1
|
Yang Y, Lu Y, Zhou Y, Sun H, Ma Y, Tan J, Li N, Li H. Identification and characterization of microRNAs, especially gga-miR-181b-5p, in chicken macrophages associated with avian pathogenic E. coli infection. Avian Pathol 2023; 52:185-198. [PMID: 36803112 DOI: 10.1080/03079457.2023.2181146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
AbstractAvian pathogenic E. coli (APEC) is a common pathogen in the poultry industry, which can cause substantial economic losses. Recently, emerging evidence showed that the miRNAs were involved in various viral and bacterial infection. To elucidate the role of miRNAs in chicken macrophages in response to APEC infection, we attempted to investigate the miRNAs expression pattern upon APEC infection via miRNA-seq, and to identify the molecular mechanism of the important miRNAs by using RT-qPCR, Western blotting, dual-luciferase reporter assay, and CCK-8. Results showed that a total of 80 differentially expressed (DE) miRNAs were identified in the comparison of APEC vs. wild type group, which corresponded to 724 target genes. Moreover, the target genes of the identified DE miRNAs were mainly significantly enriched in MAPK signaling pathway, Autophagy-animal, mTOR signaling pathway, ErbB signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway. Remarkably, gga-miR-181b-5p is capable to participate in host immune and inflammatory response against APEC infection via targeting of TGFBR1 to modulate the activation of TGF-beta signaling pathway. Collectively, this study provides a perspective of miRNA expression pattern in chicken macrophages upon APEC infection. These findings provide the insight into miRNAs against APEC infection and gga-miR-181b-5p might be a potential target for treating APEC infection.
Collapse
Affiliation(s)
- Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuyang Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jishuang Tan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Naying Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, China.,Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou 225009, China
| |
Collapse
|
2
|
Sun H, Ma Y, Yang Y, Sun C, Li H. Genome-wide characterization of circRNA expression profile in overexpression of RIP2 chicken macrophages associated with avian pathogenic E.coli infection. Avian Pathol 2023; 52:62-77. [PMID: 36399118 DOI: 10.1080/03079457.2022.2144132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Avian pathogenic E. coli (APEC) can cause localized and systemic diseases in poultry, threatening human health via meat or egg contamination and resulting in considerable economic losses to the poultry industry globally. Increasing evidence shows circRNAs were widely involved in various biological processes. However, the role of circRNAs in the host response against APEC infection, especially correlated with the regulation of RIP2, remains unclear. Herein, the RNAseq technology was used to identify the circRNA expression profiles in the overexpression of RIP2 macrophages with or without APEC infection. A total of 256 and 287 differentially expressed (DE) circRNAs were identified in the overexpression of RIP2 group (oeRIP2) vs. the wild-type group (WT) and oeRIP2 + APEC vs. APEC, respectively, whose parental genes were involved in MAPK signalling pathway, Wnt signalling pathway, focal adhesion, tight junction, and VEGF signalling pathways. Specifically, the key circRNAs, such as 5:814443-825127, 10:18922360-18928461, 2:8746306-8750639, and 2:124177751-124184063 might play a critical role in APEC infection and the regulation of RIP2. As a whole, these findings will facilitate understanding the molecular mechanism underlying circRNAs, especially related to the regulation of the RIP2 gene. Meanwhile, the study may offer new ideas to improve host immune and inflammatory response against APEC infection.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, People's Republic of China
| | - Yuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Changhua Sun
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, People's Republic of China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
3
|
Sun H, Yang Y, Ma Y, Li N, Tan J, Sun C, Li H. Analysis of circRNA expression in chicken HD11 cells in response to avian pathogenic E.coli. Front Vet Sci 2022; 9:1005899. [PMID: 36187840 PMCID: PMC9521048 DOI: 10.3389/fvets.2022.1005899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic E. coli (APEC), one of the widespread zoonotic-pathogen, can cause a series of diseases collectively known as colibacillosis. This disease can cause thousands of million dollars economic loss each year in poultry industry and threaten to human health via meat or egg contamination. However, the detailed molecular mechanism underlying APEC infection is still not fully understood. Circular RNAs, a new type of endogenous noncoding RNA, have been demonstrated to involve in various biological processes. However, it is still not clear whether the circRNAs participate in host response against APEC infection. Herein, we utilized the high-throughput sequence technology to identify the circRNA expression profiles in APEC infected HD11 cells. A total of 49 differentially expressed (DE) circRNAs were detected in the comparison of APEC infected HD11 cells vs. wild type HD11 cells, which were involved in MAPK signaling pathway, Endocytosis, Focal adhesion, mTOR signaling pathway, and VEGF signaling pathway. Specifically, the source genes (BRAF, PPP3CB, BCL2L13, RAB11A, and TSC2) and their corresponding DE circRNAs may play a significant role in APEC infection. Moreover, based on ceRNA regulation, we constructed the circRNA-miRNA network and identified a couple of important regulatory relationship pairs related to APEC infection, including circRAB11A-gga-miR-125b-3p, circRAB11A-gga-miR-1696, and circTSC2-gga-miR-1649-5p. Results indicate that the aforementioned specific circRNAs and circRNA-miRNA network might have important role in regulating host immune response against APEC infection. This study is the first time to investigate the circRNAs expression profile and the biological function of the source genes of the identified DE circRNAs after APEC infection of chicken HD11 cells. These results would contribute to a better understanding of the molecular mechanisms in host response against APEC infection.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Hongyan Sun
| | - Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nayin Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jishuang Tan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Changhua Sun
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, China
- Huan Li
| |
Collapse
|
4
|
Transcriptomic Analysis of the Spleen of Different Chicken Breeds Revealed the Differential Resistance of Salmonella Typhimurium. Genes (Basel) 2022; 13:genes13050811. [PMID: 35627196 PMCID: PMC9142047 DOI: 10.3390/genes13050811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Salmonella Typhimurium (ST) is a foodborne pathogen that adversely affects the health of both animals and humans. Since poultry is a common source and carrier of the disease, controlling ST infection in chickens will have a protective impact on human health. In the current study, Beijing-You (BY) and Cobb chicks (5-day-old specific-pathogen-free) were orally challenged by 2.4 × 1012 CFU ST, spleen transcriptome was conducted 1 day post-infection (DPI) to identify gene markers and pathways related to the immune system. A total of 775 significant differentially expressed genes (DEGs) in comparisons between BY and Cobb were identified, including 498 upregulated and 277 downregulated genes (fold change ≥2.0, p < 0.05). Several immune response pathways against Salmonella were enriched, including natural killer-cell-mediated-cytotoxicity, cytokine−cytokine receptor interaction, antigen processing and presentation, phagosomes, and intestinal immune network for IgA production, for both BY and Cobb chickens. The BY chicks showed a robust response for clearance of bacterial load, immune response, and robust activation of phagosomes, resulting in ST resistance. These results confirmed that BY breed more resistance to ST challenge and will provide a better understanding of BY and Cobb chickens’ susceptibility and resistance to ST infection at the early stages of host immune response, which could expand the known intricacies of molecular mechanisms in chicken immunological responses against ST. Pathways induced by Salmonella infection may provide a novel approach to developing preventive and curative strategies for ST, and increase inherent resistance in animals through genetic selection.
Collapse
|
5
|
Sun H, Yang Y, Cao Y, Li H, Qu L, Lamont SJ. Gene expression profiling of RIP2-knockdown in HD11 macrophages - elucidation of potential pathways (gene network) when challenged with avian pathogenic E.coli (APEC). BMC Genomics 2022; 23:341. [PMID: 35501708 PMCID: PMC9063279 DOI: 10.1186/s12864-022-08595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Receptor interacting serine/threonine kinase 2 (RIP2), ubiquitous in many tissue/cell types, is the key regulator of immune and inflammatory responses for many diseases, including avian pathogenic E. coli (APEC), which causes a wide variety of localized or systemic infections. However, the molecular mechanisms by which RIP2 drives its transcriptional program to affect immune and inflammatory response upon APEC infection remains poorly understood. RESULTS In this study, RNA-seq and bioinformatics analyses were used to detect gene expression and new direct/indirect RIP2 targets in the treatments of wild type HD11 cells (WT), RIP2 knockdown cells (shRIP2), APEC stimulation cells (APEC), and RIP2 knockdown cells combined with APEC infection (shRIP2 + APEC). The results revealed that a total of 4691 and 2605 differentially expressed genes (DEGs) were screened in shRIP2 + APEC vs. APEC and shRIP2 vs. WT, respectively. Functional annotation analysis showed that apoptosis, MAPK, p53, Toll-like receptor, and Nod-like receptor signaling pathways were involved in APEC-induced RIP2 knockdown HD11 cells. By analyzing the enriched pathway and gene networks, we identified that several DEGs, including HSP90AB1, BID, and CASP9 were targeted by RIP2 upon APEC infection. CONCLUSION As a whole, this study can not only provide data support for constructing gene networks of RIP2 knockdown with APEC challenge but also provide new ideas for improving the immune and inflammatory response.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuxuan Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, 225009, China.
| | - Lujiang Qu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100091, China
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA
| |
Collapse
|
6
|
Dai M, Xie T, Feng M, Zhang X. Endogenous retroviruses transcriptomes in response to four avian pathogenic microorganisms infection in chicken. Genomics 2022; 114:110371. [PMID: 35462029 DOI: 10.1016/j.ygeno.2022.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/20/2022] [Accepted: 04/17/2022] [Indexed: 01/14/2023]
Abstract
The impact of Endogenous retroviruses (ERVs) on chicken disease is not well understood. Here, we systematically identified 436 relatively complete ChERVs from the chicken genome. Subsequently, ChERV transcriptomes were analyzed in chicken after subgroup J avian leukosis virus (ALV-J), avian influenza virus (AIV), Marek's disease virus (MDV) and avian pathogenic Escherichia coli (APEC) infection. We found that about 50%-68% of ChERVs were transcriptionally active in infected and uninfected-samples, although the abundance of most ChERVs is relatively low. Moreover, compared to uninfected-samples, 49, 18, 66 and 17 ChERVs were significantly differentially expressed in ALV-J, AIV, MDV and APEC infected-samples, respectively. These findings may be of significance for understanding the role and function of ChERVs to response the pathogenic microorganism infection.
Collapse
Affiliation(s)
- Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Transcriptional Regulation of RIP2 Gene by NFIB Is Associated with Cellular Immune and Inflammatory Response to APEC Infection. Int J Mol Sci 2022; 23:ijms23073814. [PMID: 35409172 PMCID: PMC8998712 DOI: 10.3390/ijms23073814] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Avian pathogenic E. coli (APEC) can cause localized or systemic infection, resulting in large economic losses per year, and impact health of humans. Previous studies showed that RIP2 (receptor interacting serine/threonine kinase 2) and its signaling pathway played an important role in immune response against APEC infection. In this study, chicken HD11 cells were used as an in vitro model to investigate the function of chicken RIP2 and the transcription factor binding to the RIP2 core promoter region via gene overexpression, RNA interference, RT-qPCR, Western blotting, dual luciferase reporter assay, CHIP-PCR, CCK-8, and flow cytometry assay following APEC stimulation. Results showed that APEC stimulation promoted RIP2 expression and cells apoptosis, and inhibited cells viability. Knockdown of RIP2 significantly improved cell viability and suppressed the apoptosis of APEC-stimulated cells. Transcription factor NFIB (Nuclear factor I B) and GATA1 (globin transcription factor 1) binding site was identified in the core promoter region of RIP2 from −2300 bp to −1839 bp. However, only NFIB was confirmed to be bound to the core promoter of RIP2. Overexpression of NFIB exacerbated cell injuries with significant reduction in cell viability and increased cell apoptosis and inflammatory cytokines levels, whereas opposite results were observed in NFIB inhibition treatment group. Moreover, RIP2 was up-regulated by NFIB overexpression, and RIP2 silence mitigated the effect of NFIB overexpression in cell apoptosis, inflammation, and activation of NFκB signaling pathways. This study demonstrated that NFIB overexpression accelerated APEC-induced apoptosis and inflammation via up-regulation of RIP2 mediated downstream pathways in chicken HD11 cells.
Collapse
|
8
|
Monson MS, Lamont SJ. Genetic resistance to avian pathogenic Escherichia coli (APEC): current status and opportunities. Avian Pathol 2021; 50:392-401. [PMID: 33554653 DOI: 10.1080/03079457.2021.1879990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Infections with avian pathogenic Escherichia coli (APEC) can be extremely detrimental to poultry health and production. Investigating host genetic variation could identify the biological mechanisms that control resistance to this pathogen and allow selection for improved resistance in experimental and commercial poultry populations. In this review, the current knowledge of how host genetics contributes to APEC resistance and future opportunities that would benefit the understanding or application of genetic resistance are discussed. Phenotypes, such as antibody responses, lesion scores, and mortality, revealed that genetic background impacts APEC resistance and interacts with other factors including the environment and challenge conditions. Experiments have used divergent selection for APEC-specific antibody levels to facilitate genetic studies, estimated heritabilities in relevant traits, detected quantitative trait loci using microsatellites, and made associations with sequence variation in the major histocompatibility complex, which collectively suggest that improving APEC resistance through selection is feasible, although genetic control is partial, complex, and highly polygenic. Additionally, functional genomics techniques have identified antimicrobial responses, toll-like receptor and cytokine signalling, and the cell cycle as central pathways in the host response to APEC challenge. Opportunities for future research are discussed, including the expansion of existing lines of research and the application of new technologies that are relevant to the study of host genetics and APEC. This review closes with prospective strategies for improvement of host genetic resistance to APEC.
Collapse
Affiliation(s)
- Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Mao S, Ou X, Wang M, Sun D, Yang Q, Wu Y, Jia R, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Huang J, Gao Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X, Cheng A. Duck hepatitis A virus 1 has lymphoid tissue tropism altering the organic immune responses of mature ducks. Transbound Emerg Dis 2020; 68:3588-3600. [PMID: 33369177 DOI: 10.1111/tbed.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Duck hepatitis A virus 1 (DHAV-1) is a highly prevalent pathogen within adult ducks causing acute as well as chronic hepatitis which closely emulates the progression of human hepatitis. However, the underlying mechanisms of DHAV-1 persistence and the pathogenesis of chronic liver disease are not well defined. The association between hematopoietic reservoirs of virus and persistent infection is increasingly concerning. Here, we explored the ability of lymphoid replication of DHAV-1 and the effect on immunity. We found that DHAV-1 was able to infect and replicate productively in the lymphoid organs of model ducks, persisting over 6 months. Moreover, a significant correlation of viral loads between these organs and blood was found, documenting a major contribution of lymphoid replication to DHAV-1 viraemia. Along with viral replication, the mRNA of PRRs and immune-related cytokines was up-regulated in these organs during the early phase of infection, showing tissue-dependent expression patterns but all inclining towards Th2 responses due to the consistently higher level of IL-4 than IL-2 and IFN-γ. Additionally, the expression of CCL19, CCL21, MHC-I and MHC-II, which are involved in T cell homing to the periphery and priming, was dysmodulated. Our data indicate that DHAV-1 possesses lymphoid tissue tropism, contributing to persistent infection and chronic hepatitis via altering the early endogenous transcription of immune-related genes and thereby perturbing organic immunity. These results may be useful to develop novel strategies to treat chronic viral hepatitis based on stimulation of the early innate system and regulation of T-cell trafficking.
Collapse
Affiliation(s)
- Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
10
|
Das Q, Tang J, Yin X, Ross K, Warriner K, Marcone MF, Diarra MS. Organic cranberry pomace and its ethanolic extractives as feed supplement in broiler: impacts on serum Ig titers, liver and bursal immunity. Poult Sci 2020; 100:517-526. [PMID: 33518104 PMCID: PMC7858021 DOI: 10.1016/j.psj.2020.09.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022] Open
Abstract
With the pressure to reduce antibiotics use in poultry production, cost-effective alternative products need to be developed to enhance the bird's immunity. The present study evaluated the efficacy of cranberry fruit by-products to modulate immunity in broiler chickens. Broiler Cobb 500 chicks were fed a control basal diet, basal diet supplemented with bacitracin (BACI, 55 ppm), cranberry pomace at 1% and 2% (CP2), or cranberry pomace ethanolic extract at 150 and 300 ppm (COH300) for 30 d. Blood sera were analyzed at days 21 and 28 of age for Ig levels by ELISA. The innate and adaptive immune-related gene expression levels in the liver and bursa of Fabricius were investigated at 21 d of age by quantitative polymerase chain reaction arrays. At day 21, the highest IgY level was found in the blood serum of the CP2-fed birds. In the liver, 13 of the 22 differentially expressed genes were downregulated across all treatments compared with the control. Expression of genes belonging to innate immunity such as caspase 1 apoptosis–related cysteine peptidase, chemokine receptor 5, interferon gamma, myeloid differentiation primary response gene 88, and Toll-like receptor 3 were significantly downregulated mainly in BACI- and COH300-fed birds. In the bursa, 5 of 9 genes associated with the innate immunity were differentially expressed. The expression of anti-inflammatory IL-10 gene was upregulated in all treatment groups in bursa compared with the control. The expression of transferrin gene was significantly upregulated in livers of birds fed COH300 and in bursa of birds fed BACI, indicating feeding practices and organ-dependant modulation of this gene in broiler. Overall results of this study showed that cranberry product feed supplementation modulated the innate immune and suppressed proinflammatory cytokines in broilers, providing a platform for future investigations to develop berry products in poultry feeding.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Guelph, Ontario Canada N1G 2W1; Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Joshua Tang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Kelly Ross
- Summerland Research and Development Centre, AAFC, Summerland, British Columbia, Canada V0H 1Z0
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9.
| |
Collapse
|
11
|
Nuthalapati NK, Evans JD, Taylor RL, Branton SL, Nanduri B, Pharr GT. Transcriptomic analysis of early B-cell development in the chicken embryo. Poult Sci 2019; 98:5342-5354. [PMID: 31237340 PMCID: PMC6771548 DOI: 10.3382/ps/pez354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022] Open
Abstract
The chicken bursa of Fabricius is a primary lymphoid tissue important for B-cell development. Our long-term goal is to understand the role of bursal microenvironment in an early B-cell differentiation event initiating repertoire development through immunoglobulin gene conversion in the chick embryo. We hypothesize that early bursal B-cell differentiation is guided by signals through cytokine receptors. Our theory is based on previous evidence for expression of the receptor tyrosine kinase superfamily members and interleukin receptors in unseparated populations of bursal B-cells and bursal tissue. Knowledge of the expressed genes that are responsible for B-cell differentiation is a prerequisite for understanding the bursal microenvironment's function. This project uses transcriptomic analysis to evaluate gene expression across early B-cell development. RNA-seq was performed with total RNA isolated from bursal B-cells at embryonic day (ED) 16 and ED 19 (n = 3). Approximately 90 million high-quality clean reads were obtained from the cDNA libraries. The analysis revealed differentially expressed genes involved in the Jak-STAT pathway, Wnt signaling pathway, MAPK signaling pathway, metabolic pathways including tyrosine metabolism, Toll-like receptor signaling pathway, and cell-adhesion molecules. The genes predicted to encode surface receptors, signal transduction proteins, and transcription factors identified in this study represent gene candidates for controlling B-cell development in response to differentiation factors in the bursal microenvironment.
Collapse
Affiliation(s)
- Nikhil K Nuthalapati
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State MS 39762, Mississippi State
| | - Jeffrey D Evans
- USDA, Agricultural Research Service, Poultry Research Unit, PO Box 5367, Mississippi State University, Starkville, MS 39762-5367
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506
| | - Scott L Branton
- USDA, Agricultural Research Service, Poultry Research Unit, PO Box 5367, Mississippi State University, Starkville, MS 39762-5367
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State MS 39762, Mississippi State
| | - Gregory T Pharr
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State MS 39762, Mississippi State
| |
Collapse
|
12
|
Sun H, Li H. Concordant expression pattern across multiple immune tissues of commercial broilers in response to avian pathogenic Escherichia coli (APEC). 3 Biotech 2019; 9:320. [PMID: 31406642 DOI: 10.1007/s13205-019-1851-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/29/2019] [Indexed: 11/29/2022] Open
Abstract
In this study, RNA-seq gene expression data were obtained for three different immune tissues (bone marrow, thymus, and bursa) at two time points from birds with three phenotypes (non-infected, resistant, and susceptible birds). A total of 380 significant differentially expressed genes (DEGs) were commonly expressed in each of the three tissues in the contrast of susceptible vs. non-infected birds at 5 days post-infection (dpi) and 106 significant DEGs were shared in susceptible vs. resistant birds at 5 dpi. For the co-expressed DEGs, a relatively high consistency in expression pattern was identified in the three tissues for the two contrasts. These co-expressed DEGs were involved in the biological process of response to stimulus, regulation of cell proliferation, signal transduction, and immune system. Moreover, three gene networks were identified for the co-expressed DEGs, showing the activation of the humoral immune response, cell survival, growth and death were the concordant response for the three lymphocyte tissues. Several potential biomarker genes, HPGD, PROX1, FOSL2, E2F1, and ANP32A were found, which may have critical functions in resistant birds to resist APEC infection. Taken together, this study provides a novel insight that may elucidate the molecular mechanisms underlying host response to systemic APEC infection, as well as enhances the probability of advancement in biomedical research.
Collapse
Affiliation(s)
- Hongyan Sun
- 1College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Huan Li
- FAMSUN Co., Ltd., National Feed Processing Equipment Engineering Technology Research Center, Yangzhou, China
| |
Collapse
|
13
|
RNA-seq profiles of chicken type II pneumocyte in response to Escherichia coli infection. PLoS One 2019; 14:e0217438. [PMID: 31166969 PMCID: PMC6550405 DOI: 10.1371/journal.pone.0217438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes great economic loss to the poultry industry worldwide. Chicken type II pneumocytes (CP II cells) secrete surfactants and modulate lung immunity to decrease the infection of the invading pathogen. Nevertheless, the pathogenesis of CP II cells to APEC infection remains poorly understood. Therefore, we conducted global gene expression profiling of CP II cells after APEC-O78 infection to explore the host-pathogen interaction. The differentially expressed genes of CP II cells to APEC infection were characterized by RNA-seq with EB-seq algorithm. In consequence, the mRNA of 18996 genes was identified, and CP II cells responded to APEC infection with marked changes in the expression of 1390 genes. Among them, there are 803 down-regulated mRNAs and 587 up-regulated mRNAs. The KEGG prediction and Gene Ontology terms analysis revealed that the major enriched pathways were related to NF-κB signaling pathway, apoptosis pathway, tight junction, and cytokine-cytokine receptor interaction and other pathways. We adopted qRT-PCR to verify the validity of the selected gene expression. The fold induction of qPCR was similar to the RNA-seq results. These results provide a better understanding of the pathogenesis of APEC, especially apoptosis pathway involved in APEC infection.
Collapse
|
14
|
Burkhardt NB, Röll S, Staudt A, Elleder D, Härtle S, Costa T, Alber A, Stevens MP, Vervelde L, Schusser B, Kaspers B. The Long Pentraxin PTX3 Is of Major Importance Among Acute Phase Proteins in Chickens. Front Immunol 2019; 10:124. [PMID: 30774632 PMCID: PMC6367253 DOI: 10.3389/fimmu.2019.00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
The expression level of acute phase proteins (APPs) mirrors the health status of an individual. In human medicine, C-reactive protein (CRP), and other members of the pentraxin family are of significant relevance for assessing disease severity and prognosis. In chickens, however, which represent the most common livestock species around the world, no such marker has yet gained general acceptance. The aim of this study was therefore, to characterize chicken pentraxin 3 (chPTX3) and to evaluate its applicability as a general marker for inflammatory conditions. The mammalian and chicken PTX3 proteins were predicted to be similar in sequence, domain organization and polymeric structure. Nevertheless, some characteristics like certain sequence sections, which have varied during the evolution of mammals, and species-specific glycosylation patterns, suggest distinct biological functions. ChPTX3 is constitutively expressed in various tissues but, interestingly, could not be found in splenic tissue samples without stimulation. However, upon treatment with lipopolysaccharide (LPS), PTX3 expression in chicken spleens increased to 95-fold within hours. A search for PTX3 reads in various publicly available RNA-seq data sets of chicken spleen and bursa of Fabricius also showed that PTX3 expression increases within days after experimental infection with viral and bacterial pathogens. An experimental infection with avian pathogenic E.coli and qPCR analysis of spleen samples further established a challenge dose-dependent significant up-regulation of chPTX3 in subclinically infected birds of up to over 150-fold as compared to untreated controls. Our results indicate the potential of chPTX3 as an APP marker to monitor inflammatory conditions in poultry flocks.
Collapse
Affiliation(s)
- Nina B. Burkhardt
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Susanne Röll
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Anke Staudt
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Daniel Elleder
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Sonja Härtle
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Taiana Costa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Alber
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Schusser
- Reproductive Biotechnology, Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| | - Bernd Kaspers
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
15
|
Alber A, Costa T, Chintoan-Uta C, Bryson KJ, Kaiser P, Stevens MP, Vervelde L. Dose-dependent differential resistance of inbred chicken lines to avian pathogenic Escherichia coli challenge. Avian Pathol 2019; 48:157-167. [PMID: 30570345 DOI: 10.1080/03079457.2018.1562154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Avian pathogenic E. coli (APEC) cause severe respiratory and systemic disease. To address the genetic and immunological basis of resistance, inbred chicken lines were used to establish a model of differential resistance to APEC, using strain O1 of serotype O1:K1:H7. Inbred lines 72, 15I and C.B12 and the outbred line Novogen Brown were inoculated via the airsac with a high dose (107 colony-forming units, CFU) or low dose (105 CFU) of APEC O1. Clinical signs, colibacillosis lesion score and bacterial colonization of tissues after high dose challenge were significantly higher in line 15I and C.B12 birds. The majority of the 15I and C.B12 birds succumbed to the infection by 14 h post-infection, whilst none of the line 72 and the Novogen Brown birds developed clinical signs. No difference was observed after low dose challenge. In a repeat study, inbred lines 72 and 15I were inoculated with low, intermediate or high doses of APEC O1 ranging from 105 to 107 CFU. The colonization of lung was highest in line 15I after high dose challenge and birds developed clinical signs; however, colonization of blood and spleen, clinical signs and lesion score were not different between lines. No difference was observed after intermediate or low dose challenge. Ex vivo, the phagocytic and bactericidal activity of lung leukocytes from line 72 and 15I birds did not differ. Our data suggest that although differential resistance of inbred lines 72, 15I and C.B12 to APEC O1 challenge is apparent, it is dependent on the infectious dose. Research Highlights Lines 15I and C.B12 are more susceptible than line 72 to a high dose of APEC O1. Differential resistance is dose-dependent in lines 15I and 72. Phagocytic and bactericidal activity is similar and dose independent.
Collapse
Affiliation(s)
- Andreas Alber
- a Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh, United Kingdom
| | - Taiana Costa
- a Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh, United Kingdom
| | - Cosmin Chintoan-Uta
- a Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh, United Kingdom
| | - Karen J Bryson
- a Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh, United Kingdom
| | - Pete Kaiser
- a Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh, United Kingdom
| | - Mark P Stevens
- a Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh, United Kingdom
| | - Lonneke Vervelde
- a Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
16
|
Shultz AJ, Sackton TB. Immune genes are hotspots of shared positive selection across birds and mammals. eLife 2019; 8:e41815. [PMID: 30620335 PMCID: PMC6338464 DOI: 10.7554/elife.41815] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Consistent patterns of positive selection in functionally similar genes can suggest a common selective pressure across a group of species. We use alignments of orthologous protein-coding genes from 39 species of birds to estimate parameters related to positive selection for 11,000 genes conserved across birds. We show that functional pathways related to the immune system, recombination, lipid metabolism, and phototransduction are enriched for positively selected genes. By comparing our results with mammalian data, we find a significant enrichment for positively selected genes shared between taxa, and that these shared selected genes are enriched for viral immune pathways. Using pathogen-challenge transcriptome data, we show that genes up-regulated in response to pathogens are also enriched for positively selected genes. Together, our results suggest that pathogens, particularly viruses, consistently target the same genes across divergent clades, and that these genes are hotspots of host-pathogen conflict over deep evolutionary time.
Collapse
Affiliation(s)
- Allison J Shultz
- Informatics GroupHarvard UniversityCambridgeUnited States
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUnited States
- Museum of Comparative ZoologyHarvard UniversityCambridgeUnited States
| | | |
Collapse
|
17
|
Li P, Fan W, Everaert N, Liu R, Li Q, Zheng M, Cui H, Zhao G, Wen J. Messenger RNA Sequencing and Pathway Analysis Provide Novel Insights Into the Susceptibility to Salmonella enteritidis Infection in Chickens. Front Genet 2018; 9:256. [PMID: 30061915 PMCID: PMC6055056 DOI: 10.3389/fgene.2018.00256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
Salmonella enteritidis (SE) is a foodborne pathogen that negatively affects both animal and human health. Controlling poultry SE infection will have great practical significance for human public health, as poultry are considered to be important sources and carriers of the disease. In this study, the splenic transcriptomes of challenged-susceptible (S), challenged-resistant (R) and non-challenged (C) chicks (3-days old, specific-pathogen-free White Leghorn) were characterized in order to identify the immune-related gene markers and pathways. A total of 934 significant differentially expressed genes (DEGs) were identified in comparisons among the C, R and S birds. First reported here, the DEGs involved in the Forkhead box O (FoxO) signaling pathway, especially FoxO3, were identified as potential markers for host resistance to SE infection. The challenged-susceptible birds exhibited strong activation of the FoxO signaling pathway, which may be a major defect causing immune cell apoptosis as part of SE-induced pathology; these S birds also showed weak activation of mitogen-activated protein kinase (MAPK)-related genes, contrasting with strong splenic activation in the R birds. Interestingly, suppression of several pathways in the immune response against Salmonella, including cytokine-cytokine receptor interaction and Jak-STAT, was only found in S birds and there was evidence of cross-talk among these pathways, perhaps contributing to susceptibility to Salmonella infection. These findings will help facilitate understanding resistance and susceptibility to SE infection in the earliest phases of the host immune response through Salmonella-induced pathways, provide new approaches to develop strategies for SE prevention and treatment, and may enhance innate resistance by genetic selection in animals.
Collapse
Affiliation(s)
- Peng Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Wenlei Fan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Ranran Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghe Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maiqing Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huanxian Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Wen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| |
Collapse
|
18
|
Deist MS, Lamont SJ. What Makes the Harderian Gland Transcriptome Different From Other Chicken Immune Tissues? A Gene Expression Comparative Analysis. Front Physiol 2018; 9:492. [PMID: 29867543 PMCID: PMC5952037 DOI: 10.3389/fphys.2018.00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
The Harderian gland is a sparsely characterized immune tissue known to play an important role in local immunity. The function of the Harderian gland, however, is not clearly defined. Measuring the expression of all genes using RNA-seq enables the identification of genes, pathways, or networks of interest. Our relative RNA-seq expression analysis compared the chicken Harderian gland transcriptome to other important primary and secondary immune tissues including the bursa of Fabricius, thymus, and spleen of non-challenged birds. A total of 2,386 transcripts were identified as highly expressed in the Harderian gland. Gene set enrichment showed the importance of G-protein coupled receptor signaling and several immune pathways. Among the genes highly expressed in the Harderian gland were 48 miRNAs, a category of genetic elements involved in regulation of gene expression. Several identified miRNAs have immune related functions. This analysis gives insight to the unique immune processes inherent in the Harderian gland.
Collapse
Affiliation(s)
- Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
19
|
Sun H. Deciphering alternative splicing and nonsense-mediated decay modulate expression in primary lymphoid tissues of birds infected with avian pathogenic E. coli (APEC). BMC Genet 2017; 18:21. [PMID: 28270101 PMCID: PMC5341183 DOI: 10.1186/s12863-017-0488-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Background Avian pathogenic E. coli (APEC) can lead to a loss in millions of dollars in poultry annually because of mortality and produce contamination. Studies have verified that many immune-related genes undergo changes in alternative splicing (AS), along with nonsense mediated decay (NMD), to regulate the immune system under different conditions. Therefore, the splicing profiles of primary lymphoid tissues with systemic APEC infection need to be comprehensively examined. Results Gene expression in RNAseq data were obtained for three different immune tissues (bone marrow, thymus, and bursa) from three phenotype birds (non-challenged, resistant, and susceptible birds) at two time points. Alternative 5′ splice sites and exon skipping/inclusion were identified as the major alternative splicing events in avian primary immune organs under systemic APEC infection. In this study, we detected hundreds of differentially-expressed-transcript-containing genes (DETs) between different phenotype birds at 5 days post-infection (dpi). DETs, PSAP and STT3A, with NMD have important functions under systemic APEC infection. DETs, CDC45, CDK1, RAG2, POLR1B, PSAP, and DNASE1L3, from the same transcription start sites (TSS) indicate that cell death, cell cycle, cellular function, and maintenance were predominant in host under systemic APEC. Conclusions With the use of RNAseq technology and bioinformatics tools, this study provides a portrait of the AS event and NMD in primary lymphoid tissues, which play critical roles in host homeostasis under systemic APEC infection. According to this study, AS plays a pivotal regulatory role in the immune response in chicken under systemic APEC infection via either NMD or alternative TSSs. This study elucidates the regulatory role of AS for the immune complex under systemic APEC infection. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0488-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
20
|
Novel MicroRNA Involved in Host Response to Avian Pathogenic Escherichia coli Identified by Deep Sequencing and Integration Analysis. Infect Immun 2016; 85:IAI.00688-16. [PMID: 27795362 PMCID: PMC5203650 DOI: 10.1128/iai.00688-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/07/2016] [Indexed: 01/22/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes one of the most common bacterial diseases of poultry worldwide. Effective control methods are therefore desirable and will be facilitated by a better understanding of the host response to the pathogen. Currently, microRNAs (miRNAs) involved in host resistance to APEC are unknown. Here, we applied RNA sequencing to explore the changed miRNAs and deregulated genes in the spleen of three groups of broilers: nonchallenged (NC), APEC-challenged with mild pathology (CM), and APEC-challenged with severe pathology (CS). Twenty-seven differentially expressed miRNAs (fold change >1.5; P value <0.01) were identified, including 13 miRNAs between the NC and CM, 17 between the NC and CS, and 14 between the CM and CS groups. Through functional analysis of these miRNA targets, 12 immune-related biological processes were found to be significantly enriched. Based on combined analyses of differentially expressed miRNAs and mRNAs within each of the three groups, 43 miRNA-mRNA pairs displayed significantly negative correlations (r < −0.8). Notably, gga-miR-429 was greatly increased in the CS group compared to levels in both the CM and NC groups. In vitro, gga-miR-429 directly repressed luciferase reporter gene activity via binding to 3′ untranslated regions of TMEFF2, NTRK2, and SHISA2. Overexpression of gga-miR-429 in the HD11 macrophage cell line significantly inhibited TMEFF2 and SHISA2 expression, which are involved in the lipopolysaccharide-induced platelet-derived growth factor (PDGF) and Wnt signaling pathways. In summary, we provide the first report characterizing the miRNA changes during APEC infection, which may help to shed light on the roles of these recently identified genetic elements in the mechanisms of host resistance and susceptibility to APEC.
Collapse
|
21
|
Sun H, Liu P, Nolan LK, Lamont SJ. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection. Poult Sci 2016; 95:2803-2814. [PMID: 27466434 PMCID: PMC5144662 DOI: 10.3382/ps/pew202] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/03/2016] [Accepted: 05/05/2016] [Indexed: 01/05/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus.
Collapse
Affiliation(s)
- H Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China, 225009.,Department of Animal Science, Iowa State University, Ames 50011
| | - P Liu
- Department of Statistics, Iowa State University, Ames 50011
| | - L K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames 50011
| | - S J Lamont
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
22
|
Mehaisen GMK, Eshak MG, El Sabry MI, Abass AO. Expression of Inflammatory and Cell Death Program Genes and Comet DNA Damage Assay Induced by Escherichia coli in Layer Hens. PLoS One 2016; 11:e0158314. [PMID: 27347679 PMCID: PMC4922552 DOI: 10.1371/journal.pone.0158314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/14/2016] [Indexed: 11/21/2022] Open
Abstract
Modern methods of industrial poultry and egg production systems involve stressful practices that stimulate Escherichia coli (E. coli) activity causing endotoxic shock. This investigation was conducted to evaluate the expression of pro-inflammatory cytokines and cell death program genes and DNA damage induced by E. coli in the brain and liver tissues of laying hens. A total of two hundred and ten H&N brown layer hens with 20 week age, were used in this research. First, preliminary experiments were designed (60 hens in total) to establish the optimal exposure dose of E. coli and to determine the nearest time of notable response to be used in the remainder studies of this research. At 35-wk of age, 150 hens were randomly assigned into 2 groups with 3 replicates of 25 birds each; the first group was injected in the brachial wing vein with 107E. coli colony/hen, while the second group was injected with saline and served as a control. The body temperature and plasma corticosterone concentration were measured 3 hr after injection. Specimens of liver and brain were obtained from each group and the gene expression of p38 mitogen-activated protein kinase, interlukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), Bax, and caspase-3 genes were measured by quantitative real-time PCR. DNA damage in the brain and liver tissues were also measured by comet assay. Hens treated with E. coli showed significant (P<0.05) increase of body temperature and plasma corticosterone (42.6°C and 14.5 ng/ml, respectively) compared to the control group (41.1°C and 5.5 ng/ml, respectively). Additional remarkable over-inflammation gene expression of p38, IL-1β and TNF-α.genes were also detected in the brain (2.2-fold, 2.0-fold and 3.3-fold, respectively) and the liver (2.1-fold, 1.9-fold and 3.0-fold, respectively) tissues of the infected chickens. It is also important to note that hens injected with E. coli showed an increase in DNA damage in the brain and liver cells (P<0.05). These results were synchronized with activating cell death program since our data showed significant high expression of Bax gene by 2.8- and 2.7-fold and caspase-3 gene by 2.5- and 2.7-fold in the brain and liver tissues of infected chickens, respectively (P<0.05). In conclusion, the current study indicates that E. coli injection induces inflammatory physiological response and triggers cell death program in the brain and liver. Our results provide more understanding to endotoxic shock by E. coli in chickens at cellular level. Further studies are required to confirm if such responses are destructive or protective to set the means through which a chicken mounts a successful defense against avian pathogenic E. coli.
Collapse
Affiliation(s)
- Gamal M. K. Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- * E-mail:
| | - Mariam G. Eshak
- Department of Cell Biology, National Research Centre, Giza, Egypt
| | - M. I. El Sabry
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed O. Abass
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|