1
|
Mangu JCK, Stylianou M, Olsson PE, Jass J. Per- and polyfluoroalkyl substances enhance Staphylococcus aureus pathogenicity and impair host immune response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120294. [PMID: 36181932 DOI: 10.1016/j.envpol.2022.120294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/18/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Per- and Poly-fluoroalkyl substances (PFAS) are major persistent environmental contaminants. Epidemiological studies have linked PFAS exposures to altered immunity and increased occurrence of infections in children. However, the mechanisms leading to immune susceptibility to bacterial infections remains unclear. To elucidate the mechanism, transcriptional alteration in the Caenorhabditis elegans model caused by a PFAS contaminated environmental water and two reconstituted PFAS solutions were evaluated using RNA-sequencing. PFAS affected the expression of several genes involved in C. elegans immune surveillance to Gram-positive bacteria (cpr-2, tag-38, spp-1, spp-5, clec-7, clec-172). The combined exposure to PFAS and Staphylococcus aureus significantly reduced C. elegans survival and increased intestinal membrane permeability. Furthermore, the growth of S. aureus in the presence of PFAS increased the expression of virulence genes, specifically, the virulence gene regulator saeR and α-hemolysin, hla, which resulted in increased hemolytic activity. The present study demonstrated that PFAS exposure not only increased C. elegans susceptibility to pathogens by reducing host immunity and increasing intestinal membrane permeability, but also increased bacteria virulence. This presents a broader implication for humans and other animals, where environmental contaminants simultaneously reduce host resilience, while, increasing microbial pathogenicity.
Collapse
Affiliation(s)
| | - Marios Stylianou
- The Life Science Centre-Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Per-Erik Olsson
- The Life Science Centre-Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Jana Jass
- The Life Science Centre-Biology, School of Science and Technology, Örebro University, Örebro, Sweden.
| |
Collapse
|
2
|
Tan Z, Chen J, Liu Y, Chen L, Xu Y, Zou Y, Li Y, Gong B. The survival and removal mechanism of Sphingobacterium changzhouense TC931 under tetracycline stress and its' ecological safety after application. BIORESOURCE TECHNOLOGY 2021; 333:125067. [PMID: 33878498 DOI: 10.1016/j.biortech.2021.125067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Sphingobacterium changzhouense TC931 was isolated as a novel TC (tetracycline) removal bacterium through adsorption on extracellular polymerase substances (EPS) and cellular surface and biodegradation. TC biodegradation efficiency by strain TC931 was affected by solution initial pH and carbon source. Polysaccharides and hydrocarbons in EPS and cellular surface were responsible for TC biosorption. Eight possible biodegradation products were identified and the biodegradation pathway was proposed. Strain TC931 was rich in antibiotic resistance genes, and tetX-TC931 and antibiotics resistance genome island (GI) may be acquired via horizontal gene transfer in early evolutionary history. The GI was incomplete and may stable in strain TC931, but it could develop into an intact and transferability GI with help of other mobile genetic elements. This work offers a theoretical basis for understanding the survival and biodegradation mechanisms of S. changzhouense TC931 under TC stress, and offers an ecological safety assessment for its application in environmental bioremediation.
Collapse
Affiliation(s)
- Zewen Tan
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiacheng Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yiling Liu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Lian Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuqing Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yixuan Zou
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Beini Gong
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
3
|
Gharieb R, Saad M, Khedr M, El Gohary A, Ibrahim H. Occurrence, virulence, carbapenem resistance, susceptibility to disinfectants and public health hazard of Pseudomonas aeruginosa isolated from animals, humans and environment in intensive farms. J Appl Microbiol 2021; 132:256-267. [PMID: 34171153 DOI: 10.1111/jam.15191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023]
Abstract
AIMS This work aimed to determine the occurrence, virulence, antibiogram, carbapenem resistance genes and susceptibility to disinfectants of Pseudomonas aeruginosa isolated from animals, environment and workers in intensive farms. METHODS AND RESULTS A total of 610 samples from intensive beef cattle and sheep farms in Kafr El Sheikh Governorate, Egypt were screened for the presence of P. aeruginosa using bacteriological assays. The isolates were characterized by PCR and tested for susceptibility to antibiotics using disk diffusion method and disinfectants by quantitative suspension test. In all, 60 P. aeruginosa isolates were recovered in this study and all isolates harboured at least one of the virulence genes tested. Human P. aeruginosa isolates were highly resistant to cephalosporins, fluroquinolones, aminoglycosides, carbapenems and penicillins+β-lactamase inhibitors than non-human isolates. Colistin resistance was higher in non-human than human P. aeruginosa isolates, whereas low resistance to aztreonam was observed in non-human and human isolates. Carbapenem-resistant P. aeruginosa (CRPA) strains were recovered from workers (56.5%), sheep (8.3%) and cattle (8.3%). All CRPA harboured at least one of the carbapenem resistance genes tested and most of them showed multidrug resistance (MDR) or extensive drug resistance (XDR) phenotypes. Glutaraldehyde 1% and hydrogen peroxide 3% eliminated P. aeruginosa completely in the absence and presence of organic matter within short contact time compared with other disinfectants. CONCLUSIONS This study reported the occurrence of CRPA in animals and workers in intensive farms. Glutaraldehyde and hydrogen peroxide were the most effective disinfectants against P. aeruginosa. SIGNIFICANCE AND IMPACT OF THE STUDY The occurrence of CRPA in intensive livestock farms is a serious challenge that threatens animal and human health and increases the risk of P. aeruginosa infection in the community. Therefore, it is vital to control the spread of CRPA by banning or restricting the use of antibiotics and applying proper cleaning and disinfection protocols in livestock farms.
Collapse
Affiliation(s)
- Rasha Gharieb
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mai Saad
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mariam Khedr
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | | |
Collapse
|
4
|
Dapgh AN, Hakim AS, Abouelhag HA, Abdou AM, Elgabry EA. Detection of virulence and multidrug resistance operons in Pseudomonas aeruginosa isolated from Egyptian Baladi sheep and goat. Vet World 2019; 12:1524-1528. [PMID: 31849411 PMCID: PMC6868267 DOI: 10.14202/vetworld.2019.1524-1528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/26/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Pseudomonas aeruginosa is a pit of an enormous group of free-living bacteria that are able to live everywhere and suggested to be the causative agent of great scope of acute and chronic animal infections. Aim: The current study was carried out to illustrate the prevalence of P. aeruginosa in small ruminants and existence of some virulence operons as well as its antimicrobial resistance. Materials and Methods: A total of 155 samples from sheep and 105 samples from goats (mouth abscesses, fecal swabs, nasal, tracheal swabs, and lung tissue) were collected for bacteriological study, existence of some virulence expression operons with the study of their sensitivity to the antimicrobials using disc diffusion and presence of mexR operon which is responsible for multidrug resistance (MDR). Results: The bacteriological examination revealed that P. aeruginosa was isolated from nine out of 155 samples from sheep (5.8%) and four isolates out of 105 samples from goat (3.8%). It is found that 12 (92.3%), 10 (76.9 %), and 8 (61.5%) of P. aeruginosa isolates harbored hemolysin phospholipase gene (pcl H), gene (exo S), and enterotoxin gene (tox A), respectively. The results of antibiotic sensitivity test showed that all tested isolates were resistant to ampicillin, bacitracin, erythromycin, streptomycin, tetracycline, trimethoprim-sulfamethoxazole, and tobramycin but sensitive to ciprofloxacin and norfloxacin. The MDR (mex R) operon was existed in all isolates. Conclusion: There is a growing risk for isolation of virulent MDR P. aeruginosa from sheep and goat illness cases, and this should be regarded in the efficient control programs.
Collapse
Affiliation(s)
- A N Dapgh
- Department of Bacteriology, Animal Health Research Institute, Dokki, Giza, Egypt
| | - A S Hakim
- Department of Microbiology and Immunology, National Research Centre, 33 Bohouth Street, 12622 Dokki, Cairo, Egypt
| | - H A Abouelhag
- Department of Microbiology and Immunology, National Research Centre, 33 Bohouth Street, 12622 Dokki, Cairo, Egypt
| | - A M Abdou
- Department of Microbiology and Immunology, National Research Centre, 33 Bohouth Street, 12622 Dokki, Cairo, Egypt
| | - E A Elgabry
- Department of Microbiology and Immunology, National Research Centre, 33 Bohouth Street, 12622 Dokki, Cairo, Egypt
| |
Collapse
|
5
|
phytosynthesis of zinc oxide nanoparticles and its antibacterial, antiquorum sensing, antimotility, and antioxidant capacities against multidrug resistant bacteria. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Ten Have GAM, Deutz RCI, Engelen MPKJ, Wolfe RR, Deutz NEP. Characteristics of a Pseudomonas aeruginosa induced porcine sepsis model for multi-organ metabolic flux measurements. Lab Anim 2017; 52:163-175. [DOI: 10.1177/0023677217718003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Survival of sepsis is related to loss of muscle mass. Therefore, it is imperative to further define and understand the basic alterations in nutrient metabolism in order to improve targeted sepsis nutritional therapies. We developed and evaluated a controlled hyperdynamic severe sepsis pig model that can be used for in vivo multi-organ metabolic studies in a conscious state. In this catheterized pig model, bacteremia was induced intravenously with 109 CFU/h Pseudomonas aeruginosa (PA) in 13 pigs for 18 h. Both the PA and control (nine) animals received fluid resuscitation and were continuously monitored. We examined in detail their hemodynamics, blood gases, clinical chemistry, inflammation, histopathology and organ plasma flows. The systemic inflammatory response (SIRS) diagnostic scoring system was used to determine the clinical septic state. Within 6 h from the start of PA infusion, a septic state developed, as was reflected by hyperthermia and cardiovascular changes. After 12 h of PA infusion, severe sepsis was diagnosed. Disturbed cardiovascular function, decreased portal drained viscera plasma flow (control: 37.6 ± 4.6 mL/kg body weight (bw)/min; PA 20.3 ± 2.6 mL/kg bw/min, P < 0.001), as well as moderate villous injury in the small intestines were observed. No lung, kidney or liver failure was observed. Acute phase C-reactive protein (CRP) and interleukin-6 (IL-6) levels did not change in the PA group. However, significant metabolic changes such as enhanced protein breakdown, hypocalcemia and hypocholesterolemia were found. In conclusion, PA-induced bacteremia in a catheterized pig is a clinically relevant model for acute severe sepsis and enables the study of complex multi-organ metabolisms.
Collapse
Affiliation(s)
- Gabriella A M Ten Have
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
- Donald W Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Renske C I Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
- Donald W Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Robert R Wolfe
- Donald W Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
- Donald W Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
7
|
Tayabali AF, Coleman G, Crosthwait J, Nguyen KC, Zhang Y, Shwed P. Composition and pathogenic potential of a microbial bioremediation product used for crude oil degradation. PLoS One 2017; 12:e0171911. [PMID: 28178315 PMCID: PMC5298331 DOI: 10.1371/journal.pone.0171911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/27/2017] [Indexed: 02/01/2023] Open
Abstract
A microbial bioremediation product (MBP) used for large-scale oil degradation was investigated for microbial constituents and possible pathogenicity. Aerobic growth on various media yielded >108 colonies mL-1. Full-length 16S rDNA sequencing and fatty acid profiling from morphologically distinct colonies revealed ≥13 distinct genera. Full-length 16S rDNA library sequencing, by either Sanger or long-read PacBio technology, suggested that up to 21% of the MBP was composed of Arcobacter. Other high abundance microbial constituents (>6%) included the genera Proteus, Enterococcus, Dysgonomonas and several genera in the order Bacteroidales. The MBP was most susceptible to ciprofloxacin, doxycycline, gentamicin, and meropenam. MBP exposure of human HT29 and A549 cells caused significant cytotoxicity, and bacterial growth and adherence. An acellular MBP filtrate was also cytotoxic to HT29, but not A549. Both MBP and filtrate exposures elevated the neutrophil chemoattractant IL-8. In endotracheal murine exposures, bacterial pulmonary clearance was complete after one-week. Elevation of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, and chemokines KC and MCP-1 occurred between 2h and 48h post-exposure, followed by restoration to baseline levels at 96h. Cytokine/chemokine signalling was accompanied by elevated blood neutrophils and monocytes at 4h and 48h, respectively. Peripheral acute phase response markers were maximal at 24h. All indicators examined returned to baseline values by 168h. In contrast to HT29, but similar to A549 observations, MBP filtrate did not induce significant murine effects with the indicators examined. The results demonstrated the potentially complex nature of MBPs and transient immunological effects during exposure. Products containing microbes should be scrutinized for pathogenic components and subjected to characterisation and quality validation prior to commercial release.
Collapse
Affiliation(s)
- Azam F. Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, Canada
- * E-mail:
| | - Gordon Coleman
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, Canada
| | - Jennifer Crosthwait
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, Canada
| | - Kathy C. Nguyen
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, Canada
| | - Yan Zhang
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, Canada
| | - Philip Shwed
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, Canada
| |
Collapse
|
8
|
Krylov V, Shaburova O, Pleteneva E, Bourkaltseva M, Krylov S, Kaplan A, Chesnokova E, Kulakov L, Magill D, Polygach O. Modular Approach to Select Bacteriophages Targeting Pseudomonas aeruginosa for Their Application to Children Suffering With Cystic Fibrosis. Front Microbiol 2016; 7:1631. [PMID: 27790211 PMCID: PMC5062033 DOI: 10.3389/fmicb.2016.01631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/30/2016] [Indexed: 01/21/2023] Open
Abstract
This review discusses the potential application of bacterial viruses (phage therapy) toward the eradication of antibiotic resistant Pseudomonas aeruginosa in children with cystic fibrosis (CF). In this regard, several potential relationships between bacteria and their bacteriophages are considered. The most important aspect that must be addressed with respect to phage therapy of bacterial infections in the lungs of CF patients is in ensuring the continuity of treatment in light of the continual occurrence of resistant bacteria. This depends on the ability to rapidly select phages exhibiting an enhanced spectrum of lytic activity among several well-studied phage groups of proven safety. We propose a modular based approach, utilizing both mono-species and hetero-species phage mixtures. With an approach involving the visual recognition of characteristics exhibited by phages of well-studied phage groups on lawns of the standard P. aeruginosa PAO1 strain, the simple and rapid enhancement of the lytic spectrum of cocktails is permitted, allowing the development of tailored preparations for patients capable of circumventing problems associated with phage resistant bacterial mutants.
Collapse
Affiliation(s)
- Victor Krylov
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Olga Shaburova
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Elena Pleteneva
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Maria Bourkaltseva
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Sergey Krylov
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Alla Kaplan
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Elena Chesnokova
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Leonid Kulakov
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast Belfast, UK
| | - Damian Magill
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast Belfast, UK
| | - Olga Polygach
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| |
Collapse
|
9
|
Valenti P, Frioni A, Rossi A, Ranucci S, De Fino I, Cutone A, Rosa L, Bragonzi A, Berlutti F. Aerosolized bovine lactoferrin reduces neutrophils and pro-inflammatory cytokines in mouse models of Pseudomonas aeruginosa lung infections. Biochem Cell Biol 2016; 95:41-47. [PMID: 28129511 DOI: 10.1139/bcb-2016-0050] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lactoferrin (Lf), an iron-chelating glycoprotein of innate immunity, produced by exocrine glands and neutrophils in infection/inflammation sites, is one of the most abundant defence molecules in airway secretions. Lf, a pleiotropic molecule, exhibits antibacterial and anti-inflammatory functions. These properties may play a relevant role in airway infections characterized by exaggerated inflammatory response, as in Pseudomonas aeruginosa lung infection in cystic fibrosis (CF) subjects. To verify the Lf role in Pseudomonas aeruginosa lung infection, we evaluated the efficacy of aerosolized bovine Lf (bLf) in mouse models of P. aeruginosa acute and chronic lung infections. C57BL/6NCrl mice were challenged with 106 CFUs of P. aeruginosa PAO1 (acute infection) or MDR-RP73 strain (chronic infection) by intra-tracheal administration. In both acute and chronic infections, aerosolized bLf resulted in nonsignificant reduction of bacterial load but significant decrease of the neutrophil recruitment and pro-inflammatory cytokine levels. Moreover, in chronic infection the bLf-treated mice recovered body weight faster and to a higher extent than the control mice. These findings add new insights into the benefits of bLf as a mediator of general health and its potential therapeutic applications.
Collapse
Affiliation(s)
- Piera Valenti
- a Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Alessandra Frioni
- a Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Alice Rossi
- b Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Serena Ranucci
- b Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ida De Fino
- b Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Antimo Cutone
- a Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Luigi Rosa
- a Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Alessandra Bragonzi
- b Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Berlutti
- a Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| |
Collapse
|