1
|
Kadian LK, Arora M, Prasad CP, Pramanik R, Chauhan SS. Signaling pathways and their potential therapeutic utility in esophageal squamous cell carcinoma. Clin Transl Oncol 2022; 24:1014-1032. [PMID: 34990001 DOI: 10.1007/s12094-021-02763-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Esophageal cancer is a complex gastrointestinal malignancy with an extremely poor outcome. Approximately 80% of cases of this malignancy in Asian countries including India are of squamous cell origin, termed Esophageal Squamous Cell Carcinoma (ESCC).The five-year survival rate in ESCC patients is less than 20%. Neo-adjuvant chemo-radiotherapy (NACRT) followed by surgical resection remains the major therapeutic strategy for patients with operable ESCC. However, resistance to NACRT and local recurrence after initial treatment are the leading cause of dismal outcomes in these patients. Therefore, an alternative strategy to promote response to the therapy and reduce the post-operative disease recurrence is highly needed. At the molecular level, wide variations have been observed in tumor characteristics among different populations, nevertheless, several common molecular features have been identified which orchestrate disease progression and clinical outcome in the malignancy. Therefore, determination of candidate molecular pathways for targeted therapy remains the mainstream idea of focus in ESCC research. In this review, we have discussed the key signaling pathways associated with ESCC, i.e., Notch, Wnt, and Nrf2 pathways, and their crosstalk during disease progression. We further discuss the recent developments of novel agents to target these pathways in the context of targeted cancer therapy. In-depth research of the signaling pathways, gene signatures, and a combinatorial approach may help in discovering targeted therapy for ESCC.
Collapse
Affiliation(s)
- L K Kadian
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - M Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - C P Prasad
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - R Pramanik
- Department of Medical Oncology, Dr. B. R. Ambedkar-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - S S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
2
|
Aramini B, Masciale V, Grisendi G, Bertolini F, Maur M, Guaitoli G, Chrystel I, Morandi U, Stella F, Dominici M, Haider KH. Dissecting Tumor Growth: The Role of Cancer Stem Cells in Drug Resistance and Recurrence. Cancers (Basel) 2022; 14:cancers14040976. [PMID: 35205721 PMCID: PMC8869911 DOI: 10.3390/cancers14040976] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Cancer is one of the most debated problems all over the world. Cancer stem cells are considered responsible of tumor initiation, metastasis, drug resistance, and recurrence. This subpopulation of cells has been found into the tumor bulk and showed the capacity to self-renew, differentiate, up to generate a new tumor. In the last decades, several studies have been set on the molecular mechanisms behind their specific characteristics as the Wnt/β-catenin signaling, Notch signaling, Hedgehog signaling, transcription factors, etc. The most powerful part of CSCs is represented by the niches as “promoter” of their self-renewal and “protector” from the common oncological treatment as chemotherapy and radiotherapy. In our review article we highlighted the primary mechanisms involved in CSC tumorigenesis for the setting of further targets to control the metastatic process. Abstract Emerging evidence suggests that a small subpopulation of cancer stem cells (CSCs) is responsible for initiation, progression, and metastasis cascade in tumors. CSCs share characteristics with normal stem cells, i.e., self-renewal and differentiation potential, suggesting that they can drive cancer progression. Consequently, targeting CSCs to prevent tumor growth or regrowth might offer a chance to lead the fight against cancer. CSCs create their niche, a specific area within tissue with a unique microenvironment that sustains their vital functions. Interactions between CSCs and their niches play a critical role in regulating CSCs’ self-renewal and tumorigenesis. Differences observed in the frequency of CSCs, due to the phenotypic plasticity of many cancer cells, remain a challenge in cancer therapeutics, since CSCs can modulate their transcriptional activities into a more stem-like state to protect themselves from destruction. This plasticity represents an essential step for future therapeutic approaches. Regarding self-renewal, CSCs are modulated by the same molecular pathways found in normal stem cells, such as Wnt/β-catenin signaling, Notch signaling, and Hedgehog signaling. Another key characteristic of CSCs is their resistance to standard chemotherapy and radiotherapy treatments, due to their capacity to rest in a quiescent state. This review will analyze the primary mechanisms involved in CSC tumorigenesis, with particular attention to the roles of CSCs in tumor progression in benign and malignant diseases; and will examine future perspectives on the identification of new markers to better control tumorigenesis, as well as dissecting the metastasis process.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental Diagnostic and Specialty Medicine–DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy;
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (V.M.); (U.M.)
- Correspondence:
| | - Valentina Masciale
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (V.M.); (U.M.)
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Federica Bertolini
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Michela Maur
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Giorgia Guaitoli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Isca Chrystel
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Uliano Morandi
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (V.M.); (U.M.)
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental Diagnostic and Specialty Medicine–DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy;
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | | |
Collapse
|
3
|
SLUG and Truncated TAL1 Reduce Glioblastoma Stem Cell Growth Downstream of Notch1 and Define Distinct Vascular Subpopulations in Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13215393. [PMID: 34771555 PMCID: PMC8582547 DOI: 10.3390/cancers13215393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is the most aggressive form of brain tumor and is still incurable. These neoplasms are particularly difficult to treat efficiently because of their highly heterogeneous and resistant characteristics. Advances in genomics have highlighted the complex molecular landscape of these tumors and the need to further develop effective and targeted therapies for each patient. A specific population of cells with enriched stem cell properties within tumors, i.e., glioblastoma stem cells (GSC), drives this cellular heterogeneity and therapeutical resistance, and thus constitutes an attractive target for the design of innovative treatments. However, the signals driving the maintenance and resistance of these cells are still unclear. We provide new findings regarding the expression of two transcription factors in these cells and directly in glioblastoma patient samples. We show that these proteins downregulate GSC growth and ultimately participate in the progression of gliomas. The forthcoming results will contribute to a better understanding of gliomagenesis. Abstract Glioblastomas (GBM) are high-grade brain tumors, containing cells with distinct phenotypes and tumorigenic potentials, notably aggressive and treatment-resistant multipotent glioblastoma stem cells (GSC). The molecular mechanisms controlling GSC plasticity and growth have only partly been elucidated. Contact with endothelial cells and the Notch1 pathway control GSC proliferation and fate. We used three GSC cultures and glioma resections to examine the expression, regulation, and role of two transcription factors, SLUG (SNAI2) and TAL1 (SCL), involved in epithelial to mesenchymal transition (EMT), hematopoiesis, vascular identity, and treatment resistance in various cancers. In vitro, SLUG and a truncated isoform of TAL1 (TAL1-PP22) were strongly upregulated upon Notch1 activation in GSC, together with LMO2, a known cofactor of TAL1, which formed a complex with truncated TAL1. SLUG was also upregulated by TGF-β1 treatment and by co-culture with endothelial cells. In patient samples, the full-length isoform TAL1-PP42 was expressed in all glioma grades. In contrast, SLUG and truncated TAL1 were preferentially overexpressed in GBMs. SLUG and TAL1 are expressed in the tumor microenvironment by perivascular and endothelial cells, respectively, and to a minor extent, by a fraction of epidermal growth factor receptor (EGFR) -amplified GBM cells. Mechanistically, both SLUG and truncated TAL1 reduced GSC growth after their respective overexpression. Collectively, this study provides new evidence for the role of SLUG and TAL1 in regulating GSC plasticity and growth.
Collapse
|
4
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
5
|
Zhao Y, Huang H, Jia CH, Fan K, Xie T, Zhu ZY, Xie ML. Apigenin increases radiosensitivity of glioma stem cells by attenuating HIF-1α-mediated glycolysis. Med Oncol 2021; 38:131. [PMID: 34554338 DOI: 10.1007/s12032-021-01586-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Apigenin, a natural flavonoid compound present in a variety of edible plants and health foods, has an anti-tumor effect and inhibits hypoxia inducible factor-lα (HIF-1α) expression in hypertrophic cardiac tissues. However, whether or not apigenin has a radiosensitization effect on glioma stem cells (GSCs) is unknown. Our present study aimed to investigate the effect of apigenin and its possible mechanisms. The human GSCs SU3 and its radioresistance line SU3-5R were treated with apigenin, radiation, or their combination, and the cell proliferation, migration, colony formation, and intracellular lactic acid and glycolytic related protein expressions were determined. Additionally, a cell model with hypoxia-induced HIF-1α expression was used and treated with apigenin. The current results displayed that the combination of apigenin and radiation could synergically reduce the viability, colony formation, and migration of the both GSCs. Moreover, this combination could also decrease the radiation-induced increments of glycolytic production lactic acid in the both GSCs and related protein expressions, including HIF-1α, glucose transporter (GLUT)-1/3, nuclear factor kappa B (NF-κB) p65, and pyruvate kinase isozyme type M2 (PKM2). Further study confirmed that after treatment of hypoxia-cultured SU3 or SU3-5R cells with apigenin, the expression levels of HIF-1α, GLUT-1/3, NF-κB p65, and PKM2 proteins were reduced. These results demonstrated that apigenin could increase the radiosensitivity of GSCs and its radiosensitization mechanisms were attributable to the attenuation of glycolysis, which might result from the inhibition of HIF-1α expression and subsequent reductions of GLUT-1/3, NF-κB, and PKM2 expressions.
Collapse
Affiliation(s)
- Ying Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hui Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chang-Hao Jia
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ke Fan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Tao Xie
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Zeng-Yan Zhu
- Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mei-Lin Xie
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Unlocking the Secrets of Cancer Stem Cells with γ-Secretase Inhibitors: A Novel Anticancer Strategy. Molecules 2021; 26:molecules26040972. [PMID: 33673088 PMCID: PMC7917912 DOI: 10.3390/molecules26040972] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
The dysregulation of Notch signaling is associated with a wide variety of different human cancers. Notch signaling activation mostly relies on the activity of the γ-secretase enzyme that cleaves the Notch receptors and releases the active intracellular domain. It is well-documented that γ-secretase inhibitors (GSIs) block the Notch activity, mainly by inhibiting the oncogenic activity of this pathway. To date, several GSIs have been introduced clinically for the treatment of various diseases, such as Alzheimer's disease and various cancers, and their impacts on Notch inhibition have been found to be promising. Therefore, GSIs are of great interest for cancer therapy. The objective of this review is to provide a systematic review of in vitro and in vivo studies for investigating the effect of GSIs on various cancer stem cells (CSCs), mainly by modulation of the Notch signaling pathway. Various scholarly electronic databases were searched and relevant studies published in the English language were collected up to February 2020. Herein, we conclude that GSIs can be potential candidates for CSC-targeting therapy. The outcome of our study also indicates that GSIs in combination with anticancer drugs have a greater inhibitory effect on CSCs.
Collapse
|
7
|
Wijaya DA, Louisa M, Wibowo H, Taslim A, Permata TBM, Handoko H, Nuryadi E, Kodrat H, Gondhowiardjo SA. The future potential of Annona muricata L. extract and its bioactive compounds as radiation sensitizing agent: proposed mechanisms based on a systematic review. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite technological advances in cancer treatment, especially in radiotherapy, many efforts are being made in improving cancer cell radio-sensitivity to increase therapeutic ratio and overcome cancer cell radio-resistance. In the present review, we evaluated the anticancer mechanism of Annona muricata L. (AM) leaves extract and its bioactive compounds such as annonaceous acetogenins, annomuricin, annonacin, or curcumin; and further correlated them with the potential of the mechanism to increase or to reduce cancer cells radio-sensitivity based on literature investigation. We see that AM has a promising future potential as a radio-sensitizer agent.
Collapse
Affiliation(s)
- David Andi Wijaya
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Heri Wibowo
- Laboratorium Terpadu, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Aslim Taslim
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Handoko Handoko
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Endang Nuryadi
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Henry Kodrat
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Soehartati Argadikoesoema Gondhowiardjo
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| |
Collapse
|
8
|
Moore G, Annett S, McClements L, Robson T. Top Notch Targeting Strategies in Cancer: A Detailed Overview of Recent Insights and Current Perspectives. Cells 2020; 9:cells9061503. [PMID: 32575680 PMCID: PMC7349363 DOI: 10.3390/cells9061503] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Evolutionarily conserved Notch plays a critical role in embryonic development and cellular self-renewal. It has both tumour suppressor and oncogenic activity, the latter of which is widely described. Notch-activating mutations are associated with haematological malignancies and several solid tumours including breast, lung and adenoid cystic carcinoma. Moreover, upregulation of Notch receptors and ligands and aberrant Notch signalling is frequently observed in cancer. It is involved in cancer hallmarks including proliferation, survival, migration, angiogenesis, cancer stem cell renewal, metastasis and drug resistance. It is a key component of cell-to-cell interactions between cancer cells and cells of the tumour microenvironment, such as endothelial cells, immune cells and fibroblasts. Notch displays diverse crosstalk with many other oncogenic signalling pathways, and may drive acquired resistance to targeted therapies as well as resistance to standard chemo/radiation therapy. The past 10 years have seen the emergence of different classes of drugs therapeutically targeting Notch including receptor/ligand antibodies, gamma secretase inhibitors (GSI) and most recently, the development of Notch transcription complex inhibitors. It is an exciting time for Notch research with over 70 cancer clinical trials registered and the first-ever Phase III trial of a Notch GSI, nirogacestat, currently at the recruitment stage.
Collapse
Affiliation(s)
- Gillian Moore
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons, D02 YN77 Dublin, Ireland; (G.M.); (S.A.)
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons, D02 YN77 Dublin, Ireland; (G.M.); (S.A.)
| | - Lana McClements
- The School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons, D02 YN77 Dublin, Ireland; (G.M.); (S.A.)
- Correspondence:
| |
Collapse
|
9
|
Knockdown of Musashi RNA Binding Proteins Decreases Radioresistance but Enhances Cell Motility and Invasion in Triple-Negative Breast Cancer. Int J Mol Sci 2020; 21:ijms21062169. [PMID: 32245259 PMCID: PMC7139790 DOI: 10.3390/ijms21062169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022] Open
Abstract
The therapeutic potential of Musashi (MSI) RNA-binding proteins, important stemness-associated gene expression regulators, remains insufficiently understood in breast cancer. This study identifies the interplay between MSI protein expression, stem cell characteristics, radioresistance, cell invasiveness and migration. MSI-1, MSI-2 and Notch pathway elements were investigated via quantitative polymerase chain reaction (qPCR) in 19 triple-negative breast cancer samples. Measurements were repeated in MDA-MB-231 cells after MSI-1 and -2 siRNA-mediated double knockdown, with further experiments performed after MSI silencing. Flow cytometry helped quantify expression of CD44 and leukemia inhibitory factor receptor (LIFR), changes in apoptosis and cell cycle progression. Proliferation and irradiation-induced effects were assessed using colony formation assays. Radiation-related proteins were investigated via Western blots. Finally, cell invasion assays and digital holographic microscopy for cell migration were performed. MSI proteins showed strong correlations with Notch pathway elements. MSI knockdown resulted in reduction of stem cell marker expression, cell cycle progression and proliferation, while increasing apoptosis. Cells were radiosensitized as radioresistance-conferring proteins were downregulated. However, MSI-silencing-mediated LIFR downregulation resulted in enhanced cell invasion and migration. We conclude that, while MSI knockdown results in several therapeutically desirable consequences, enhanced invasion and migration need to be counteracted before knockdown advantages can be fully exploited.
Collapse
|
10
|
Arnold CR, Mangesius J, Skvortsova II, Ganswindt U. The Role of Cancer Stem Cells in Radiation Resistance. Front Oncol 2020; 10:164. [PMID: 32154167 PMCID: PMC7044409 DOI: 10.3389/fonc.2020.00164] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) are a distinct subpopulation within a tumor. They are able to self-renew and differentiate and possess a high capability to repair DNA damage, exhibit low levels of reactive oxygen species (ROS), and proliferate slowly. These features render CSC resistant to various therapies, including radiation therapy (RT). Eradication of all CSC is a requirement for an effective antineoplastic treatment and is therefore of utmost importance for the patient. This makes CSC the prime targets for any therapeutic approach. Albeit clinical data is still scarce, experimental data and first clinical trials give hope that CSC-targeted treatment has the potential to improve antineoplastic therapies, especially for tumors that are known to be treatment resistant, such as glioblastoma. In this review, we will discuss CSC in the context of RT, describe known mechanisms of resistance, examine the possibilities of CSC as biomarkers, and discuss possible new treatment approaches.
Collapse
Affiliation(s)
- Christoph Reinhold Arnold
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julian Mangesius
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.,EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ute Ganswindt
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Jeon SH, Chie EK, Kim YJ, Lee KH, Lee HS, Kim MJ, Im SA, Kim JI, Kim TY. Targeted next-generation DNA sequencing identifies Notch signaling pathway mutation as a predictor of radiation response. Int J Radiat Biol 2019; 95:1640-1647. [PMID: 31525117 DOI: 10.1080/09553002.2019.1665212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Purpose: Identifying the association between somatic mutations and the radiation response of tumor is essential for understanding the mechanisms and practicing personalized radiotherapy. The present study aimed to discover specific genes or pathways that are associated with radiation response using targeted next-generation DNA sequencing.Material and methods: Fifty-five patients with various solid tumors whose specimen were sequenced using institutional panel which includes 148 cancer-related genes and received radiotherapy for a measurable tumor were analyzed. Patients with irradiated tumors in complete or partial remission for more than 6 months were defined as responders. Association between mutations including pathogenic single nucleotide variants and insertions/deletions in the 148 genes and 39 molecular pathways and radiation response was investigated.Results: Analyzing 17 responders and 38 non-responders, biologically effective dose (BED), but not concurrent chemotherapy, was associated with radiation response. No single gene correlated with radiation response. Mutations in Notch signaling pathway were associated with radiosensitivity after correction for multiple comparison (adjusted p = .094). When BED and Notch signaling pathway mutation were tested with logistic regression, both variables were associated with radiation response.Conclusions: Our results suggest that somatic mutations in Notch signaling pathway may be related to sensitivity to radiation, although these results should be validated in a larger and more homogeneous cohort.
Collapse
Affiliation(s)
- Seung Hyuck Jeon
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Yi-Jun Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Seob Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Min Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
12
|
Exosomes impact survival to radiation exposure in cell line models of nervous system cancer. Oncotarget 2018; 9:36083-36101. [PMID: 30546829 PMCID: PMC6281426 DOI: 10.18632/oncotarget.26300] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/21/2018] [Indexed: 12/24/2022] Open
Abstract
Radiation is utilized in the therapy of more than 50% of cancer patients. Unfortunately, many malignancies become resistant to radiation over time. We investigated the hypothesis that one method of a cancer cell's ability to survive radiation occurs through cellular communication via exosomes. Exosomes are cell-derived vesicles containing DNA, RNA, and protein. Three properties were analyzed: 1) exosome function, 2) exosome profile and 3) exosome uptake/blockade. To analyze exosome function, we show radiation-derived exosomes increased proliferation and enabled recipient cancer cells to survive radiation in vitro. Furthermore, radiation-derived exosomes increased tumor burden and decreased survival in an in vivo model. To address the mechanism underlying the alterations by exosomes in recipient cells, we obtained a profile of radiation-derived exosomes that showed expression changes favoring a resistant/proliferative profile. Radiation-derived exosomes contain elevated oncogenic miR-889, oncogenic mRNAs, and proteins of the proteasome pathway, Notch, Jak-STAT, and cell cycle pathways. Radiation-derived exosomes contain decreased levels of tumor-suppressive miR-516, miR-365, and multiple tumor-suppressive mRNAs. Ingenuity pathway analysis revealed the most represented networks included cell cycle, growth/survival. Upregulation of DNM2 correlated with increased exosome uptake. To analyze the property of exosome blockade, heparin and simvastatin were used to inhibit uptake of exosomes in recipient cells resulting in inhibited induction of proliferation and cellular survival. Because these agents have shown some success as cancer therapies, our data suggest their mechanism of action could be limiting exosome communication between cells. The results of our study identify a novel exosome-based mechanism that may underlie a cancer cell's ability to survive radiation.
Collapse
|
13
|
Silencing of FTS increases radiosensitivity by blocking radiation-induced Notch1 activation and spheroid formation in cervical cancer cells. Int J Biol Macromol 2018; 126:1318-1325. [PMID: 30244128 DOI: 10.1016/j.ijbiomac.2018.09.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 01/22/2023]
Abstract
Increasing evidence(s) suggests that cancer stem cells (CSC) in tumours contribute to radio-resistance and recurrence. Notch plays an important role in the maintenance of CSC in many cancers including cervical cancer. Previously, we have reported the role of Fused Toes Homolog (FTS) in conferring radioresistance in cervical cancer cells in vitro and human subjects. The present study investigated the regulatory role of FTS in Notch signaling and maintenance of CSC upon irradiation of cervical cancer cells. The expression of Notch1, 2, 3, cleaved Notch1 and its downstream target Hes1, and spheroid formation was increased by irradiation. Silencing of FTS prevented the radiation-induced increase in the expression of Notch signaling molecules and spheroid formation. Immunoprecipitation showed FTS binds Notch1 and Hes1. Also in silico structural analysis identified putative residues responsible for the binding between FTS and Notch1. Spheroid formation and the expression of CSC markers, Nanog, Oct4A and Sox2 were greatly reduced by combining silencing of FTS and radiation. Taken together, these results suggest that FTS is involved in the regulation of irradiation-induced Notch signaling and CSC activation and can be used as a target to increase radiosensitivity in cervical cancer.
Collapse
|
14
|
Cui J, Wang Y, Dong B, Qin L, Wang C, Zhou P, Wang X, Xu H, Xue W, Fang YX, Gao WQ. Pharmacological inhibition of the Notch pathway enhances the efficacy of androgen deprivation therapy for prostate cancer. Int J Cancer 2018; 143:645-656. [PMID: 29488214 DOI: 10.1002/ijc.31346] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/18/2018] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
Although androgen deprivation therapy (ADT) is a standard treatment for metastatic prostate cancer, this disease inevitably recurs and progresses to ADT-resistant stage after this therapy. Accordingly, understanding the mechanism of resistance to ADT and finding new approach to enhance the efficacy of ADT may provide a major benefit to PCa patients. In our study, we found upregulated expression of Notch receptors is positive associated with ADT-resistance progression. Using fluorescent Notch signaling reporter system, we observed that endogenous Notch signaling could be activated after treatment of androgen deprivation in LNCaP cells via activation of Notch3. In addition, exogenous activation of the Notch signaling though Dox-induced overexpression of any Notch intracellular domains (NICD1-4) could enhance the resistance of PCa cells to ADT under ex vivo 3D culture conditions and upregulate expression of ADT resistance-associated phospho-p38 and Bcl-2 in LNCaP cells. As a result, pharmacological inhibition of the Notch pathway using γ-secretase inhibitor (GSI), DAPT, downregulated both phospho-p38 and Bcl-2 expression and significantly enhanced the efficacy of ADT in androgen sensitive PCa cells with impaired proliferation and 3D colony formation, increased apoptosis and remarkable inhibition of tumor growth in murine subcutaneous xenograft model. These results indicate that activated Notch signaling contributes to ADT resistance, and suggest that inhibition of the Notch pathway may be a promising adjuvant therapy of ADT for PCa.
Collapse
Affiliation(s)
- Jian Cui
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqing Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lixia Qin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peijie Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Wang Y, Huang N, Li H, Liu S, Chen X, Yu S, Wu N, Bian XW, Shen HY, Li C, Xiao L. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma. Oncotarget 2018; 8:37511-37524. [PMID: 28415586 PMCID: PMC5514926 DOI: 10.18632/oncotarget.16400] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
As a major contributor of chemotherapy resistance and malignant recurrence, glioma stem cells (GSCs) have been proposed as a target for the treatment of gliomas. To evaluate the therapeutic potential of quetiapine (QUE), an atypical antipsychotic, for the treatment of malignant glioma, we established mouse models with GSCs-initiated orthotopic xenograft gliomas and subcutaneous xenograft tumors, using GSCs purified from glioblastoma cell line GL261. We investigated antitumor effects of QUE on xenograft gliomas and its underlying mechanisms on GSCs. Our data demonstrated that (i) QUE monotherapy can effectively suppress GSCs-initiated tumor growth; (ii) QUE has synergistic effects with temozolomide (TMZ) on glioma suppression, and importantly, QUE can effectively suppress TMZ-resistant (or -escaped) tumors generated from GSCs; (iii) mechanistically, the anti-glioma effect of QUE was due to its actions of promoting the differentiation of GSCs into oligodendrocyte (OL)-like cells and its inhibitory effect on the Wnt/β-catenin signaling pathway. Together, our findings suggest an effective approach for anti-gliomagenic treatment via targeting OL-oriented differentiation of GSCs. This also opens a door for repurposing QUE, an FDA approved drug, for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yun Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Hongli Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Shubao Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Xianjun Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Shichang Yu
- Department of Pathology, Southwest Hospital, Chongqing 400038, China
| | - Nan Wu
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, China
| | - Xiu-Wu Bian
- Department of Pathology, Southwest Hospital, Chongqing 400038, China
| | - Hai-Ying Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Chengren Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
16
|
Ma Y, Cheng Z, Liu J, Torre-Healy L, Lathia JD, Nakano I, Guo Y, Thompson RC, Freeman ML, Wang J. Inhibition of Farnesyltransferase Potentiates NOTCH-Targeted Therapy against Glioblastoma Stem Cells. Stem Cell Reports 2017; 9:1948-1960. [PMID: 29198824 PMCID: PMC5785731 DOI: 10.1016/j.stemcr.2017.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence suggests that cancer cells with stem cell-like phenotypes drive disease progression and therapeutic resistance in glioblastoma (GBM). NOTCH regulates self-renewal and resistance to chemoradiotherapy in GBM stem cells. However, NOTCH-targeted γ-secretase inhibitors (GSIs) exhibited limited efficacy in GBM patients. We found that farnesyltransferase inhibitors (FTIs) significantly improved sensitivity to GSIs. This combination showed significant antineoplastic and radiosensitizing activities in GBM stem cells, whereas non-stem GBM cells were resistant. These combinatorial effects were mediated, at least partially, through inhibition of AKT and cell-cycle progression. Using subcutaneous and orthotopic GBM models, we showed that the combination of FTIs and GSIs, but not either agent alone, significantly reduced tumor growth. With concurrent radiation, this combination induced a durable response in a subset of orthotopic tumors. These findings collectively suggest that the combination of FTIs and GSIs is a promising therapeutic strategy for GBM through selectively targeting the cancer stem cell subpopulation. NOTCH signaling is preferentially activated in glioblastoma stem cells GSIs have limited activities against glioblastoma stem cells FTIs improve response to GSIs in vitro and in vivo The combination of FTIs and GSIs makes glioblastoma more sensitive to radiation
Collapse
Affiliation(s)
- Yufang Ma
- College of Pharmacy, Belmont University, Nashville, TN 37212, USA
| | - Zhixiang Cheng
- Department of Pain Management, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Luke Torre-Healy
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jialiang Wang
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Zhang H, Jiang H, Chen L, Liu J, Hu X, Zhang H. Inhibition of Notch1/Hes1 signaling pathway improves radiosensitivity of colorectal cancer cells. Eur J Pharmacol 2017; 818:364-370. [PMID: 29126793 DOI: 10.1016/j.ejphar.2017.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
Notch signaling pathway has been demonstrated to mediate radioresistance of several tumors. Our study aims to explore the function of Notch1/HES1 pathway in the radioresistance of colorectal cancer (CRC). The results demonstrated that expressions of Notch1 and Hes1 were up-regulated with the increasing irradiation dose. DAPT (N-[(3,5-difluorophenacetyl)acety1]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl ester) or si-Notch1 reduced expressions of Notch1 and Hes1, exacerbated irradiation-induced cell proliferation inhibition, and improved radiosensitivity of CRC cells. Moreover, DAPT or si-Notch1 increased radiation-induced DNA damage and attenuated radiation-triggered DNA-PK activity. Furthermore, xenograft in nude mice demonstrated that co-treated with DAPT and irradiation could inhibited tumor growth additively in vivo. Taken together, inhibition of Notch1/Hes1 signaling pathway enhances radiosensitivity of CRC cells, providing a potential therapeutic target to improve the therapeutic effect of radiotherapy for CRC patients.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| | - Huijuan Jiang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Lei Chen
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Juncai Liu
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Xigang Hu
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Huixiang Zhang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China
| |
Collapse
|
18
|
Han X, Xue X, Zhou H, Zhang G. A molecular view of the radioresistance of gliomas. Oncotarget 2017; 8:100931-100941. [PMID: 29246031 PMCID: PMC5725073 DOI: 10.18632/oncotarget.21753] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Gliomas originate from glial cells and are the most frequent primary brain tumors. High-grade gliomas occur ∼4 times more frequently than low-grade gliomas, are highly malignant, and have extremely poor prognosis. Radiotherapy, sometimes combined with chemotherapy, is considered the treatment of choice for gliomas and is used after resective surgery. Despite great technological improvements, the radiotherapeutic effect is generally limited, due to the marked radioresistance exhibited by gliomas cells, especially glioma stem cells (GSCs). The mechanisms underlying this phenomenon are multiple and remain to be fully elucidated. This review attempts to summarize current knowledge on the molecular basis of glioma radioresistance by focusing on signaling pathways, microRNAs, hypoxia, the brain microenvironment, and GSCs. A thorough understanding of the complex interactions between molecular, cellular, and environmental factors should provide new insight into the intrinsic radioresistance of gliomas, potentially enabling improvement, through novel concurrent therapies, of the clinical efficacy of radiotherapy.
Collapse
Affiliation(s)
- Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ge Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
19
|
Nakagomi T, Goto T, Hirotsu Y, Shikata D, Amemiya K, Oyama T, Mochizuki H, Omata M. Elucidation of radiation-resistant clones by a serial study of intratumor heterogeneity before and after stereotactic radiotherapy in lung cancer. J Thorac Dis 2017; 9:E598-E604. [PMID: 28840024 DOI: 10.21037/jtd.2017.06.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stereotactic radiotherapy (SRT) for inoperable stage I non-small cell lung cancer has shown promising results and is now an alternative therapy for this disease. Several reports have detailed changes in mutation profiles after treatment with chemotherapy; however, such changes after SRT for lung cancer have not been reported. A patient who received SRT for lung cancer developed local recurrence 9 months after treatment and underwent surgery in our department. Using bronchoscopically biopsied and surgically resected specimens, we performed targeted sequencing of 53 lung cancer-related genes and compared the tumor mutation profiles before and after SRT. Identical mutations were detected from tumor specimens collected before and after SRT, and the specimens were confirmed to be clonal. However, the number of mutations decreased after SRT, suggesting that it induced mutation selection. Analyses of the statistical inference of clonal population structure showed that this evolving heterogeneous genomic landscape may be caused by heterogeneous responsiveness to SRT.
Collapse
Affiliation(s)
- Takahiro Nakagomi
- Department of General Thoracic Surgery, Yamanashi Central Hospital, Yamanashi, Japan
| | - Taichiro Goto
- Department of General Thoracic Surgery, Yamanashi Central Hospital, Yamanashi, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Daichi Shikata
- Department of General Thoracic Surgery, Yamanashi Central Hospital, Yamanashi, Japan
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Toshio Oyama
- Department of Pathology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi, Japan.,University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol 2017; 11:755-769. [PMID: 28548345 PMCID: PMC5496498 DOI: 10.1002/1878-0261.12083] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial‐to‐mesenchymal transition (EMT) and its reverse mesenchymal‐to‐epithelial transition (MET) have been suggested to play crucial roles in metastatic dissemination of carcinomas. These phenotypic transitions between states are not binary. Instead, carcinoma cells often exhibit a spectrum of epithelial/mesenchymal phenotype(s). While epithelial/mesenchymal plasticity has been observed preclinically and clinically, whether any of these phenotypic transitions are indispensable for metastatic outgrowth remains an unanswered question. Here, we focus on epithelial/mesenchymal plasticity in metastatic dissemination and propose alternative mechanisms for successful dissemination and metastases beyond the traditional EMT/MET view. We highlight multiple hypotheses that can help reconcile conflicting observations, and outline the next set of key questions that can offer valuable insights into mechanisms of metastasis in multiple tumor models.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Kathryn E Ware
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shivee Gilja
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jason A Somarelli
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| |
Collapse
|
21
|
Guo Y, Zhang P, Zhang H, Zhang P, Xu R. RNAi for contactin 2 inhibits proliferation of U87-glioma stem cells by downregulating AICD, EGFR, and HES1. Onco Targets Ther 2017; 10:791-801. [PMID: 28243115 PMCID: PMC5315346 DOI: 10.2147/ott.s113390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma is the most common form of malignant brain tumors and has a poor prognosis. Glioma stem cells (GSCs) are thought to be responsible for the aberrant proliferation and invasion. Targeting the signaling pathways that promote proliferation in GSCs is one of the strategies for glioma treatment. In this study, we found increased expression of contactin 2 (CNTN2) and amyloid β precursor protein (APP) in U87-derived GSCs (U87-GSCs). RNA interference (RNAi) for CNTN2 downregulated the expression of APP intracellular domain (AICD), which is the proteolytic product of APP. Treatment with CNTN2 RNAi inhibited the proliferation of U87-GSCs. CNTN2 RNAi decreased the expression of epidermal growth factor receptor and HES1, which are potential targets of AICD. In summary, inhibition of the CNTN2/APP signaling pathway may repress the proliferation in U87-GSCs via downregulating the expression of HES1 and epidermal growth factor receptor. CNTN2/APP/AICD signaling pathway plays an important role in U87 glial tumorigenesis. Further studies are warranted to elucidate the role of these signaling pathways in other sources of GSCs. Depending on their role in proliferation in other sources of GSCs, members of the CNTN2/APP/AICD signaling pathway may provide novel targets for the development of therapy for glioblastomas.
Collapse
Affiliation(s)
| | - Peidong Zhang
- Department of Cardiovascular Medicine, Zhujiang Hospital; Second Clinical Medical College, Southern Medical University, Guangzhou
| | - Hongtian Zhang
- Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, The Bayi Clinical Medical Institute of Southern Medical University, Beijing, People's Republic of China
| | - Peng Zhang
- Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, The Bayi Clinical Medical Institute of Southern Medical University, Beijing, People's Republic of China
| | - Ruxiang Xu
- Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, The Bayi Clinical Medical Institute of Southern Medical University, Beijing, People's Republic of China
| |
Collapse
|
22
|
Zhao YD, Zhang QB, Chen H, Fei XF, Shen YT, Ji XY, Ma JW, Wang AD, Dong J, Lan Q, Huang Q. Research on human glioma stem cells in China. Neural Regen Res 2017; 12:1918-1926. [PMID: 29239340 PMCID: PMC5745848 DOI: 10.4103/1673-5374.219055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research on human glioma stem cells began early in the 21st century and since then has become a rapidly growing research field with the number of publications increasing year by year. The research conducted by our diverse group of investigators focused primarily on cell culture techniques, molecular regulation, signaling pathways, cancer treatment, the stem cell microenvironment and the cellular origin and function of glioma stem cells. In particular, we put forward our view that there are inverse or forward transformations among neural stem cells, glial cells and glioma stem cells in glioma tissues under certain conditions. Based on the background of the progress of international research on human glioma stem cells, we aim to share our progress and current findings of human glioma stem cell research in China with colleagues around the world.
Collapse
Affiliation(s)
- Yao-Dong Zhao
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Shanghai General Hospital, Shanghai, China
| | - Quan-Bin Zhang
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Shanghai 10th People's Hospital, Shanghai, China
| | - Hua Chen
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xi-Feng Fei
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Suzhou Kowloon Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Tian Shen
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao-Yan Ji
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jia-Wei Ma
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ai-Dong Wang
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jun Dong
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Lan
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qiang Huang
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
23
|
Ye H, Chen M, Cao F, Huang H, Zhan R, Zheng X. Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis. BMC Neurol 2016; 16:178. [PMID: 27644442 PMCID: PMC5029068 DOI: 10.1186/s12883-016-0700-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022] Open
Abstract
Background Glioblastoma is refractory to conventional treatment, which is combined of surgery, chemotherapy and radiotherapy. Recent studies have shown that glioma initiating cells (GICs) contribute to tumorigenesis and radioresistance. Recently, other studies showed that the GICs use the autophagy as the major pathway to survive. Chloroquine, an anti-malarial chemical, is an autophagic inhibitor which blocks autophagosome fusion with lysosome and slows down lysosomal acidification. The aim of this study was to explore the mechanisms of chloroquine on the radiosensitivity of GICs. Methods Human glioblastoma cell lines U87 were investigated. MTT and clonogenic survival assay were used to evaluate the cell viability and survival from radiation. The formation of autophagosomes were evaluated by immunofluorescence. Annexin V-FITC/PI staining and flow cytometry were used to quantify the apoptotic cells. The expression levels of proteins were analyzed by Western blot. Cell cycle status was analyzed by checking DNA content after staining with PI. A comet assay was used to assess the DNA repair in the cells. Tumorsphere assay was used for evaluating GICs’ renewal ability. Results Treatment of U87 GICs with chloroquine (10–80 nmol/L) alone inhibited the cell growth in a dose-dependent manner. A dose of chloroquine (20 nmol/L) obviously enhanced the radiation sensitivity of U87 GICs., we found more punctate patterns of microtubule-associated protein LC3 immunoreactivity in radiation-treated U87 GICs, and the level of membrane-bound LC3-II was obviously enhanced. A combination of radiation and chloroquine obviously enhanced the U87 GICs’ apoptosis, as demonstrated by the enhanced levels of caspase-3, and reduced level of Bcl-2. In additon, combination of radiation and chloroquine cause G1/G0 cell cycle arrest. what’s more, Chloroquine obviously weakened the repair of radiation-induced DNA damage as reflected by the tail length of the comet. Combination treatment of irradiation and chloroquine has synergistic effects on decreasing the GICs’ tumorsphere number and diameter. Conclusion Chloroquine enhances the radiosensitivity of GICs in vitro, suggesting the feasibility of joint treatment with chloroquine with radiation for GBM.
Collapse
Affiliation(s)
- Hongxing Ye
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Mantao Chen
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Fei Cao
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Hongguang Huang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Renya Zhan
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiujue Zheng
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
24
|
Koukourakis MI, Mitrakas AG, Giatromanolaki A. Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve. Br J Cancer 2016; 114:485-96. [PMID: 26889975 PMCID: PMC4782209 DOI: 10.1038/bjc.2016.19] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is a unique model of non-metastasising disease that kills the vast majority of patients through local growth, despite surgery and local irradiation. Glioblastoma cells are resistant to apoptotic stimuli, and their death occurs through autophagy. This review aims to critically present our knowledge regarding the autophagic response of glioblastoma cells to radiation and temozolomide (TMZ) and to delineate eventual research directions to follow, in the quest of improving the curability of this incurable, as yet, disease. Radiation and TMZ interfere with the autophagic machinery, but whether cell response is driven to autophagy flux acceleration or blockage is disputable and may depend on both cell individuality and radiotherapy fractionation or TMZ schedules. Potent agents that block autophagy at an early phase of initiation or at a late phase of autolysosomal fusion are available aside to agents that induce functional autophagy, or even demethylating agents that may unblock the function of autophagy-initiating genes in a subset of tumours. All these create a maze, which if properly investigated can open new insights for the application of novel radio- and chemosensitising policies, exploiting the autophagic pathways that glioblastomas use to escape death.
Collapse
Affiliation(s)
- Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | - Achilleas G Mitrakas
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | | |
Collapse
|