1
|
Tinivella A, Nwachukwu JC, Pinzi L, Dettori MA, Fabbri D, Carta P, Nettles KW, Rastelli G. Exploring Biological Targets of Magnolol and Honokiol and their Nature-Inspired Synthetic Derivatives: In Silico Identification and Experimental Validation of Estrogen Receptors. JOURNAL OF NATURAL PRODUCTS 2024. [PMID: 39526345 DOI: 10.1021/acs.jnatprod.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this work, we describe the results of a computational investigation aimed at identifying potential biological targets of honokiol, magnolol and a series of synthetic prodrug derivatives obtained through esterification of the free hydroxyl groups. The ligand-based and structure-based analyses revealed that these compounds potentially interact with several biological targets, some of which are known while others are new. Honokiol, magnolol, and three of the newly synthesized derivatives may bind to estrogen receptors ERα and ERβ. Biological testing confirmed that these compounds modulate estrogen-regulated transcriptional activity mediated by ERα or ERβ with potencies in the nanomolar range. In particular, magnolol and one of its derivatives (10) behaved as partial antagonists of ERα and ERβ, while compounds 8 and 11 behaved as partial agonists. These findings validate the computational predictions and shed light on the mechanism of action of these natural compounds, paving the way for further investigation in the context of targeted therapies.
Collapse
Affiliation(s)
- Annachiara Tinivella
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Jerome C Nwachukwu
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | | | - Davide Fabbri
- Institute of Biomolecular Chemistry of CNR, Traversa La Crucca 3, 07100 Sassari, Italy
| | - Paola Carta
- Institute of Biomolecular Chemistry of CNR, Traversa La Crucca 3, 07100 Sassari, Italy
| | - Kendall W Nettles
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
2
|
Qi H, Tian D, Luan F, Yang R, Zeng N. Pathophysiological changes of muscle after ischemic stroke: a secondary consequence of stroke injury. Neural Regen Res 2024; 19:737-746. [PMID: 37843207 PMCID: PMC10664100 DOI: 10.4103/1673-5374.382221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period, and that the latter has a greater impact on the long-term prognosis of the patient. However, current stroke studies have typically focused only on lesions in the central nervous system, ignoring secondary damage caused by this disease. Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system. Further, the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial, leading scholars to explore more pragmatic intervention strategies. As treatment measures targeting limb symptoms can greatly improve a patient's quality of life, they have become a critical intervention strategy. As the most vital component of the limbs, skeletal muscles have become potential points of concern. Despite this, to the best of our knowledge, there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle. The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy, inflammation, neuroregeneration, mitochondrial changes, and nutritional dysregulation in stroke survivors. In addition, the challenges, as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.
Collapse
Affiliation(s)
- Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Fontana R, Mattioli LB, Biotti G, Budriesi R, Gotti R, Micucci M, Corazza I, Marconi P, Frosini M, Manfredini S, Buzzi R, Vertuani S. Magnolia officinalis L. bark extract and respiratory diseases: From traditional Chinese medicine to western medicine via network target. Phytother Res 2023. [PMID: 36879409 DOI: 10.1002/ptr.7786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 03/08/2023]
Abstract
The understanding of the use of Magnolia officinalis L. (Magnoliaceae) as a possible dietary supplement for supporting the treatment of airway pathologies might be of clinical interest. Two commercially available bark extracts (M. officinalis extract [MOE]) were characterized by quantitation in honokiol and magnolol content by means of high-performance liquid chromatography with UV detection. MOE effects, as well as those of the reference compounds per se, on some targets connected to airway pathologies (antibacterial- and lung and trachea relaxing- activities) were investigated. Results showed that MOE possessed interesting antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pneumoniae. This was accompanied by a spasmolytic and antispasmodic activity, possibly owing to its ability to concurrently modulate different targets such as H1 -, β2 - and muscarinic receptors and l-type calcium channels involved in bronchodilation. All these effects were directly related to the MOE content in honokiol and magnolol. In conclusion, the properties of MOE highlighted here strongly encourage its application as dietary supplement in the treatment of airway diseases.
Collapse
Affiliation(s)
- Riccardo Fontana
- Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Ferrara, Italy.,Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
| | - Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giulia Biotti
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Ivan Corazza
- Department of Medical and Surgical Sciences - DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Ferrara, Italy
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Ferrara, Italy
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Li W, Swiderski K, Murphy KT, Lynch GS. Role for Plant-Derived Antioxidants in Attenuating Cancer Cachexia. Antioxidants (Basel) 2022; 11:183. [PMID: 35204066 PMCID: PMC8868096 DOI: 10.3390/antiox11020183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer cachexia is the progressive muscle wasting and weakness experienced by many cancer patients. It can compromise the response to gold standard cancer therapies, impair functional capacity and reduce overall quality of life. Cancer cachexia accounts for nearly one-third of all cancer-related deaths and has no effective treatment. The pathogenesis of cancer cachexia and its progression is multifactorial and includes increased oxidative stress derived from both the tumor and the host immune response. Antioxidants have therapeutic potential to attenuate cancer-related muscle loss, with polyphenols, a group of plant-derived antioxidants, being the most widely investigated. This review describes the potential of these plant-derived antioxidants for treating cancer cachexia.
Collapse
Affiliation(s)
| | | | | | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (W.L.); (K.S.); (K.T.M.)
| |
Collapse
|
5
|
Lokeshwar SD, Press BH, Nie J, Klaassen Z, Kenney PA, Leapman MS. Cachexia and bladder cancer: clinical impact and management. Curr Opin Support Palliat Care 2021; 15:260-265. [PMID: 34698663 DOI: 10.1097/spc.0000000000000580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe the causes, management, and clinical outcomes associated with cachexia and related components including sarcopenia, among patients with bladder cancer (BCa). RECENT FINDINGS Cachexia in patients with BCa is associated with poorer outcomes after radical cystectomy (RC), radiation, and chemotherapy. Nutritional supplements and novel pharmaceutical agents including magnolol, flucoidan and Anamorelin are currently undergoing investigation for their potential use in BCa patients with cachexia. SUMMARY Cachexia is a hypercatabolic state thought to be caused by an immune-regulated release of cytokines and disruptions of molecular pathways within the tumor microenvironment and systemically. Nutritional deficiencies in patients with BCa also contribute to cachexia and sarcopenia. Patients with BCa -related cachexia and sarcopenia experience worse survival and therapeutic outcomes after RC, chemotherapy, and radiation therapy. Patients with cachexia also experience more postoperative complications after RC. The management of cachexia in patients with BCa remains challenging and requires timely identification, and multidisciplinary management including nutritional supplementation, physical therapy, palliative care, and pharmacological agents. Clinical trials and human studies are still required to determine which pharmacological agents are optimal for BCa cachexia.
Collapse
Affiliation(s)
- Soum D Lokeshwar
- Department of Urology, Yale University School of Medicine, New Haven, Connecticut
| | - Benjamin H Press
- Department of Urology, Yale University School of Medicine, New Haven, Connecticut
| | - James Nie
- Department of Urology, Yale University School of Medicine, New Haven, Connecticut
| | - Zachary Klaassen
- Department of Urology, Medical College of Georgia, Augusta, Georgia, USA
| | - Patrick A Kenney
- Department of Urology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael S Leapman
- Department of Urology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
Screening of phytochemicals effective on relieving cancer cachexia in cisplatin-induced in vitro sarcopenia model. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules 2021; 26:molecules26164887. [PMID: 34443483 PMCID: PMC8398525 DOI: 10.3390/molecules26164887] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle atrophy is the decrease in muscle mass and strength caused by reduced protein synthesis/accelerated protein degradation. Various conditions, such as denervation, disuse, aging, chronic diseases, heart disease, obstructive lung disease, diabetes, renal failure, AIDS, sepsis, cancer, and steroidal medications, can cause muscle atrophy. Mechanistically, inflammation, oxidative stress, and mitochondrial dysfunction are among the major contributors to muscle atrophy, by modulating signaling pathways that regulate muscle homeostasis. To prevent muscle catabolism and enhance muscle anabolism, several natural and synthetic compounds have been investigated. Recently, polyphenols (i.e., natural phytochemicals) have received extensive attention regarding their effect on muscle atrophy because of their potent antioxidant and anti-inflammatory properties. Numerous in vitro and in vivo studies have reported polyphenols as strongly effective bioactive molecules that attenuate muscle atrophy and enhance muscle health. This review describes polyphenols as promising bioactive molecules that impede muscle atrophy induced by various proatrophic factors. The effects of each class/subclass of polyphenolic compounds regarding protection against the muscle disorders induced by various pathological/physiological factors are summarized in tabular form and discussed. Although considerable variations in antiatrophic potencies and mechanisms were observed among structurally diverse polyphenolic compounds, they are vital factors to be considered in muscle atrophy prevention strategies.
Collapse
|
8
|
Lees JG, Abdulla M, Barkl-Luke ME, Livni L, Keating BA, Hayes J, Fiore NT, Park SB, Moalem-Taylor G, Goldstein D. Effect of exercise on neuromuscular toxicity in oxaliplatin-treated mice. Muscle Nerve 2021; 64:225-234. [PMID: 34036599 DOI: 10.1002/mus.27329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION/AIMS Clinically, the chemotherapeutic agent oxaliplatin can cause peripheral neuropathy, impaired balance, and muscle wastage. Using a preclinical model, we investigated whether exercise intervention could improve these adverse conditions. METHODS Mice were chronically treated with oxaliplatin alone or in conjunction with exercise. Behavioral studies, including mechanical allodynia, rotarod, open-field, and grip-strength tests, were performed. After euthanasia, multiple organs and four different muscle types were dissected and weighed. The cross-sectional area (CSA) of muscle fibers in the gastrocnemius muscle was assessed and gene expression analysis performed on the forelimb triceps muscle. RESULTS Oxaliplatin-treated mice displayed reduced weight gain, mechanical allodynia, and exploratory behavior deficits that were not significantly improved by exercise. Oxaliplatin-treated exercised mice showed modest evidence of reduced muscle wastage compared with mice treated with oxaliplatin alone, and exercised mice demonstrated evidence of a mild increase in CSA of muscle fibers. DISCUSSION Exercise intervention did not improve signs of peripheral neuropathy but moderately reduced the negative impact of oxaliplatin chemotherapy related to muscle morphology, suggesting the potential for exploring the impact of exercise on reducing oxaliplatin-induced neuromuscular toxicity in cancer patients.
Collapse
Affiliation(s)
- Justin G Lees
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Munawwar Abdulla
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mallory E Barkl-Luke
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lital Livni
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Brooke A Keating
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jessica Hayes
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nathan T Fiore
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Chemotherapy-Induced Myopathy: The Dark Side of the Cachexia Sphere. Cancers (Basel) 2021; 13:cancers13143615. [PMID: 34298829 PMCID: PMC8304349 DOI: 10.3390/cancers13143615] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In addition to cancer-related factors, anti-cancer chemotherapy treatment can drive life-threatening body wasting in a syndrome known as cachexia. Emerging evidence has described the impact of several key chemotherapeutic agents on skeletal muscle in particular, and the mechanisms are gradually being unravelled. Despite this evidence, there remains very little research regarding therapeutic strategies to protect muscle during anti-cancer treatment and current global grand challenges focused on deciphering the cachexia conundrum fail to consider this aspect—chemotherapy-induced myopathy remains very much on the dark side of the cachexia sphere. This review explores the impact and mechanisms of, and current investigative strategies to protect against, chemotherapy-induced myopathy to illuminate this serious issue. Abstract Cancer cachexia is a debilitating multi-factorial wasting syndrome characterised by severe skeletal muscle wasting and dysfunction (i.e., myopathy). In the oncology setting, cachexia arises from synergistic insults from both cancer–host interactions and chemotherapy-related toxicity. The majority of studies have surrounded the cancer–host interaction side of cancer cachexia, often overlooking the capability of chemotherapy to induce cachectic myopathy. Accumulating evidence in experimental models of cachexia suggests that some chemotherapeutic agents rapidly induce cachectic myopathy, although the underlying mechanisms responsible vary between agents. Importantly, we highlight the capacity of specific chemotherapeutic agents to induce cachectic myopathy, as not all chemotherapies have been evaluated for cachexia-inducing properties—alone or in clinically compatible regimens. Furthermore, we discuss the experimental evidence surrounding therapeutic strategies that have been evaluated in chemotherapy-induced cachexia models, with particular focus on exercise interventions and adjuvant therapeutic candidates targeted at the mitochondria.
Collapse
|
10
|
Nutraceuticals in the Prevention and Treatment of the Muscle Atrophy. Nutrients 2021; 13:nu13061914. [PMID: 34199575 PMCID: PMC8227811 DOI: 10.3390/nu13061914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Imbalance of protein homeostasis, with excessive protein degradation compared with protein synthesis, leads to the development of muscle atrophy resulting in a decrease in muscle mass and consequent muscle weakness and disability. Potential triggers of muscle atrophy include inflammation, malnutrition, aging, cancer, and an unhealthy lifestyle such as sedentariness and high fat diet. Nutraceuticals with preventive and therapeutic effects against muscle atrophy have recently received increasing attention since they are potentially more suitable for long-term use. The implementation of nutraceutical intervention might aid in the development and design of precision medicine strategies to reduce the burden of muscle atrophy. In this review, we will summarize the current knowledge on the importance of nutraceuticals in the prevention of skeletal muscle mass loss and recovery of muscle function. We also highlight the cellular and molecular mechanisms of these nutraceuticals and their possible pharmacological use, which is of great importance for the prevention and treatment of muscle atrophy.
Collapse
|
11
|
Magnoliae Cortex Alleviates Muscle Wasting by Modulating M2 Macrophages in a Cisplatin-Induced Sarcopenia Mouse Model. Int J Mol Sci 2021; 22:ijms22063188. [PMID: 33804803 PMCID: PMC8003985 DOI: 10.3390/ijms22063188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
Cachexia causes high mortality, low quality of life, and rapid weight loss in cancer patients. Sarcopenia, a condition characterized by the loss of muscle, is generally present in cachexia and is associated with inflammation. M2 macrophages, also known as an anti-inflammatory or alternatively activated macrophages, have been shown to play a role in muscle repair. Magnoliae Cortex (M.C) is a widely used medicinal herb in East Asia reported to have a broad range of anti-inflammatory activities; however, the effects of M.C on sarcopenia and on M2 macrophage polarization have to date not been studied. This study was designed to investigate whether the oral administration of M.C could decrease cisplatin-induced sarcopenia by modulating M2 macrophage polarization in mice. C57BL/6 mice were injected intraperitoneally with cisplatin (2.5 mg/kg) to mimic chemotherapy-induced sarcopenia. M.C extract (50, 100, and 200 mg/kg) was administered orally every 3 days (for a total of 12 times). M.C (100 and 200 mg/kg) significantly alleviated the cisplatin-induced loss of body mass, skeletal muscle weight, and grip strength. In addition, M.C increased the expression of M2 macrophage markers, such as MRC1, CD163, TGF-β, and Arg-1, and decreased the expression of M1-specific markers, including NOS2 and TNF-α, in skeletal muscle. Furthermore, the levels of like growth factor-1(IGF-1), as well as the number of M2a and M2c macrophages, significantly increased in skeletal muscle after M.C administration. M.C did not interfere with the anticancer effect of cisplatin in colon cancer. Our results demonstrated that M.C can alleviate cisplatin-induced sarcopenia by increasing the number of M2 macrophages. Therefore, our findings suggest that M.C could be used as an effective therapeutic agent to reverse or prevent cisplatin-induced sarcopenia.
Collapse
|
12
|
Yan X, Gao X, Niu Q, Peng X, Zhang J, Ma X, Wei Y, Wang H, Gao Y, Chang H. Differential protein metabolism and regeneration in hypertrophic diaphragm and atrophic gastrocnemius muscles in hibernating Daurian ground squirrels. Exp Physiol 2021; 106:958-971. [PMID: 33517584 DOI: 10.1113/ep089187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to investigate whether diaphragm hypertrophy and gastrocnemius atrophy during hibernation of Daurian ground squirrels involve differential regulation of protein metabolism and regeneration. What is the main finding and its importance? We clarified the differences in protein metabolism and muscle regenerative potential in the diaphragm and gastrocnemius of hibernating ground squirrels, reflecting the different adaptability of muscles. ABSTRACT Are differences in the regulation of protein metabolism and regeneration involved in the different phenotypic adaptation mechanisms of muscle hypertrophy and atrophy in hibernators? Two fast-type muscles (diaphragm and gastrocnemius) in summer active and hibernating Daurian ground squirrels were selected to detect changes in cross-sectional area (CSA) and protein expression indicative of protein synthesis metabolism (protein expression of P-Akt, P-mTORC1, P-S6K1 and P-4E-BP1), protein degradation metabolism (MuRF1, atrogin-1, calpain-1, calpain-2, calpastatin, desmin, troponin T, Beclin1 and LC3-II) and muscle regeneration (MyoD, myogenin and myostatin). In the hibernation group compared with the summer active group, the CSA of the diaphragm muscle increased significantly by 26.1%, whereas the CSA of the gastrocnemius muscle decreased significantly by 20.4%. Our study also indicated that increased protein synthesis, decreased protein degradation and increased muscle regenerative potential contributed to diaphragm muscle hypertrophy, whereas decreased protein synthesis, increased protein degradation and decreased muscle regenerative potential contributed to gastrocnemius muscle atrophy. In conclusion, the differences in muscle regeneration and regulatory pattern of protein metabolism might contribute to the different adaptive changes observed in the diaphragm and gastrocnemius muscles of ground squirrels.
Collapse
Affiliation(s)
- Xia Yan
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, 710069, China
| | - Xuli Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, 710069, China
| | - Qiaohua Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, 710069, China
| | - Xin Peng
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, 710069, China
| | - Jie Zhang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, 710069, China
| | - Xiufeng Ma
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, 710069, China
| | - Yanhong Wei
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, 710069, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, 710069, China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, 710069, China
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, 710069, China
| |
Collapse
|
13
|
Present Status, Limitations and Future Directions of Treatment Strategies Using Fucoidan-Based Therapies in Bladder Cancer. Cancers (Basel) 2020; 12:cancers12123776. [PMID: 33333858 PMCID: PMC7765304 DOI: 10.3390/cancers12123776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is a common urological cancer, with poor prognosis for advanced/metastatic stages. Various intensive treatments, including radical cystectomy, chemotherapy, immune therapy, and radiotherapy are commonly used for these patients. However, these treatments often cause complications and adverse events. Therefore, researchers are exploring the efficacy of natural product-based treatment strategies in BC patients. Fucoidan, derived from marine brown algae, is recognized as a multi-functional and safe substrate, and has been reported to have anti-cancer effects in various types of malignancies. Additionally, in vivo and in vitro studies have reported the protective effects of fucoidan against cancer-related cachexia and chemotherapeutic agent-induced adverse events. In this review, we have introduced the anti-cancer effects of fucoidan extracts in BC and highlighted its molecular mechanisms. We have also shown the anti-cancer effects of fucoidan therapy with conventional chemotherapeutic agents and new treatment strategies using fucoidan-based nanoparticles in various malignancies. Moreover, apart from the improvement of anti-cancer effects by fucoidan, its protective effects against cancer-related disorders and cisplatin-induced toxicities have been introduced. However, the available information is insufficient to conclude the clinical usefulness of fucoidan-based treatments in BC patients. Therefore, we have indicated the aspects that need to be considered regarding fucoidan-based treatments and future directions for the treatment of BC.
Collapse
|
14
|
Suzuki T, Von Haehling S, Springer J. Promising models for cancer-induced cachexia drug discovery. Expert Opin Drug Discov 2020; 15:627-637. [PMID: 32050816 DOI: 10.1080/17460441.2020.1724954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Cachexia is a frequent, multifactorial syndrome associated with cancer afflicting patients' quality of life, their ability to tolerate anti-neoplastic therapies and the therapies efficacy, as well as survival. Currently, there are no approved cancer cachexia treatments other than those for the treatment of the underlying cancer. Cancer cachexia (CC) is poorly understood and hence makes clinical trial design difficult at best. This underlines the importance of well-characterized animal models to further elucidate the pathophysiology of CC and drug discovery/development.Areas covered: This review gives an overview of the available animal models and their value and limitations in translational studies.Expert opinion: Using more than one CC model to test research questions or novel compounds/treatment strategies is strongly advisable. The main reason is that models have unique signaling modalities driving cachexia that may only relate to subgroups of cancer patients. Human xenograph CC models require the use of mice with a compromised immune system, limiting their value for translational experiments. It may prove beneficial to include standard care chemotherapy in the experimental design, as many chemotherapeutic agents can induce cachexia themselves and alter the metabolic and signaling derangements of CC and thus the response to new therapeutic strategies.
Collapse
Affiliation(s)
- Tsuyoshi Suzuki
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Germany and German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Germany and German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Lee C, Jeong H, Lee H, Hong M, Park SY, Bae H. Magnolol Attenuates Cisplatin-Induced Muscle Wasting by M2c Macrophage Activation. Front Immunol 2020; 11:77. [PMID: 32117241 PMCID: PMC7018987 DOI: 10.3389/fimmu.2020.00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer chemotherapy induces sarcopenia, which is a rapid loss of muscle mass that directly restricts daily activities and leads to poor quality of life and increased mortality. Although hormone-related therapies have been used to improve appetite and nutritional status, current treatments are considered palliative. Thus, the protection of skeletal muscle loss without adverse effects is essential to allow the maintenance of chemotherapy in cancer patients. Magnolol from Magnolia officinalis has several pharmacological effects including anti-cancer and anti-inflammatory activities, but the protection from muscle atrophy is not well-understood. In the present study, we investigated the effects of magnolol on muscle wasting and macrophage subtypes in a cisplatin-induced sarcopenia mouse model. We showed that magnolol significantly attenuated the body weight and the muscle loss induced by cisplatin injection. The diameter of the tibialis anterior muscle was markedly increased after magnolol treatment in cisplatin-treated mice. Importantly, magnolol increased macrophage infiltration into skeletal muscle while not affecting proliferation of macrophages. Magnolol attenuated the imbalance of M1/M2c macrophages by increasing CD206+CD163+ M2c tissue reparative macrophages. Further, magnolol increased insulin-like growth factor (IGF)-1 expression. This effect was also observed in bone marrow-derived macrophages upon magnolol treatment. Taken together, magnolol may be a promising chemoprotective agent for the prevention of muscle atrophy through the upregulating M2c macrophages, which are a major source of IGF-1.
Collapse
Affiliation(s)
- Chanju Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyunju Jeong
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyunji Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minwoo Hong
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seon-Young Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
16
|
Polyphenols and their potential role in preventing skeletal muscle atrophy. Nutr Res 2020; 74:10-22. [DOI: 10.1016/j.nutres.2019.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
|
17
|
Brierley DI, Harman JR, Giallourou N, Leishman E, Roashan AE, Mellows BA, Bradshaw HB, Swann JR, Patel K, Whalley BJ, Williams CM. Chemotherapy-induced cachexia dysregulates hypothalamic and systemic lipoamines and is attenuated by cannabigerol. J Cachexia Sarcopenia Muscle 2019; 10:844-859. [PMID: 31035309 PMCID: PMC6711413 DOI: 10.1002/jcsm.12426] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Muscle wasting, anorexia, and metabolic dysregulation are common side-effects of cytotoxic chemotherapy, having a dose-limiting effect on treatment efficacy, and compromising quality of life and mortality. Extracts of Cannabis sativa, and analogues of the major phytocannabinoid Δ9-tetrahydrocannabinol, have been used to ameliorate chemotherapy-induced appetite loss and nausea for decades. However, psychoactive side-effects limit their clinical utility, and they have little efficacy against weight loss. We recently established that the non-psychoactive phytocannabinoid cannabigerol (CBG) stimulates appetite in healthy rats, without neuromotor side-effects. The present study assessed whether CBG attenuates anorexia and/or other cachectic effects induced by the broad-spectrum chemotherapy agent cisplatin. METHODS An acute cachectic phenotype was induced in adult male Lister-hooded rats by 6 mg/kg (i.p.) cisplatin. In total 66 rats were randomly allocated to groups receiving vehicle only, cisplatin only, or cisplatin and 60 or 120 mg/kg CBG (po, b.i.d.). Feeding behavior, bodyweight and locomotor activity were recorded for 72 hours, at which point rats were sacrificed for post-mortem analyses. Myofibre atrophy, protein synthesis and autophagy dysregulation were assessed in skeletal muscle, plasma metabolic profiles were obtained by untargeted 1H-NMR metabonomics, and levels of endocannabinoid-like lipoamines quantified in plasma and hypothalami by targeted HPLC-MS/MS lipidomics. RESULTS CBG (120 mg/kg) modestly increased food intake, predominantly at 36-60hrs (p<0.05), and robustly attenuated cisplatin-induced weight loss from 6.3% to 2.6% at 72hrs (p<0.01). Cisplatin-induced skeletal muscle atrophy was associated with elevated plasma corticosterone (3.7 vs 13.1ng/ml, p<0.01), observed selectively in MHC type IIx (p<0.05) and IIb (p<0.0005) fibres, and was reversed by pharmacological rescue of dysregulated Akt/S6-mediated protein synthesis and autophagy processes. Plasma metabonomic analysis revealed cisplatin administration produced a wide-ranging aberrant metabolic phenotype (Q2Ŷ=0.5380, p=0.001), involving alterations to glucose, amino acid, choline and lipid metabolism, citrate cycle, gut microbiome function, and nephrotoxicity, which were partially normalized by CBG treatment (Q2Ŷ=0.2345, p=0.01). Lipidomic analysis of hypothalami and plasma revealed extensive cisplatin-induced dysregulation of central and peripheral lipoamines (29/79 and 11/26 screened, respectively), including reversible elevations in systemic N-acyl glycine concentrations which were negatively associated with the anti-cachectic effects of CBG treatment. CONCLUSIONS Endocannabinoid-like lipoamines may have hitherto unrecognized roles in the metabolic side-effects associated with chemotherapy, with the N-acyl glycine subfamily in particular identified as a potential therapeutic target and/or biomarker of anabolic interventions. CBG-based treatments may represent a novel therapeutic option for chemotherapy-induced cachexia, warranting investigation in tumour-bearing cachexia models.
Collapse
Affiliation(s)
- Daniel I. Brierley
- School of Psychology and Clinical Language SciencesUniversity of ReadingBerkshireUK
- School of PharmacyUniversity of ReadingBerkshireUK
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Joe R. Harman
- School of Biological SciencesUniversity of ReadingBerkshireUK
| | | | - Emma Leishman
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | | | | | - Heather B. Bradshaw
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | - Jonathan R. Swann
- Division of Computational and Systems MedicineImperial College LondonLondonUK
| | - Ketan Patel
- School of Biological SciencesUniversity of ReadingBerkshireUK
| | | | - Claire M. Williams
- School of Psychology and Clinical Language SciencesUniversity of ReadingBerkshireUK
| |
Collapse
|
18
|
Zhou S, Wen H, Li H. Magnolol induces apoptosis in osteosarcoma cells via G0/G1 phase arrest and p53-mediated mitochondrial pathway. J Cell Biochem 2019; 120:17067-17079. [PMID: 31155771 DOI: 10.1002/jcb.28968] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022]
Abstract
Osteosarcoma is a highly invasive primary malignancy of bone. Magnolol is biologically active, which shows antitumor effects in a variety of cancer cell lines. However, it has not been elucidated magnolol's effects on human osteosarcoma cells (HOC). This study aimed to determine antitumor activity of magnolol and illustrate the molecular mechanism in HOC. Magnolol showed significant inhibition effect of growth on MG-63 and 143B cells and induced apoptosis and cell cycle arrest at G0/G1. In osteosarcoma cells, magnolol upregulated expressions of proapoptosis proteins and suppressed expressions of antiapoptosis proteins. Additionally, under the pretreatment of pifithrin-a (PFT-a, a p53 inhibitor), the magnolol-induced apoptosis was significantly reversed. The results above indicated that magnolol induces apoptosis in osteosarcoma cells may via G0/G1 phase arrest and p53-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haiyan Wen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Insights on the Multifunctional Activities of Magnolol. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1847130. [PMID: 31240205 PMCID: PMC6556366 DOI: 10.1155/2019/1847130] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022]
Abstract
Over years, various biological constituents are isolated from Traditional Chinese Medicine and confirmed to show multifunctional activities. Magnolol, a hydroxylated biphenyl natural compound isolated from Magnolia officinalis, has been extensively documented and shows a range of biological activities. Many signaling pathways include, but are not limited to, NF-κB/MAPK, Nrf2/HO-1, and PI3K/Akt pathways, which are implicated in the biological functions mediated by magnolol. Thus, magnolol is considered as a promising therapeutic agent for clinic research. However, the low water solubility, the low bioavailability, and the rapid metabolism of magnolol dramatically limit its clinical application. In this review, we will comprehensively discuss the last five-year progress of the biological activities of magnolol, including anti-inflammatory, antimicroorganism, antioxidative, anticancer, neuroprotective, cardiovascular protection, metabolism regulation, and ion-mediating activity.
Collapse
|
20
|
Wu CH, Ko JL, Liao JM, Huang SS, Lin MY, Lee LH, Chang LY, Ou CC. D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation. Ther Adv Med Oncol 2019; 11:1758835918821021. [PMID: 30792823 PMCID: PMC6376546 DOI: 10.1177/1758835918821021] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background There are close links between chemotherapy-induced intestinal mucositis and microbiota dysbiosis. Previous studies indicated that D-methionine was an excellent candidate for a chemopreventive agent. Here, we investigated the effects of D-methionine on cisplatin-induced mucositis. Materials and methods Male Wistar rats (176-200 g, 6 weeks old) were given cisplatin (5 mg/kg) and treated with D-methionine (300 mg/kg). Histopathological, digestive enzymes activity, oxidative/antioxidant status, proinflammatory/anti-inflammatory cytokines in intestinal tissues were measured. Next-generation sequencing technologies were also performed to investigate the gut microbial ecology. Results D-methionine administration increased villus length and crypt depth and improved digestive enzyme (leucine aminopeptidase, sucrose and alkaline phosphatase) activities in the brush-border membrane of cisplatin-treated rats (p < 0.05). Furthermore, D-methionine significantly attenuated oxidative stress and inflammatory reaction and increased interleukin-10 levels in cisplatin-induced intestinal mucositis (p < 0.05). Cisplatin administration resulted in high relative abundances of Deferribacteres and Proteobacteria and a low diversity of the microbiota when compared with control groups, D-methionine only and cisplatin plus D-methionine. Cisplatin markedly increased comparative abundances of Bacteroides caccae, Escherichia coli, Mucispirillum schaedleri, Bacteroides uniformis and Desulfovibrio C21-c20, while Lactobacillus was almost completely depleted, compared with the control group. There were higher abundances of Lactobacillus, Lachnospiraceae, and Clostridium butyrium in cisplatin plus D-methionine rats than in cisplatin rats. D-methionine treatment alone significantly increased the number of Lactobacillus reuteri. Conclusion D-methionine protects against cisplatin-induced intestinal damage through antioxidative and anti-inflammatory effects. By enhancing growth of beneficial bacteria (Lachnospiraceae and Lactobacillus), D-methionine attenuates gut microbiome imbalance caused by cisplatin and maintains gut homeostasis.
Collapse
Affiliation(s)
- Cheng-Hsi Wu
- Department of Family Medicine, Jen-Ai Hospital, Dali, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiuan-Miaw Liao
- Department of Physiology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Meei-Yn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ling-Hui Lee
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Li-Yu Chang
- Department of Nursing, Jen-Ai Hospital, Dali, Taichung, Taiwan
| | - Chu-Chyn Ou
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Chien-Kuo N. Road, Taichung 40203, Taiwan
| |
Collapse
|
21
|
|
22
|
Magnolol: A Neolignan from the Magnolia Family for the Prevention and Treatment of Cancer. Int J Mol Sci 2018; 19:ijms19082362. [PMID: 30103472 PMCID: PMC6121321 DOI: 10.3390/ijms19082362] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
The past few decades have witnessed widespread research to challenge carcinogenesis; however, it remains one of the most important health concerns with the worst prognosis and diagnosis. Increasing lines of evidence clearly show that the rate of cancer incidence will increase in future and will create global havoc, designating it as an epidemic. Conventional chemotherapeutics and treatment with synthetic disciplines are often associated with adverse side effects and development of chemoresistance. Thus, discovering novel economic and patient friendly drugs that are safe and efficacious is warranted. Several natural compounds have proved their potential against this dreadful disease so far. Magnolol is a hydroxylated biphenyl isolated from the root and stem bark of Magnolia tree. Magnolol can efficiently prevent or inhibit the growth of various cancers originating from different organs such as brain, breast, cervical, colon, liver, lung, prostate, skin, etc. Considering these perspectives, the current review primarily focuses on the fascinating role of magnolol against various types of cancers, and the source and chemistry of magnolol and the molecular mechanism underlying the targets of magnolol are discussed. This review proposes magnolol as a suitable candidate that can be appropriately designed and established into a potent anti-cancer drug.
Collapse
|
23
|
Lin MT, Ko JL, Liu TC, Chao PT, Ou CC. Protective Effect of D-Methionine on Body Weight Loss, Anorexia, and Nephrotoxicity in Cisplatin-Induced Chronic Toxicity in Rats. Integr Cancer Ther 2018; 17:813-824. [PMID: 29430988 PMCID: PMC6142074 DOI: 10.1177/1534735417753543] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
D-methionine is a sulfur-containing amino acid that can act as a potent antioxidant. Anorexia and nephrotoxicity are side effects of cisplatin. The protective effects of D-methionine on cisplatin-induced anorexia and renal injury were investigated. The model of chronic cisplatin administration (5 mg/kg body weight) involved intraperitoneal injection on days 1, 8, and 15 and oral D-methionine (300 mg/kg body weight) coadministration daily for 20 days. On the 21st day of treatment, food intake and body weight in the cisplatin-treated group significantly decreased by 52% and 31%, respectively, when compared with a control group. D-methionine coadministration with cisplatin decreased food intake and body weight by 29% and 8%, respectively. In cisplatin-treated rats, white blood cell, mean corpuscular volume, and platelet values significantly decreased, while mean corpuscular hemoglobin concentration significantly increased by 8.6% when compared with control rats. Cisplatin administration resulted in significantly decreased feeding efficiency, elevated renal oxidative stress, and reduced antioxidative activity. Leukocyte infiltration, tubule vacuolization, tubular expansion, and swelling were observed in the kidneys of cisplatin-treated rats. Oral D-methionine exhibited an antianorexic effect, with improvement in food intake, feeding efficiency, and hematological toxicities, as well as a protective effect against nephrotoxicity by elevated antioxidative activity. D-methionine may serve as a chemoprotectant in patients receiving cisplatin as part of a chemotherapy regimen.
Collapse
Affiliation(s)
- Ming-Tai Lin
- 1 Changhua Christian Hospital, Changhua City, Taiwan
| | | | - Te-Chung Liu
- 2 Chung Shan Medical University, Taichung, Taiwan
| | | | - Chu-Chyn Ou
- 2 Chung Shan Medical University, Taichung, Taiwan.,3 Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
24
|
Maioli M, Basoli V, Carta P, Fabbri D, Dettori MA, Cruciani S, Serra PA, Delogu G. Synthesis of magnolol and honokiol derivatives and their effect against hepatocarcinoma cells. PLoS One 2018; 13:e0192178. [PMID: 29415009 PMCID: PMC5802897 DOI: 10.1371/journal.pone.0192178] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/17/2018] [Indexed: 01/12/2023] Open
Abstract
The hepatocellular carcinoma is one of the most common malignant tumour with high level of mortality rate due to its rapid progression and high resistance to conventional chemotherapies. Thus, the search for novel therapeutic leads is of global interest. Herein, a small set of derivatives of magnolol 1 and honokiol 2, the main components of Magnolia grandiflora and Magnolia obovata, were evaluated in in vitro assay using tumoral hepatocytes. The pro-drug approach was applied as versatile strategy to the improve bioactivity of the compounds by careful transformation of the hydroxyl groups of magnolol 1 and honokiol 2 in suitable ester derivatives. Compounds 10 and 11 resulted to be more potent than the parental honokiol 2 at concentration down to 1 μM with complete viability of treated fibroblast cells up to concentrations of 80 μM. The combination of a butyrate ester and a bare phenol-OH group in the honokiol structure seemed to play a significant role in the antiproliferative activity identifying an interesting pharmacological clue against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Bologna, Italy
- Institute of Neurogenetics and Neuropharmacology, National Research Council, Monserrato, Cagliari, Italy
- Centre for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Valentina Basoli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Paola Carta
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Davide Fabbri
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | | | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Bologna, Italy
| | - Pier Andrea Serra
- Centre for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Giovanna Delogu
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
- * E-mail:
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Cancer cachexia is a frequent syndrome that affects patient quality of life, anticancer treatment effectiveness, and overall survival. The lack of anticancer cachexia therapies likely relies on the complexity of the syndrome that renders difficult to design appropriate clinical trials and, conversely, on the insufficient knowledge of the underlying pathogenetic mechanisms. The aim of this review is to collect the most relevant latest information regarding cancer cachexia with a special focus on the experimental systems adopted for modeling the disease in translational studies. RECENT FINDINGS The scenario of preclinical models for the study of cancer cachexia is not static and is rapidly evolving in parallel with new prospective treatment options. The well established syngeneic models using rodent cancer cells injected ectopically are now used alongside new ones featuring orthotopic injection, human cancer cell or patient-derived xenograft, or spontaneous tumors in genetically engineered mice. SUMMARY The use of more complex animal models that better resemble cancer cachexia, ideally including also the administration of chemotherapy, will expand the understanding of the underlying mechanisms and will allow a more reliable evaluation of prospective drugs for translational purposes.
Collapse
|
26
|
The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 2017; 41:14-29. [DOI: 10.1007/s12272-017-0994-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022]
|
27
|
Abstract
Introduction Cachexia is a common complication of many and varied chronic disease processes, yet it has received very little attention as an area of clinical research effort until recently. We sought to survey the contemporary literature on published research into cachexia to define where it is being published and the proportion of output classified into the main types of research output. Methods I searched the PubMed listings under the topic research term "cachexia" and related terms for articles published in the calendar years of 2015 and 2016, regardless of language. Searches were conducted and relevant papers extracted by two observers, and disagreements were resolved by consensus. Results There were 954 publications, 370 of which were review articles or commentaries, 254 clinical observations or non-randomised trials, 246 original basic science reports and only 26 were randomised controlled trials. These articles were published in 478 separate journals but with 36% of them being published in a core set of 23 journals. The H-index of these papers was 25 and there were 147 papers with 10 or more citations. Of the top 100 cited papers, 25% were published in five journals. Of the top cited papers, 48% were review articles, 18% were original basic science, and 7% were randomised clinical trials. Discussion This analysis shows a steady but modest increase in publications concerning cachexia with a strong pipeline of basic science research but still a relative lack of randomised clinical trials, with none exceeding 1000 patients. Research in cachexia is still in its infancy, but the solid basic science effort offers hope that translation into randomised controlled clinical trials may eventually lead to effective therapies for this troubling and complex clinical disease process.
Collapse
|
28
|
Zhuang J, Shen L, Yang L, Huang X, Lu Q, Cui Y, Zheng X, Zhao X, Zhang D, Huang R, Guo H, Yan J. TGFβ1 Promotes Gemcitabine Resistance through Regulating the LncRNA-LET/NF90/miR-145 Signaling Axis in Bladder Cancer. Am J Cancer Res 2017; 7:3053-3067. [PMID: 28839463 PMCID: PMC5566105 DOI: 10.7150/thno.19542] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/08/2017] [Indexed: 01/05/2023] Open
Abstract
High tumor recurrence is frequently observed in patients with urinary bladder cancers (UBCs), with the need for biomarkers of prognosis and drug response. Chemoresistance and subsequent recurrence of cancers are driven by a subpopulation of tumor initiating cells, namely cancer stem-like cells (CSCs). However, the underlying molecular mechanism in chemotherapy-induced CSCs enrichment remains largely unclear. In this study, we found that during gemcitabine treatment lncRNA-Low Expression in Tumor (lncRNA-LET) was downregulated in chemoresistant UBC, accompanied with the enrichment of CSC population. Knockdown of lncRNA-LET increased UBC cell stemness, whereas forced expression of lncRNA-LET delayed gemcitabine-induced tumor recurrence. Furthermore, lncRNA-LET was directly repressed by gemcitabine treatment-induced overactivation of TGFβ/SMAD signaling through SMAD binding element (SBE) in the lncRNA-LET promoter. Consequently, reduced lncRNA-LET increased the NF90 protein stability, which in turn repressed biogenesis of miR-145 and subsequently resulted in accumulation of CSCs evidenced by the elevated levels of stemness markers HMGA2 and KLF4. Treatment of gemcitabine resistant xenografts with LY2157299, a clinically relevant specific inhibitor of TGFβRI, sensitized them to gemcitabine and significantly reduced tumorigenecity in vivo. Notably, overexpression of TGFβ1, combined with decreased levels of lncRNA-LET and miR-145 predicted poor prognosis in UBC patients. Collectively, we proved that the dysregulated lncRNA-LET/NF90/miR-145 axis by gemcitabine-induced TGFβ1 promotes UBC chemoresistance through enhancing cancer cell stemness. The combined changes in TGFβ1/lncRNA-LET/miR-145 provide novel molecular prognostic markers in UBC outcome. Therefore, targeting this axis could be a promising therapeutic approach in treating UBC patients.
Collapse
|
29
|
Zhang H, Ju B, Zhang X, Zhu Y, Nie Y, Xu Y, Lei Q. Magnolol Attenuates Concanavalin A-induced Hepatic Fibrosis, Inhibits CD4 + T Helper 17 (Th17) Cell Differentiation and Suppresses Hepatic Stellate Cell Activation: Blockade of Smad3/Smad4 Signalling. Basic Clin Pharmacol Toxicol 2017; 120:560-570. [PMID: 28032440 DOI: 10.1111/bcpt.12749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
Magnolol is a pharmacological biphenolic compound extracted from Chinese herb Magnolia officinalis, which displays anti-inflammatory and antioxidant effects. This study was aimed at exploring the potential effect of magnolol on immune-related liver fibrosis. Herein, BALB/c mice were injected with concanavalin A (ConA, 8 mg/kg/week) up to 6 weeks to establish hepatic fibrosis, and magnolol (10, 20, 30 mg/kg/day) was given to these mice orally throughout the whole experiment. We found that magnolol preserved liver function and attenuated liver fibrotic injury in vivo. In response to ConA stimulation, the CD4+ T cells preferred to polarizing towards CD4+ T helper 17 (Th17) cells in liver. Magnolol was observed to inhibit Th17 cell differentiation in ConA-treated liver in addition to suppressing interleukin (IL)-17A generation. Hepatic stellate cells were activated in fibrotic liver as demonstrated by increased alpha smooth muscle actin (α-SMA) and desmin. More transforming growth factor (TGF)-β1 and activin A were secreted into the serum. Magnolol suppressed this abnormal HSC activation. Furthermore, the phosphorylation of Smad3 in its linker area (Thr179, Ser 204/208/213) was inhibited by magnolol. In vitro, the recombinant IL-17A plus TGF-β1 or activin A induced activation of human LX2 HSCs and promoted their collagen production. Smad3/Smad4 signalling pathway was activated in LX2 cells exposed to the fibrotic stimuli, as illustrated by the up-regulated phospho-Smad3 and the enhanced interaction between Smad3 and Smad4. These alterations were suppressed by magnolol. Collectively, our study reveals a novel antifibrotic effect of magnolol on Th17 cell-mediated fibrosis.
Collapse
Affiliation(s)
- Hongjun Zhang
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Baoling Ju
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaoli Zhang
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yanfei Zhu
- Department of Academic Affairs, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ying Nie
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yuanhong Xu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Qiuxia Lei
- Department of Obstetrics and Gynecology, Mudanjiang First People's Hospital, Mudanjiang, Heilongjiang, China
| |
Collapse
|
30
|
Yu Y, Li X, Liu L, Chai J, Haijun Z, Chu W, Yin H, Ma L, Duan H, Xiao M. miR-628 Promotes Burn-Induced Skeletal Muscle Atrophy via Targeting IRS1. Int J Biol Sci 2016; 12:1213-1224. [PMID: 27766036 PMCID: PMC5069443 DOI: 10.7150/ijbs.15496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy is a common clinical feature among patients with severe burns. Previous studies have shown that miRNAs play critical roles in the regulation of stress-induced skeletal muscle atrophy. Our previous study showed that burn-induced skeletal muscle atrophy is mediated by miR-628. In this study, compared with sham rats, rats subjected to burn injury exhibited skeletal muscle atrophy, as well as significantly decreased insulin receptor substrate 1 (IRS1) protein expression and significantly increased skeletal muscle cell apoptosis. An miRNA array showed that the levels of miR-628, a potential regulator of IRS1 protein translation, were also clearly elevated. Second, L6 myocyte cell apoptosis increased after induction of miR-628 expression, and IRS1 and p-Akt protein expression decreased significantly. Expression of the cell apoptosis-related proteins FoxO3a and cleaved caspase 3 also increased after induction of miR-628 expression. Finally, forced miR-628 expression in normal rats resulted in increased cell apoptosis and skeletal muscle atrophy, as well as changes in IRS1/Akt/FoxO3a signaling pathway activity consistent with the changes in protein expression described above. Inhibiting cell apoptosis with Z-VAD-FMK resulted in alleviation of burn-induced skeletal muscle atrophy. In general, our results indicate that miR-628 mediates burn-induced skeletal muscle atrophy by regulating the IRS1/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Yonghui Yu
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Xiao Li
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Lingying Liu
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Jiake Chai
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Zhang Haijun
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Wanli Chu
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Huinan Yin
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Li Ma
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Hongjie Duan
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | - Mengjing Xiao
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| |
Collapse
|