1
|
Sato R. Molecular Functions and Physiological Roles of Gustatory Receptors of the Silkworm Bombyx mori. Int J Mol Sci 2024; 25:10157. [PMID: 39337641 PMCID: PMC11432556 DOI: 10.3390/ijms251810157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Complete elucidation of members of the gustatory receptor (Gr) family in lepidopteran insects began in the silkworm Bombyx mori. Grs of lepidopteran insects were initially classified into four subfamilies based on the results of phylogenetic studies and analyses of a few ligands. However, with further ligand analysis, it has become clear that plant secondary metabolites are important targets not only for Grs in the bitter subfamily but also for the Drosophila melanogaster Gr43a orthologue subfamily and Grs in the sugar subfamily. Gene knockout experiments showed that B. mori Gr6 (BmGr6) and BmGr9 are involved in the recognition of the feeding-promoting compounds chlorogenic acid and isoquercetin in mulberry leaves by the maxillary palps, suggesting that these Grs are responsible for palpation-dependent host recognition without biting. On the other hand, BmGr expression was also confirmed in nonsensory organs. Midgut enteroendocrine cells that produce specific neuropeptides were shown to express specific BmGrs, suggesting that BmGrs are involved in the induction of endocrine secretion in response to changes in the midgut contents. Furthermore, gene knockout experiments indicated that BmGr6 is indeed involved in the secretion of myosuppressin. On the other hand, BmGr9 was shown to induce signal transduction that is not derived from the intracellular signaling cascade mediated by G proteins but from the fructose-regulated cation channel of BmGr9 itself. Cryogenic electron microscopy revealed the mechanism by which the ion channel of the BmGr9 homotetramer opens upon binding of fructose to the ligand-binding pocket. Research on BmGrs has contributed greatly to our understanding of the functions and roles of Grs in insects.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
2
|
Purcell J, Lagunas-Robles G, Rabeling C, Borowiec ML, Brelsford A. The maintenance of polymorphism in an ancient social supergene. Mol Ecol 2021; 30:6246-6258. [PMID: 34570409 DOI: 10.1111/mec.16196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022]
Abstract
Supergenes, regions of the genome with suppressed recombination between sets of functional mutations, contribute to the evolution of complex phenotypes in diverse systems. Excluding sex chromosomes, most supergenes discovered so far appear to be young, being found in one species or a few closely related species. Here, we investigate how a chromosome harbouring an ancient supergene has evolved over about 30 million years (Ma). The Formica supergene underlies variation in colony queen number in at least five species. We expand previous analyses of sequence divergence on this chromosome to encompass about 90 species spanning the Formica phylogeny. Within the nonrecombining region, the gene knockout contains 22 single nucleotide polymorphisms (SNPs) that are consistently differentiated between two alternative supergene haplotypes in divergent European Formica species, and we show that these same SNPs are present in most Formica clades. In these clades, including an early diverging Nearctic Formica clade, individuals with alternative genotypes at knockout also have higher differentiation in other portions of this chromosome. We identify hotspots of SNPs along this chromosome that are present in multiple Formica clades to detect genes that may have contributed to the emergence and maintenance of the genetic polymorphism. Finally, we infer three gene duplications on one haplotype, based on apparent heterozygosity within these genes in the genomes of haploid males. This study strengthens the evidence that this supergene originated early in the evolution of Formica and that just a few loci in this large region of suppressed recombination retain strongly differentiated alleles across contemporary Formica lineages.
Collapse
Affiliation(s)
- Jessica Purcell
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - German Lagunas-Robles
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | | | - Marek L Borowiec
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID, USA
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
3
|
Bestea L, Réjaud A, Sandoz JC, Carcaud J, Giurfa M, de Brito Sanchez MG. Peripheral taste detection in honey bees: What do taste receptors respond to? Eur J Neurosci 2021; 54:4417-4444. [PMID: 33934411 DOI: 10.1111/ejn.15265] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Understanding the neural principles governing taste perception in species that bear economic importance or serve as research models for other sensory modalities constitutes a strategic goal. Such is the case of the honey bee (Apis mellifera), which is environmentally and socioeconomically important, given its crucial role as pollinator agent in agricultural landscapes and which has served as a traditional model for visual and olfactory neurosciences and for research on communication, navigation, and learning and memory. Here we review the current knowledge on honey bee gustatory receptors to provide an integrative view of peripheral taste detection in this insect, highlighting specificities and commonalities with other insect species. We describe behavioral and electrophysiological responses to several tastant categories and relate these responses, whenever possible, to known molecular receptor mechanisms. Overall, we adopted an evolutionary and comparative perspective to understand the neural principles of honey bee taste and define key questions that should be answered in future gustatory research centered on this insect.
Collapse
Affiliation(s)
- Louise Bestea
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| | - Alexandre Réjaud
- Laboratoire Evolution et Diversité Biologique, CNRS, IRD (UMR 5174), University of Toulouse, Toulouse, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France.,College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Institut Universitaire de France (IUF), Paris, France
| | - Maria Gabriela de Brito Sanchez
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| |
Collapse
|
4
|
Chen YJ, Li YJ, Wu S, Yang WC, Miao J, Gu SH, Li JH, Miao XQ, Li X. Transcriptional identification of differentially expressed genes associated with division of labor in Apis cerana cerana. INSECT SCIENCE 2021; 28:457-471. [PMID: 32112590 DOI: 10.1111/1744-7917.12773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/02/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Workers of Apis cerana cerana undergo an in-hive nursing to outdoor foraging transition, but the genes underlying this age-related transition remain largely unknown. Here, we sequenced the head transcriptomes of its 7-day-old normal nurses, 18- and 22-day-old normal foragers, 7-day-old precocious foragers and 22-day-old over-aged nurses to unravel the genes associated with this transition. Mapping of the sequence reads to Apis mellifera genome showed that the three types of foragers had a greater percentage of reads from annotated exons and intergenic regions, whereas the two types of nurses had a greater percentage of reads from introns. Pair- and group-wise comparisons of the five transcriptomes revealed 59 uniquely expressed genes (18 in nurses and 41 in foragers) and 14 nurse- and 15 forager-upregulated genes. The uniquely expressed genes are usually low-abundance long noncoding RNAs, transcription factors, transcription coactivators, RNA-binding proteins, kinases or phosphatases that are involved in signaling and/or regulation, whereas the nurse- or forager-upregulated genes are often high-abundance downstream genes that directly perform the tasks of nurses or foragers. Taken together, these results suggest that the nurse-forager transition is coordinated by a social signal-triggered epigenetic shift from introns to exons/intergenic regions and the resulting transcriptional shift between the nurse- and forager-associated genes.
Collapse
Affiliation(s)
- Yi-Jie Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying-Jiao Li
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Wu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen-Chao Yang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Miao
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shao-Hua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiang-Hong Li
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Qing Miao
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Lim S, Jung J, Yunusbaev U, Ilyasov R, Kwon HW. Characterization and its implication of a novel taste receptor detecting nutrients in the honey bee, Apis mellifera. Sci Rep 2019; 9:11620. [PMID: 31406120 PMCID: PMC6690930 DOI: 10.1038/s41598-019-46738-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
Umami taste perception indicates the presence of amino acids, which are essential nutrients. Although the physiology of umami perception has been described in mammals, how insects detect amino acids remains unknown except in Drosophila melanogaster. We functionally characterized a gustatory receptor responding to L-amino acids in the western honey bee, Apis mellifera. Using a calcium-imaging assay and two-voltage clamp recording, we found that one of the honey bee's gustatory receptors, AmGr10, functions as a broadly tuned amino acid receptor responding to glutamate, aspartate, asparagine, arginine, lysine, and glutamine, but not to other sweet or bitter compounds. Furthermore, the sensitivity of AmGr10 to these L-amino acids was dramatically enhanced by purine ribonucleotides, like inosine-5'-monophosphate (IMP). Contact sensory hairs in the mouthpart of the honey bee responded strongly to glutamate and aspartate, which house gustatory receptor neurons expressing AmGr10. Interestingly, AmGr10 protein is highly conserved among hymenopterans but not other insects, implying unique functions in eusocial insects.
Collapse
Affiliation(s)
- Sooho Lim
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Jewon Jung
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Ural Yunusbaev
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia
| | - Rustem Ilyasov
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia
| | - Hyung Wook Kwon
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| |
Collapse
|
6
|
Takada T, Sasaki T, Sato R, Kikuta S, Inoue MN. Differential expression of a fructose receptor gene in honey bee workers according to age and behavioral role. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21437. [PMID: 29194737 DOI: 10.1002/arch.21437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Honey bee (Apis mellifera) workers contribute to the maintenance of colonies in various ways. The primary functions of workers are divided into two types depending on age: young workers (nurses) primarily engage in such behaviors as cleaning and food handling within the hive, whereas older workers (foragers) acquire floral nutrients beyond the colony. Concomitant with this age-dependent change in activity, physiological changes occur in the tissues and organs of workers. Nurses supply younger larvae with honey containing high levels of glucose and supply older larvae with honey containing high levels of fructose. Given that nurses must determine both the concentration and type of sugar used in honey, gustatory receptors (Gr) expressed in the chemosensory organs likely play a role in distinguishing between sugars. Glucose is recognized by Gr1 in honey bees (AmGr1); however, it remains unclear which Gr are responsible for fructose recognition. This study aimed to identify fructose receptors in honey bees and reported that AmGr3, when transiently expressed in Xenopus oocytes, responded only to fructose, and to no other sugars. We analyzed expression levels of AmGr3 to identify which tissues and organs of workers are involved in fructose recognition and determined that expression of AmGr3 was particularly high in the antennae and legs of nurses. Our results suggest that nurses use their antennae and legs to recognize fructose, and that AmGr3 functions as an accurate nutrient sensor used to maintain food quality in honey bee hives.
Collapse
Affiliation(s)
- Tomoyuki Takada
- Graduate School of Bio-Applications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Taiyo Sasaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Shingo Kikuta
- Graduate School of Bio-Applications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Maki N Inoue
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
7
|
Comparative transcriptome analysis of Apis mellifera antennae of workers performing different tasks. Mol Genet Genomics 2017; 293:237-248. [DOI: 10.1007/s00438-017-1382-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023]
|