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Ana C. Dolan
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Siobhan M. Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blackburg, VA 24061
| | - Joshua D. Hall
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Juan M. Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Cynthia St. Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
| | - Eberhard Schulz
- Department of Cardiology, Allgemeines Krankenhaus, Celle, Germany
| | | | - John F. Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
6
|
Huang YC, Wang CY. Telomere Attrition and Clonal Hematopoiesis of Indeterminate Potential in Cardiovascular Disease. Int J Mol Sci 2021; 22:9867. [PMID: 34576030 PMCID: PMC8467562 DOI: 10.3390/ijms22189867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Clinical evidence suggests that conventional cardiovascular disease (CVD) risk factors cannot explain all CVD incidences. Recent studies have shown that telomere attrition, clonal hematopoiesis of indeterminate potential (CHIP), and atherosclerosis (telomere-CHIP-atherosclerosis, TCA) evolve to play a crucial role in CVD. Telomere dynamics and telomerase have an important relationship with age-related CVD. Telomere attrition is associated with CHIP. CHIP is commonly observed in elderly patients. It is characterized by an increase in blood cell clones with somatic mutations, resulting in an increased risk of hematological cancer and atherosclerotic CVD. The most common gene mutations are DNA methyltransferase 3 alpha (DNMT3A), Tet methylcytosine dioxygenase 2 (TET2), and additional sex combs-like 1 (ASXL1). Telomeres, CHIP, and atherosclerosis increase chronic inflammation and proinflammatory cytokine expression. Currently, their epidemiology and detailed mechanisms related to the TCA axis remain incompletely understood. In this article, we reviewed recent research results regarding the development of telomeres and CHIP and their relationship with atherosclerotic CVD.
Collapse
Affiliation(s)
- Yi-Chun Huang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan;
| | - Chao-Yung Wang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
7
|
Harada M, Hu B, Lu J, Wang J, Rinke AE, Wu Z, Liu T, Phan SH. The dual distinct role of telomerase in repression of senescence and myofibroblast differentiation. Aging (Albany NY) 2021; 13:16957-16973. [PMID: 34253690 PMCID: PMC8312426 DOI: 10.18632/aging.203246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Many aging related diseases such as cancer implicate the myofibroblast in disease progression. Furthermore genesis of the myofibroblast is associated with manifestation of cellular senescence of unclear significance. In this study we investigated the role of a common regulator, namely telomerase reverse transcriptase (TERT), in order to evaluate the potential significance of this association between both processes. We analyzed the effects of TERT overexpression or deficiency on expression of CDKN2A and ACTA2 as indicators of senescence and differentiation, respectively. We assess binding of TERT or YB-1, a repressor of both genes, to their promoters. TERT repressed both CDKN2A and ACTA2 expression, and abolished stress-induced expression of both genes. Conversely, TERT deficiency enhanced their expression. Altering CDKN2A expression had no effect on ACTA2 expression. Both TERT and YB-1 were shown to bind the CDKN2A promoter but only YB-1 was shown to bind the ACTA2 promoter. TERT overexpression inhibited CDKN2A promoter activity while stimulating YB-1 expression and activation to repress ACTA2 gene. TERT repressed myofibroblast differentiation and senescence via distinct mechanisms. The latter was associated with TERT binding to the CDKN2A promoter, but not to the ACTA2 promoter, which may require interaction with co-factors such as YB-1.
Collapse
Affiliation(s)
- Masanori Harada
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Respiratory Medicine, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jeffrey Lu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jing Wang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Xinjiang Key Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Andrew E Rinke
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sem H Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
El-Desoky MM, Hewidy AA, Fouda AM, Hisham FA. Telomeric repeat-containing ribonucleic acid (TERRA) expression in patients with idiopathic pulmonary fibrosis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00141-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Idiopathic pulmonary fibrosis (IPF) represents a chronic disease with a progressive course. It is characterized by excessive lung scarring that ultimately contributes to irreversible lung function reduction. Interestingly, a type of long non-coding RNA termed as telomeric repeat-containing RNA (TERRA) is linked to fibrosis pathophysiology, including IPF. In this study, the expression profile of TERRA was investigated in IPF patients on radiological diagnosis [unusual interstitial pattern (UIP) in high-resolution computed tomography (HRCT)] to evaluate whether it could be employed as a reliable diagnostic biomarker.
Results
TERRA expression level was significantly higher in IPF patients over healthy controls. The expression level was significantly inversely correlated with the percentage of forced vital capacity predicted (FVC% predicted). By contrast, it was significantly directly correlated with HRCT reticular extent score.
Conclusion
TERRA expression is an essential biomarker in peripheral blood of IPF patients, providing a valuable non-invasive tool for IPF diagnosis. Moreover, TERRA expression is strongly correlated with UIP in HRCT reticular extent score.
Collapse
|
9
|
Gao Z, Daquinag AC, Fussell C, Zhao Z, Dai Y, Rivera A, Snyder BE, Eckel-Mahan KL, Kolonin MG. Age-associated telomere attrition in adipocyte progenitors predisposes to metabolic disease. Nat Metab 2020; 2:1482-1497. [PMID: 33324010 DOI: 10.1038/s42255-020-00320-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023]
Abstract
White and beige adipocytes in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) are maintained by proliferation and differentiation of adipose progenitor cells (APCs). Here we use mice with tissue-specific telomerase reverse transcriptase (TERT) gene knockout (KO), which undergo premature telomere shortening and proliferative senescence in APCs, to investigate the effect of over-nutrition on APC exhaustion and metabolic dysfunction. We find that TERT KO in the Pdgfra+ cell lineage results in adipocyte hypertrophy, inflammation and fibrosis in SAT, while TERT KO in the Pdgfrb+ lineage leads to adipocyte hypertrophy in both SAT and VAT. Systemic insulin resistance is observed in both KO models and is aggravated by a high-fat diet. Analysis of human biopsies demonstrates that telomere shortening in SAT is associated with metabolic disease progression after bariatric surgery. Our data indicate that over-nutrition can promote APC senescence and provide a mechanistic link between ageing, obesity and diabetes.
Collapse
Affiliation(s)
- Zhanguo Gao
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA
| | - Alexes C Daquinag
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA
| | - Cale Fussell
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Brad E Snyder
- Memorial Hermann Texas Medical Center, Houston, TX, USA
| | - Kristin L Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA
| | - Mikhail G Kolonin
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
10
|
Wang Y, Xiao H, Zhao F, Li H, Gao R, Yan B, Ren J, Yang J. Decrypting the crosstalk of noncoding RNAs in the progression of IPF. Mol Biol Rep 2020; 47:3169-3179. [PMID: 32180083 DOI: 10.1007/s11033-020-05368-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an agnogenic, rare, and lethal disease, with high mortality and poor prognosis and a median survival time as short as 3 to 5 years after diagnosis. No effective therapeutic drugs are still not available not only in clinical practice, but also in preclinical phases. To better and deeper understand pulmonary fibrosis will provide more effective strategies for therapy. Mounting evidence suggests that noncoding RNAs (ncRNAs) and their interactions may contribute to lung fibrosis; however, the mechanisms underlying their roles are largely unknown. In this review, we systematically summarized the recent advances regarding the crucial roles of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) and crosstalk among them in the development of IPF. The perspective for related genes was well highlighted. In summary, ncRNA and their interactions play a key regulatory part in the progression of IPF and are bound to provide us with new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Xiao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Fenglian Zhao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Jin Ren
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Yeh JK, Lin MH, Wang CY. Telomeres as Therapeutic Targets in Heart Disease. ACTA ACUST UNITED AC 2019; 4:855-865. [PMID: 31998853 PMCID: PMC6978555 DOI: 10.1016/j.jacbts.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
Age-associated CVDs impose a great burden on current health systems. Despite the fact that current strong evidence supports the links among aging, telomere attrition, and CVDs, there is no clear direction for the development of telomere therapeutics against CVDs. This review focuses on immune modulation, CHIP, pharmaceutical interventions, and gene therapy for their therapeutic roles in age-associated CVDs. The future goal of telomere cardiovascular therapy in young subjects is to prevent senescence and diseases, whereas in older adult subjects, the goal is restoration of cardiovascular functions. Further studies on the telomere-CHIP-atherosclerosis axis may shed insights on how to achieve these 2 different therapeutic targets.
Telomeres are double-stranded repeats of G-rich tandem DNA sequences that gradually shorten with each cell division. Aging, inflammation, and oxidative stress accelerate the process of telomere shortening. Telomerase counteracts this process by maintaining and elongating the telomere length. Patients with atherosclerotic diseases and cardiovascular risk factors (e.g., smoking, obesity, sedentary lifestyle, and hypertension) have shorter leukocyte telomere length. Following myocardial infarction, telomerase expression and activity in cardiomyocytes and endothelial cells increase significantly, implying that telomerase plays a role in regulating tissue repairs in heart diseases. Although previous studies have focused on the changes of telomeres in heart diseases and the telomere length as a marker for aging cardiovascular systems, recent studies have explored the potential of telomeres and telomerase in the treatment of cardiovascular diseases. This review discusses the significant advancements of telomere therapeutics in gene therapy, atherosclerosis, anti-inflammation, and immune modulation in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Mei-Hsiu Lin
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
12
|
Nakashima T, Liu T, Hu B, Wu Z, Ullenbruch M, Omori K, Ding L, Hattori N, Phan SH. Role of B7H3/IL-33 Signaling in Pulmonary Fibrosis-induced Profibrogenic Alterations in Bone Marrow. Am J Respir Crit Care Med 2019; 200:1032-1044. [PMID: 31106564 PMCID: PMC6794107 DOI: 10.1164/rccm.201808-1560oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/14/2019] [Indexed: 01/12/2023] Open
Abstract
Rationale: The impact of lung insult on the bone marrow (BM) and subsequent disease is unknown.Objectives: To study alterations in the BM in response to lung injury/fibrosis and examine their impact on subsequent lung insult.Methods: BM cells from control or bleomycin-treated donor mice were transplanted into naive mice, which were subsequently evaluated for bleomycin-induced pulmonary fibrosis. In addition, the effect of prior bleomycin treatment on subsequent fibrosis was examined in wild-type and B7H3-knockout mice. Samples from patients with idiopathic pulmonary fibrosis were analyzed for potential clinical relevance of the findings.Measurements and Main Results: Recipient mice transplanted with BM from bleomycin-pretreated donors showed significant exacerbation of subsequent fibrosis with increased B7H3+ cell numbers and a T-helper cell type 2-skewed phenotype. Pretreatment with a minimally fibrogenic/nonfibrogenic dose of bleomycin also caused exacerbation, but not in B7H3-deficient mice. Exacerbation was not observed if the mice received naive BM cell transplant after the initial bleomycin pretreatment. Soluble B7H3 stimulated BM Ly6Chi monocytic cell expansion in vitro and caused similar expansion in the lung in vivo. Notably, soluble B7H3 was elevated in plasma of patients with idiopathic pulmonary fibrosis and in BAL fluid in those with acute exacerbation. Finally, ST2 deficiency diminished the bleomycin-induced B7H3 and IL-13 upregulation, suggesting a role for type 2 innate lymphoid cells.Conclusions: Pulmonary fibrosis caused significant alterations in BM with expansion and activation of monocytic cells, which enhanced fibrosis when transplanted to naive recipients with potential mediation by a novel role for B7H3 in the pathophysiology of pulmonary fibrosis in both mice and humans.
Collapse
Affiliation(s)
- Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; and
| | - Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Matthew Ullenbruch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Keitaro Omori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; and
| | - Lin Ding
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; and
| | - Sem H. Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
13
|
The Role of Telomerase and Telomeres in Interstitial Lung Diseases: From Molecules to Clinical Implications. Int J Mol Sci 2019; 20:ijms20122996. [PMID: 31248154 PMCID: PMC6627617 DOI: 10.3390/ijms20122996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 02/07/2023] Open
Abstract
Telomeres are distal chromosome regions associated with specific protein complexes that protect the chromosome against degradation and aberrations. Telomere maintenance capacity is an essential indication of healthy cell populations, and telomere damage is observed in processes such as malignant transformation, apoptosis, or cell senescence. At a cellular level, telomere damage may result from genotoxic stress, decreased activity of telomerase enzyme complex, dysfunction of shelterin proteins, or changes in expression of telomere-associated RNA such as TERRA. Clinical evidence suggests that mutation of telomerase genes (Tert/Terc) are associated with increased risk of congenital as well as age-related diseases (e.g., pneumonitis, idiopathic pulmonary fibrosis (IPF), dyskeratosis congenita, emphysema, nonspecific interstitial pneumonia, etc.). Thus, telomere length and maintenance can serve as an important prognostic factor as well as a potential target for new strategies of treatment for interstitial lung diseases (ILDs) and associated pulmonary pathologies.
Collapse
|
14
|
Liu T, Gonzalez De Los Santos F, Zhao Y, Wu Z, Rinke AE, Kim KK, Phan SH. Telomerase reverse transcriptase ameliorates lung fibrosis by protecting alveolar epithelial cells against senescence. J Biol Chem 2019; 294:8861-8871. [PMID: 31000627 DOI: 10.1074/jbc.ra118.006615] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/11/2019] [Indexed: 11/06/2022] Open
Abstract
Mutations in the genes encoding telomerase reverse transcriptase (TERT) and telomerase's RNA components as well as shortened telomeres are risk factors for idiopathic pulmonary fibrosis, where repetitive injury to the alveolar epithelium is considered a key factor in pathogenesis. Given the importance of TERT in stem cells, we hypothesized that TERT plays an important role in epithelial repair and that its deficiency results in exacerbation of fibrosis by impairing this repair/regenerative process. To evaluate the role of TERT in epithelial cells, we generated type II alveolar epithelial cell (AECII)-specific TERT conditional knockout (SPC-Tert cKO) mice by crossing floxed Tert mice with inducible SPC-driven Cre mice. SPC-Tert cKO mice did not develop pulmonary fibrosis spontaneously up to 9 months of TERT deficiency. However, upon bleomycin treatment, they exhibited enhanced lung injury, inflammation, and fibrosis compared with control mice, accompanied by increased pro-fibrogenic cytokine expression but without a significant effect on AECII telomere length. Moreover, selective TERT deficiency in AECII diminished their proliferation and induced cellular senescence. These findings suggest that AECII-specific TERT deficiency enhances pulmonary fibrosis by heightening susceptibility to bleomycin-induced epithelial injury and diminishing epithelial regenerative capacity because of increased cellular senescence. We confirmed evidence for increased AECII senescence in idiopathic pulmonary fibrosis lungs, suggesting potential clinical relevance of the findings from our animal model. Our results suggest that TERT has a protective role in AECII, unlike its pro-fibrotic activity, observed previously in fibroblasts, indicating that TERT's role in pulmonary fibrosis is cell type-specific.
Collapse
Affiliation(s)
| | | | | | - Zhe Wu
- From the Departments of Pathology and
| | | | - Kevin K Kim
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | | |
Collapse
|
15
|
Guzy RD, Li L, Smith C, Dorry SJ, Koo HY, Chen L, Ornitz DM. Pulmonary fibrosis requires cell-autonomous mesenchymal fibroblast growth factor (FGF) signaling. J Biol Chem 2017; 292:10364-10378. [PMID: 28487375 DOI: 10.1074/jbc.m117.791764] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive pulmonary scarring, decline in lung function, and often results in death within 3-5 five years after diagnosis. Fibroblast growth factor (FGF) signaling has been implicated in the pathogenesis of IPF; however, the mechanism through which FGF signaling contributes to pulmonary fibrosis remains unclear. We hypothesized that FGF receptor (FGFR) signaling in fibroblasts is required for the fibrotic response to bleomycin. To test this, mice with mesenchyme-specific tamoxifen-inducible inactivation of FGF receptors 1, 2, and 3 (Col1α2-CreER; TCKO mice) were lineage labeled and administered intratracheal bleomycin. Lungs were collected for histologic analysis, whole lung RNA and protein, and dissociated for flow cytometry and FACS. Bleomycin-treated Col1α2-CreER; TCKO mice have decreased pulmonary fibrosis, collagen production, and fewer α-smooth muscle actin-positive (αSMA+) myofibroblasts compared with controls. Freshly isolated Col1α2-CreER; TCKO mesenchymal cells from bleomycin-treated mice have decreased collagen expression compared with wild type mesenchymal cells. Furthermore, lineage labeled FGFR-deficient fibroblasts have decreased enrichment in fibrotic areas and decreased proliferation. These data identify a cell autonomous requirement for mesenchymal FGFR signaling in the development of pulmonary fibrosis, and for the enrichment of the Col1α2-CreER-positive (Col1α2+) mesenchymal lineage in fibrotic tissue following bleomycin exposure. We conclude that mesenchymal FGF signaling is required for the development of pulmonary fibrosis, and that therapeutic strategies aimed directly at mesenchymal FGF signaling could be beneficial in the treatment of IPF.
Collapse
Affiliation(s)
- Robert D Guzy
- From the Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois 60637, .,the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Ling Li
- the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Craig Smith
- the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Samuel J Dorry
- From the Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Hyun Young Koo
- From the Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Lin Chen
- the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - David M Ornitz
- the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| |
Collapse
|
16
|
Gurusinghe S, Hilbert B, Trope G, Wang L, Bandara N, Strappe P. Generation of Immortalized Equine Chondrocytes With Inducible Sox9 Expression Allows Control of Hypertrophic Differentiation. J Cell Biochem 2017; 118:1201-1215. [DOI: 10.1002/jcb.25773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Saliya Gurusinghe
- School of Biomedical Sciences; Charles Sturt University; Locked Bag 588 Wagga Wagga New South Wales 2650 Australia
- School of Animal and Veterinary Sciences; Charles Sturt University; Locked Bag 588 Wagga Wagga New South Wales 2650 Australia
| | - Bryan Hilbert
- School of Animal and Veterinary Sciences; Charles Sturt University; Locked Bag 588 Wagga Wagga New South Wales 2650 Australia
| | - Gareth Trope
- School of Animal and Veterinary Sciences; Charles Sturt University; Locked Bag 588 Wagga Wagga New South Wales 2650 Australia
| | - Lexin Wang
- School of Biomedical Sciences; Charles Sturt University; Locked Bag 588 Wagga Wagga New South Wales 2650 Australia
| | - Nadeeka Bandara
- School of Biomedical Sciences; Charles Sturt University; Locked Bag 588 Wagga Wagga New South Wales 2650 Australia
- O'Brien Institute Department; St. Vincent's Institute of Medical Research; Victoria 3065 Fitzroy Australia
| | - Padraig Strappe
- School of Biomedical Sciences; Charles Sturt University; Locked Bag 588 Wagga Wagga New South Wales 2650 Australia
| |
Collapse
|
17
|
Abstract
Interstitial lung disease (ILD) comprises a large number of chronic lung disease characterized by varying degrees of inflammation and fibrosis. Mostly they are idiopathic including idiopathic pulmonary fibrosis (IPF), which is a specific disorder characterized by progressive fibrosis leading commonly to end-stage lung disease, respiratory failure, and fatal outcome. IPF and many of these fibrotic ILDs lack effective therapy despite recent approval of two drugs to slow progression in certain IPF patients. Because there are no natural models for IPF, the use of animal models that reproduce key known features of the disease is warranted. Thus, different animal models have been developed to investigate key mechanisms underlying pathogenesis of pulmonary fibrosis and identify potential therapeutic targets for IPF. While no animal model can recapitulate all features of human disease, several are available to address select features of IPF and other fibrotic ILDs. Historically, among the first to be developed and used widely is the bleomycin model, which is the best-characterized and currently most extensively used animal model due to its ability to reproduce many aspects of IPF and other fibrotic ILDs, good reproducibility, and ease of induction. Studies using the bleomycin model have identified many of the cellular and molecular mechanisms now recognized as being important in pathogenesis of IPF and other fibrotic ILDs, as well as novel therapies for these diseases, including two recent drugs approved for treatment of IPF. This chapter will describe commonly used techniques for induction of the model by endotracheal administration of bleomycin through surgical and nonsurgical (transoral instillation).
Collapse
Affiliation(s)
- Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | - Sem H Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Swonger JM, Liu JS, Ivey MJ, Tallquist MD. Genetic tools for identifying and manipulating fibroblasts in the mouse. Differentiation 2016; 92:66-83. [PMID: 27342817 PMCID: PMC5079827 DOI: 10.1016/j.diff.2016.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/18/2023]
Abstract
The use of mouse genetic tools to track and manipulate fibroblasts has provided invaluable in vivo information regarding the activities of these cells. Recently, many new mouse strains have been described for the specific purpose of studying fibroblast behavior. Colorimetric reporter mice and lines expressing Cre are available for the study of fibroblasts in the organs prone to fibrosis, including heart, kidney, liver, lung, and skeletal muscle. In this review we summarize the current state of the models that have been used to define tissue resident fibroblast populations. While these complex genetic reagents provide unique insights into the process of fibrosis, they also require a thorough understanding of the caveats and limitations. Here, we discuss the specificity and efficiency of the available genetic models and briefly describe how they have been used to document the mechanisms of fibrosis.
Collapse
Affiliation(s)
- Jessica M Swonger
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Jocelyn S Liu
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Malina J Ivey
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Michelle D Tallquist
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
19
|
Ding L, Liu T, Wu Z, Hu B, Nakashima T, Ullenbruch M, Gonzalez De Los Santos F, Phan SH. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:303-12. [PMID: 27206766 DOI: 10.4049/jimmunol.1502479] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/27/2016] [Indexed: 12/30/2022]
Abstract
Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis, but its cellular source and role in regeneration versus fibrosis remain unclear. In this study, we hypothesize that AREG induced in bone marrow-derived CD11c(+) cells is essential for pulmonary fibrosis. Thus, the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction, and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c(+) cells. Moreover, depletion of bone marrow-derived CD11c(+) cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c(+) cells from bleomycin-treated donor mice exacerbated pulmonary fibrosis, but not if the donor cells were made AREG deficient prior to transfer. CD11c(+) cell-conditioned media or coculture stimulated fibroblast proliferation, activation, and myofibroblast differentiation in an AREG-dependent manner. Furthermore, recombinant AREG induced telomerase reverse transcriptase, which appeared to be essential for the proliferative effect. Finally, AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c(+) cells promoted bleomycin-induced pulmonary fibrosis by activation of fibroblast telomerase reverse transcriptase-dependent proliferation, motility, and indirectly, myofibroblast differentiation.
Collapse
Affiliation(s)
- Lin Ding
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Taku Nakashima
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Matthew Ullenbruch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | | | - Sem H Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
20
|
Horowitz JC, Osterholzer JJ, Marazioti A, Stathopoulos GT. "Scar-cinoma": viewing the fibrotic lung mesenchymal cell in the context of cancer biology. Eur Respir J 2016; 47:1842-54. [PMID: 27030681 DOI: 10.1183/13993003.01201-2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
Lung cancer and pulmonary fibrosis are common, yet distinct, pathological processes that represent urgent unmet medical needs. Striking clinical and mechanistic parallels exist between these distinct disease entities. The goal of this article is to examine lung fibrosis from the perspective of cancer-associated phenotypic hallmarks, to discuss areas of mechanistic overlap and distinction, and to highlight profibrotic mechanisms that contribute to carcinogenesis. Ultimately, we speculate that such comparisons might identify opportunities to leverage our current understanding of the pathobiology of each disease process in order to advance novel therapeutic approaches for both. We anticipate that such "outside the box" concepts could be translated to a more precise and individualised approach to fibrotic diseases of the lung.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
21
|
García-Palmero I, Torres S, Bartolomé RA, Peláez-García A, Larriba MJ, Lopez-Lucendo M, Peña C, Escudero-Paniagua B, Muñoz A, Casal JI. Twist1-induced activation of human fibroblasts promotes matrix stiffness by upregulating palladin and collagen α1(VI). Oncogene 2016; 35:5224-5236. [PMID: 26973246 DOI: 10.1038/onc.2016.57] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 12/17/2022]
Abstract
The transcription factor Twist1 is involved in the epithelial-mesenchymal transition and contributes to cancer metastasis through mostly unknown mechanisms. In colorectal cancer, Twist1 expression is mainly restricted to the tumor stroma. We found that human fibroblast cell lines stably transfected with Twist1 acquired characteristics of activated cancer-associated fibroblasts (CAFs), such as hyperproliferation, an increased ability to migrate and an alignment of the actin cytoskeleton. Further, Twist1-activated fibroblasts promoted increased matrix stiffness. Using quantitative proteomics, we identified palladin and collagen α1(VI) as two major mediators of the Twist1 effects in fibroblast cell lines. Co-immunoprecipitation studies indicated that palladin and Twist1 interact within the nucleus, suggesting that palladin could act as a transcription regulator. Palladin was found to be more relevant for the cellular biomechanical properties, orientation and polarity, and collagen α1(VI) for the migration and invasion capacity, of Twist1-activated fibroblasts. Both palladin and collagen α1(VI) were observed to be overexpressed in colorectal CAFs and to be associated with poor colorectal cancer patient survival and relapse prediction. Our results demonstrate that Twist1-expressing fibroblasts mimic the properties of CAFs present at the tumor invasive front, which likely explains the prometastatic activities of Twist1. Twist1 appears to require both palladin and collagen α1(VI) as downstream effectors for its prometastatic effects, which could be future therapeutic targets in cancer metastasis.
Collapse
Affiliation(s)
- I García-Palmero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - S Torres
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - R A Bartolomé
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - A Peláez-García
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - M J Larriba
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - M Lopez-Lucendo
- Proteomics Core Facility, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - C Peña
- Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - B Escudero-Paniagua
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - A Muñoz
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - J I Casal
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|