1
|
Farhan M. The Promising Role of Polyphenols in Skin Disorders. Molecules 2024; 29:865. [PMID: 38398617 PMCID: PMC10893284 DOI: 10.3390/molecules29040865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The biochemical characteristics of polyphenols contribute to their numerous advantageous impacts on human health. The existing research suggests that plant phenolics, whether consumed orally or applied directly to the skin, can be beneficial in alleviating symptoms and avoiding the development of many skin disorders. Phenolic compounds, which are both harmless and naturally present, exhibit significant potential in terms of counteracting the effects of skin damage, aging, diseases, wounds, and burns. Moreover, polyphenols play a preventive role and possess the ability to delay the progression of several skin disorders, ranging from small and discomforting to severe and potentially life-threatening ones. This article provides a concise overview of recent research on the potential therapeutic application of polyphenols for skin conditions. It specifically highlights studies that have investigated clinical trials and the use of polyphenol-based nanoformulations for the treatment of different skin ailments.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
2
|
Rinderknecht H, Mayer A, Histing T, Ehnert S, Nüssler A. Herbal Extracts of Ginseng and Maqui Berry Show Only Minimal Effects on an In Vitro Model of Early Fracture Repair of Smokers. Foods 2023; 12:2960. [PMID: 37569229 PMCID: PMC10419284 DOI: 10.3390/foods12152960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Smoking is a major risk factor for delayed fracture healing, affecting several aspects of early fracture repair, including inflammation, osteogenesis, and angiogenesis. Panax ginseng (GE) and maqui berry extract (MBE) were shown in our previous studies to reduce smoke-induced cellular damage in late bone-healing in vitro models. We aimed here to analyze their effects on the early fracture repair of smokers in a 3D co-culture model of fracture hematomas and endothelial cells. Both extracts did not alter the cellular viability at concentrations of up to 100 µg/mL. In early fracture repair in vitro, they were unable to reduce smoking-induced inflammation and induce osteo- or chondrogenicity. Regarding angiogenesis, smoking-induced stress in HUVECs could not be counteracted by both extracts. Furthermore, smoking-impaired tube formation was not restored by GE but was harmed by MBE. However, GE promoted angiogenesis initiation under smoking conditions via the Angpt/Tie2 axis. To summarize, cigarette smoking strikingly affected early fracture healing processes in vitro, but herbal extracts at the applied doses had only a limited effect. Since both extracts were shown before to be very effective in later stages of fracture healing, our data suggest that their early use immediately after fracture does not appear to negatively impact later beneficial effects.
Collapse
Affiliation(s)
| | | | | | | | - Andreas Nüssler
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.M.); (T.H.); (S.E.)
| |
Collapse
|
3
|
Baldassari S, Balboni A, Drava G, Donghia D, Canepa P, Ailuno G, Caviglioli G. Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers. Pharmaceutics 2023; 15:1445. [PMID: 37242687 PMCID: PMC10221807 DOI: 10.3390/pharmaceutics15051445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of anticancer agents currently used derive from natural sources: plants, frequently the ones employed in traditional medicines, are an abundant source of mono- and diterpenes, polyphenols, and alkaloids that exert antitumor activity through diverse mechanisms. Unfortunately, many of these molecules are affected by poor pharmacokinetics and limited specificity, shortcomings that may be overcome by incorporating them into nanovehicles. Cell-derived nanovesicles have recently risen to prominence, due to their biocompatibility, low immunogenicity and, above all, targeting properties. However, due to difficult scalability, the industrial production of biologically-derived vesicles and consequent application in clinics is difficult. As an efficient alternative, bioinspired vesicles deriving from the hybridization of cell-derived and artificial membranes have been conceived, revealing high flexibility and appropriate drug delivery ability. In this review, the most recent advances in the application of these vesicles to the targeted delivery of anticancer actives obtained from plants are presented, with specific focus on vehicle manufacture and characterization, and effectiveness evaluation performed through in vitro and in vivo assays. The emerging overall outlook appears promising in terms of efficient drug loading and selective targeting of tumor cells, suggesting further engrossing developments in the future.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Daniela Donghia
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Paolo Canepa
- Department of Physics, University of Genova, 16146 Genova, Italy;
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| |
Collapse
|
4
|
Melanoma Cellular Signaling Transduction Pathways Targeted by Polyphenols Action Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020407. [PMID: 36829966 PMCID: PMC9952468 DOI: 10.3390/antiox12020407] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Although different anti-melanoma treatments are available, their efficacy is still improvable, and the number of deaths continues to increase worldwide. A promising source of antitumor agents could be presented by polyphenols-natural plant-based compounds. Over the past decades, many studies have described multiple anticancer effects of polyphenols in melanoma, presenting their potential interactions with targeted molecules from different signaling pathways. However, to our knowledge, there is no comprehensive review on polyphenols-regulated mechanisms in melanoma cells available in the literature. To fulfill this gap, this article aims to summarize the current knowledge of molecular mechanisms of action regulated by polyphenols involved in melanoma initiation and progression. Here, we focus on in vitro and in vivo effects of polyphenol treatments on tumor-essential cellular pathways, such as cell proliferation, apoptosis, autophagy, inflammation, angiogenesis, and metastasis. Moreover, emerging studies regarding the well-marked role of polyphenols in the regulation of microRNAs (miRNAs), highlighting their contribution to melanoma development, are also epitomized. Finally, we hope this review will provide a firm basis for developing polyphenol-based therapeutic agents in melanoma treatment.
Collapse
|
5
|
Nistor M, Pop R, Daescu A, Pintea A, Socaciu C, Rugina D. Anthocyanins as Key Phytochemicals Acting for the Prevention of Metabolic Diseases: An Overview. Molecules 2022; 27:molecules27134254. [PMID: 35807504 PMCID: PMC9268666 DOI: 10.3390/molecules27134254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Anthocyanins are water-soluble pigments present in fruits and vegetables, which render them an extensive range of colors. They have a wide distribution in the human diet, are innocuous, and, based on numerous studies, have supposed preventive and therapeutical benefits against chronic affections such as inflammatory, neurological, cardiovascular, digestive disorders, diabetes, and cancer, mostly due to their antioxidant action. Despite their great potential as pharmaceutical applications, they have a rather limited use because of their rather low stability to environmental variations. Their absorption was noticed to occur best in the stomach and small intestine, but the pH fluctuation of the digestive system impacts their rapid degradation. Urine excretion and tissue distribution also occur at low rates. The aim of this review is to highlight the chemical characteristics of anthocyanins and emphasize their weaknesses regarding bioavailability. It also targets to deliver an update on the recent advances in the involvement of anthocyanins in different pathologies with a focus on in vivo, in vitro, animal, and human clinical trials.
Collapse
Affiliation(s)
- Madalina Nistor
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Roxana Pop
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Adela Daescu
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Adela Pintea
- Department of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania;
| | - Carmen Socaciu
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Dumitrita Rugina
- Department of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania;
- Correspondence:
| |
Collapse
|
6
|
Viaña‐Mendieta P, Sánchez ML, Benavides J. Rational selection of bioactive principles for wound healing applications: Growth factors and antioxidants. Int Wound J 2022; 19:100-113. [PMID: 33951280 PMCID: PMC8684881 DOI: 10.1111/iwj.13602] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Wound healing is a complex process of communication between growth factors, reactive species of oxygen, cells, signalling pathways, and cytokines in the extracellular matrix, in which growth factors are the key regulators. In humans, the main regulators of the cellular responses in wound healing are five growth factors, namely EGF, bFGF, VEGF, and TGF-β1. On the other hand, antioxidants such as astaxanthin, beta-carotene, epigallocatechin gallate, delphinidin, and curcumin have been demonstrated to stimulate cell proliferation, migration and angiogenesis, and control inflammation, to suggest a practical approach to design new strategies to treat non-healing cutaneous conditions. Based on the individual effects of growth factors and antioxidants, it may be envisioned that the use of both types of bioactives in wound healing formulations may have an additive or synergistic effect on the healing potential. This review addresses the effect of growth factors and antioxidants on wound healing-related processes. Furthermore, a prospective on their potential additive or synergistic effect on wound healing formulations, based on their individual effects, is presented. This may serve as a guide for the development of a new generation of wound healing formulations.
Collapse
Affiliation(s)
| | - Mirna Lorena Sánchez
- Laboratorio de Materiales Biotecnológicos Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes, IMBICE‐ConicetBernalBuenos AiresArgentina
| | - Jorge Benavides
- Tecnologico de MonterreyEscuela de Ingeniería y CienciasMonterreyNuevo LeónMexico
| |
Collapse
|
7
|
Enhancement of the Anti-Angiogenic Effects of Delphinidin When Encapsulated within Small Extracellular Vesicles. Nutrients 2021; 13:nu13124378. [PMID: 34959929 PMCID: PMC8703615 DOI: 10.3390/nu13124378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
(1) Background: The anthocyanin delphinidin exhibits anti-angiogenic properties both in in vitro and in vivo angiogenesis models. However, in vivo delphinidin is poorly absorbed, thus its modest bioavailability and stability reduce its anti-angiogenic effects. The present work takes advantage of small extracellular vesicle (sEV) properties to enhance both the stability and efficacy of delphinidin. When encapsulated in sEVs, delphinidin inhibits the different stages of angiogenesis on human aortic endothelial cells (HAoECs). (2) Methods: sEVs from immature dendritic cells were produced and loaded with delphinidin. A method based on UHPLC-HRMS was implemented to assess delphinidin metabolites within sEVs. Proliferation assay, nitric oxide (NO) production and Matrigel assay were evaluated in HAoECs. (3) Results: Delphinidine, 3-O-β-rutinoside and Peonidin-3-galactoside were found both in delphinidin and delphinidin-loaded sEVs. sEV-loaded delphinidin increased the potency of free delphinidin 2-fold for endothelial proliferation, 10-fold for endothelial NO production and 100-fold for capillary-like formation. Thus, sEV-loaded delphinidin exerts effects on the different steps of angiogenesis. (4) Conclusions: sEVs may be considered as a promising approach to deliver delphinidin to target angiogenesis-related diseases, including cancer and pathologies associated with excess vascularization.
Collapse
|
8
|
Bonesi M, Leporini M, Tenuta MC, Tundis R. The Role of Anthocyanins in Drug Discovery: Recent Developments. Curr Drug Discov Technol 2021; 17:286-298. [PMID: 30686260 DOI: 10.2174/1570163816666190125152931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
Natural compounds have always played a key role in drug discovery. Anthocyanins are secondary metabolites belonging to the flavonoids family responsible for the purple, blue, and red colour of many vegetables and fruits. These phytochemicals have attracted the interest of researchers for their important implications in human health and for their use as natural colorants. Many in vitro and in vivo studies demonstrated the potential effects of anthocyanins and anthocyanins-rich foods in the prevention and/or treatment of diabetes, cancer, and cardiovascular and neurodegenerative diseases. This review reports the recent literature data and focuses on the potential role of anthocyanins in drug discovery. Their biological activity, analysis of structure-activity relationships, bioavailability, metabolism, and future prospects of their uses are critically described.
Collapse
Affiliation(s)
- Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Mariarosaria Leporini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Maria C Tenuta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| |
Collapse
|
9
|
Diaconeasa Z, Știrbu I, Xiao J, Leopold N, Ayvaz Z, Danciu C, Ayvaz H, Stǎnilǎ A, Nistor M, Socaciu C. Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines 2020; 8:E336. [PMID: 32916849 PMCID: PMC7555344 DOI: 10.3390/biomedicines8090336] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Until today, numerous studies evaluated the topic of anthocyanins and various types of cancer, regarding the anthocyanins' preventative and inhibitory effects, underlying molecular mechanisms, and such. However, there is no targeted review available regarding the anticarcinogenic effects of dietary anthocyanins on skin cancers. If diagnosed at the early stages, the survival rate of skin cancer is quite high. Nevertheless, the metastatic form has a short prognosis. In fact, the incidence of melanoma skin cancer, the type with high mortality, has increased exponentially over the last 30 years, causing the majority of skin cancer deaths. Malignant melanoma is considered a highly destructive type of skin cancer due to its particular capacity to grow and spread faster than any other type of cancers. Plants, in general, have been used in disease treatment for a long time, and medicinal plants are commonly a part of anticancer drugs on the market. Accordingly, this work primarily aims to emphasize the most recent improvements on the anticarcinogenic effects of anthocyanins from different plant sources, with an in-depth emphasis on melanoma skin cancer. We also briefly summarized the anthocyanin chemistry, their rich dietary sources in flowers, fruits, and vegetables, as well as their associated potential health benefits. Additionally, the importance of anthocyanins in topical applications such as their use in cosmetics is also given.
Collapse
Affiliation(s)
- Zorița Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Ioana Știrbu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
- Faculty of Physics, Babeș-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau 999078, China;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Zayde Ayvaz
- Faculty of Marine Science and Technology, Department of Marine Technology Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey;
| | - Corina Danciu
- Victor Babes University of Medicine and Pharmacy, Department of Pharmacognosy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Huseyin Ayvaz
- Department of Food Engineering, Engineering Faculty, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey;
| | - Andreea Stǎnilǎ
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Mǎdǎlina Nistor
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
10
|
Park C, Lee J, Son C, Lee N. A survey of herbal medicines as tumor
microenvironment‐modulating
agents. Phytother Res 2020; 35:78-94. [PMID: 32658314 DOI: 10.1002/ptr.6784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/24/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Chan‐Ran Park
- Dept. of Clinical Oncology Cheonan Korean Medicine Hospital of Daejeon University Cheonan‐si Republic of Korea
- Liver and Immunology Research Center Dunsan Korean Medicine Hospital of Daejeon University Daejeon‐si Republic of Korea
- Dept. of Internal Medicine Graduated School of Korean Medicine, University of Daejeon Daejeon‐si Republic of Korea
| | - Jin‐Seok Lee
- Liver and Immunology Research Center Dunsan Korean Medicine Hospital of Daejeon University Daejeon‐si Republic of Korea
- Dept. of Internal Medicine Graduated School of Korean Medicine, University of Daejeon Daejeon‐si Republic of Korea
| | - Chang‐Gue Son
- Liver and Immunology Research Center Dunsan Korean Medicine Hospital of Daejeon University Daejeon‐si Republic of Korea
- Dept. of Internal Medicine Graduated School of Korean Medicine, University of Daejeon Daejeon‐si Republic of Korea
| | - Nam‐Hun Lee
- Dept. of Clinical Oncology Cheonan Korean Medicine Hospital of Daejeon University Cheonan‐si Republic of Korea
- Liver and Immunology Research Center Dunsan Korean Medicine Hospital of Daejeon University Daejeon‐si Republic of Korea
- Dept. of Internal Medicine Graduated School of Korean Medicine, University of Daejeon Daejeon‐si Republic of Korea
| |
Collapse
|
11
|
Noratto G, Layosa MA, Lage NN, Atienza L, Ivanov I, Mertens-Talcott SU, Chew BP. Antitumor potential of dark sweet cherry sweet (Prunus avium) phenolics in suppressing xenograft tumor growth of MDA-MB-453 breast cancer cells. J Nutr Biochem 2020; 84:108437. [PMID: 32615370 DOI: 10.1016/j.jnutbio.2020.108437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
This study investigated in vivo the antitumor activity of dark sweet cherry (DSC) whole extracted phenolics (WE) and fractions enriched in anthocyanins (ACN) or proanthocyanidins (PCA) in athymic mice xenografted with MDA-MB-453 breast cancer cells. Mice were gavaged with WE, ACN or PCA extracts (150 mg/kg body weight/day) for 36 days. Results showed that tumor growth was suppressed at similar levels by WE, ACN and PCA compared to control group (C) without signs of toxicity or significant changes in mRNA oncogenic biomarkers in tumors or mRNA invasive biomarker in distant organs. Tumor protein analyses showed that WE, ACN and PCA induced at similar levels the stress-regulated ERK1/2 phosphorylation, known to be linked to apoptosis induction. However, ACN showed enhanced antitumor activity through down-regulation of total oncogenic and stress-related Akt, STAT3, p38, JNK and NF-kB proteins. In addition, immunohistochemistry analysis of Ki-67 revealed inhibition of tumor cell proliferation with potency WE ≥ ACN ≥ PCA. Differential quantitative proteomic high-resolution nano-HPLC tandem mass spectrometry analysis of tumors from ACN and C groups revealed the identity of 66 proteins associated with poor breast cancer prognosis that were expressed only in C group (61 proteins) or differentially up-regulated (P<.05) in C group (5 proteins). These findings revealed ACN-targeted proteins associated to tumor growth and invasion and the potential of DSC ACN for breast cancer treatment. Results lead to a follow-up study with highly immunodeficient mice/invasive cell line subtype and advanced tumor development to validate the anti-invasive activity of DSC anthocyanins.
Collapse
Affiliation(s)
- Giuliana Noratto
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA.
| | - Marjorie A Layosa
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Institute of Human Nutrition and Food, College of Human Ecology, University of the Philippines Los Baños, Laguna, Philippines
| | - Nara N Lage
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Research Center in Biological Sciences, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Liezl Atienza
- Institute of Human Nutrition and Food, College of Human Ecology, University of the Philippines Los Baños, Laguna, Philippines
| | - Ivan Ivanov
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | | | - Boon P Chew
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
12
|
Mirza-Aghazadeh-Attari M, Ekrami EM, Aghdas SAM, Mihanfar A, Hallaj S, Yousefi B, Safa A, Majidinia M. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sci 2020; 255:117481. [PMID: 32135183 DOI: 10.1016/j.lfs.2020.117481] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the biggest challenges facing medicine and its cure is regarded to be the Holy Grail of medicine. Therapy in cancer is consisted as various artificial cytotoxic agents and radiotherapy, and recently immunotherapy. Recently much attention has been directed to the use of natural occurring agents in cancer therapy. One of the main group of agents utilized in this regard is polyphenols which are found abundantly in berries, fruits and vegetables. Polyphenols show to exert direct and indirect effects in progression of cancer, angiogenesis, proliferation and enhancing resistance to treatment. One of the cellular pathways commonly affected by polyphenols is PI3K/Akt/mTOR pathway, which has far ranging effects on multiple key aspects of cellular growth, metabolism and death. In this review article, evidence regarding the biology of polyphenols in cancer via PI3K/Akt/mTOR pathway is discussed and their application on cancer pathophysiology in various types of human malignancies is shown.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elyad Mohammadi Ekrami
- Department of Anesthesiology & Critical Care Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Ali Mousavi Aghdas
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Hallaj
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
13
|
Marino M, Del Bo' C, Tucci M, Klimis-Zacas D, Riso P, Porrini M. Modulation of Adhesion Process, E-Selectin and VEGF Production by Anthocyanins and Their Metabolites in an in vitro Model of Atherosclerosis. Nutrients 2020; 12:E655. [PMID: 32121223 PMCID: PMC7146381 DOI: 10.3390/nu12030655] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The present study aims to evaluate the ability of peonidin and petunidin-3-glucoside (Peo-3-glc and Pet-3-glc) and their metabolites (vanillic acid; VA and methyl-gallic acid; MetGA), to prevent monocyte (THP-1) adhesion to endothelial cells (HUVECs), and to reduce the production of vascular cell adhesion molecule (VCAM)-1, E-selectin and vascular endothelial growth factor (VEGF) in a stimulated pro-inflammatory environment, a pivotal step of atherogenesis. Tumor necrosis factor-α (TNF-α; 100 ng mL-1) was used to stimulate the adhesion of labelled monocytes (THP-1) to endothelial cells (HUVECs). Successively, different concentrations of Peo-3-glc and Pet-3-glc (0.02 µM, 0.2 µM, 2 µM and 20 µM), VA and MetGA (0.05 µM, 0.5 µM, 5 µM and 50 µM) were tested. After 24 h, VCAM-1, E-selectin and VEGF were quantified by ELISA, while the adhesion process was measured spectrophotometrically. Peo-3-glc and Pet-3-glc (from 0.02 µM to 20 µM) significantly (p < 0.0001) decreased THP-1 adhesion to HUVECs at all concentrations (-37%, -24%, -30% and -47% for Peo-3-glc; -37%, -33%, -33% and -45% for Pet-3-glc). VA, but not MetGA, reduced the adhesion process at 50 µM (-21%; p < 0.001). At the same concentrations, a significant (p < 0.0001) reduction of E-selectin, but not VCAM-1, was documented. In addition, anthocyanins and their metabolites significantly decreased (p < 0.001) VEGF production. The present findings suggest that while Peo-3-glc and Pet-3-glc (but not their metabolites) reduced monocyte adhesion to endothelial cells through suppression of E-selectin production, VEGF production was reduced by both anthocyanins and their metabolites, suggesting a role in the regulation of angiogenesis.
Collapse
Affiliation(s)
- Mirko Marino
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, 20133 Milan, Italy
| | - Cristian Del Bo'
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, 20133 Milan, Italy
| | - Massimiliano Tucci
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, 20133 Milan, Italy
| | | | - Patrizia Riso
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, 20133 Milan, Italy
| | - Marisa Porrini
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, 20133 Milan, Italy
| |
Collapse
|
14
|
Legeay S, Trân K, Abatuci Y, Justiniano H, Lugnier C, Duval O, Helesbeux JJ, Faure S. Design, Synthesis, Pharmacological Evaluation and Vascular Effects of Delphinidin Analogues. Curr Pharm Des 2019; 24:5580-5589. [PMID: 30727871 DOI: 10.2174/1381612825666190206144913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Among polyphenolic compounds suggested to prevent cardiovascular diseases (CVDs) and to explain the "French paradox", the anthocyanidin delphinidin (Dp) has been reported to support at least partly the vascular beneficial effects of dietary polyphenolic compounds including those from fruits and related products as red wine. It has also been highlighted that Dp interacts directly with the active site of estrogen receptor α (ERα), leading to activation of endothelial NO synthase (eNOS) pathway thus contributing to the prevention of endothelial dysfunction in mice aorta. However, anthocyanidins have very low bioavailability and despite a well described in vitro efficacy, the very high hydrophilicity and physicochemical instability of Dp might explain the lack of in vivo reported effects. OBJECTIVE The aim of this study was to identify new Dp analogues with increased lipophilicity and vasorelaxation potential by a chemical modulation of its structure and to characterize the signaling pathway notably in relation with ERα signaling and nitric oxide (NO) production. METHOD OCH3-substituted delphinidin analogues were obtained through the coupling of the corresponding acetophenones with substituted benzaldehydes. Prediction of resorption of the flavylium derivatives was performed with the calculated logP and induction of vasorelaxation was performed by myography on WT and ERαKO mice thoracic aorta rings and compared to Dp. NO production was evaluated in vitro on human primary endothelial cells. RESULTS Eight Dp analogues were synthesized including four new flavylium derivatives. Two compounds (9 and 11) showed a strong increase of vasorelaxation potential and a theoretically increased bioavailability compared to Dp. Interestingly, 9 and 11 induced increased O2 - or NO endothelial production respectively and revealed a novel NO-dependent ERα-independent relaxation compared to Dp. We suggested that this mechanism may be at least in part supported by the inhibition of vascular cyclic nucleotide phosphodiesterase (PDEs). CONCLUSION The current study demonstrated that pharmacomodulation of the Dp backbone by replacement of OH groups by OCH3 groups of the A and B rings led to the identification and characterization of two compounds (9 and 11) with enhanced physio-chemical properties that could be associated to higher permeability capability and pharmacological activity for the prevention of CVDs compared to Dp.
Collapse
Affiliation(s)
- Samuel Legeay
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| | - Kien Trân
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Yannick Abatuci
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Hélène Justiniano
- Laboratoire de Biophotonique et de Pharmacologie, CNRS UMR 7213, Universite de Strasbourg, Illkirch, France
| | - Claire Lugnier
- Laboratoire de Biophotonique et de Pharmacologie, CNRS UMR 7213, Universite de Strasbourg, Illkirch, France
| | - Olivier Duval
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| | - Jean-Jacques Helesbeux
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Sébastien Faure
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| |
Collapse
|
15
|
Chen Z, Zhang R, Shi W, Li L, Liu H, Liu Z, Wu L. The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11288-11306. [PMID: 31557009 DOI: 10.1021/acs.jafc.9b05079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Delphinidin (Del) and its glycosides are water-soluble pigments, belonging to a subgroup of flavonoids. They are health-promoting candidates for pharmaceutical and nutraceutical uses, as indicated by exhibiting antioxidation, anti-inflammation, antimicroorganism, antidiabetes, antiobesity, cardiovascular protection, neuroprotection, and anticancer properties. Glycosylation modification of Del is associated with increased stability and reduced biological activity. Del and its glycosides can be the alternative inhibitors of CBRs, ERα/β, EGFR, BCRP, and SGLT-1, and virtual docking indicates that the sugar moiety may not effectively interact with the active sites of the targets. Structure-based characteristics confer the multifunctional properties of Del and its glycosides. Because of their health-promoting effects, Del and its glycosides are promising and have been developed as potential pharmaceuticals. However, more investigation on the underlying mechanisms of Del and its glycosides in mediating cellular processes with high specificity are still needed. The research progression of Del and its glycosides over the last 10 years is comprehensively reviewed in this article.
Collapse
Affiliation(s)
- Zhixi Chen
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Rui Zhang
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Weimei Shi
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Linfu Li
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Hai Liu
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Zhiping Liu
- School of Basic Medicine , Gannan Medical University , Ganzhou 341000 , China
| | - Longhuo Wu
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| |
Collapse
|
16
|
Stevens M, Neal CR, Craciun EC, Dronca M, Harper SJ, Oltean S. The natural drug DIAVIT is protective in a type II mouse model of diabetic nephropathy. PLoS One 2019; 14:e0212910. [PMID: 30865689 PMCID: PMC6415805 DOI: 10.1371/journal.pone.0212910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/10/2019] [Indexed: 02/06/2023] Open
Abstract
There is evidence to suggest that abnormal angiogenesis, inflammation, and fibrosis drive diabetic nephropathy (DN). However, there is no specific treatment to counteract these processes. We aimed to determine whether DIAVIT, a natural Vaccinium myrtillus (blueberry) and Hippophae Rhamnoides (sea buckthorn) extract, is protective in a model of type II DN. Diabetic db/db mice were administered DIAVIT in their drinking water for 14 weeks. We assessed the functional, structural, and ultra-structural phenotype of three experimental groups (lean+vehicle, db/db+vehicle, db/db+DIAVIT). We also investigated the angiogenic and fibrotic pathways involved in the mechanism of action of DIAVIT. Diabetic db/db mice developed hyperglycaemia, albuminuria, and an increased glomerular water permeability; the latter two were prevented by DIAVIT. db/db mice developed fibrotic glomeruli, endothelial insult, and glomerular ultra-structural changes, which were not present in DIAVIT-treated mice. Vascular endothelial growth factor A (VEGF-A) splicing was altered in the db/db kidney cortex, increasing the pro-angiogenic VEGF-A165 relative to the anti-angiogenic VEGF-A165b. This was partially prevented with DIAVIT treatment. Delphinidin, an anthocyanin abundant in DIAVIT, increased the VEGF-A165b expression relative to total VEGF-A165 in cultured podocytes through phosphorylation of the splice factor SRSF6. DIAVIT, in particular delphinidin, alters VEGF-A splicing in type II DN, rescuing the DN phenotype. This study highlights the therapeutic potential of natural drugs in DN through the manipulation of gene splicing and expression.
Collapse
Affiliation(s)
- Megan Stevens
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail: (MS); (SO)
| | - Christopher R. Neal
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Elena C. Craciun
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, School of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, Romania
| | - Maria Dronca
- Department of Medical Biochemistry, School of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, Romania
| | - Steven J. Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail: (MS); (SO)
| |
Collapse
|
17
|
Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacol Ther 2018; 191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
|
18
|
Park S, Lim W, Song G. Delphinidin induces antiproliferation and apoptosis of endometrial cells by regulating cytosolic calcium levels and mitochondrial membrane potential depolarization. J Cell Biochem 2018; 120:5072-5084. [DOI: 10.1002/jcb.27784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/06/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Sunwoo Park
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul Korea
| | - Whasun Lim
- Department of Biomedical Sciences Marine Biological Food & Drug Research Center, Catholic Kwandong University Gangneung Korea
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul Korea
| |
Collapse
|
19
|
Anthocyanins from Hibiscus sabdariffa calyx attenuate in vitro and in vivo melanoma cancer metastasis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
20
|
Antiangiogenic Effect of Flavonoids and Chalcones: An Update. Int J Mol Sci 2017; 19:ijms19010027. [PMID: 29271940 PMCID: PMC5795978 DOI: 10.3390/ijms19010027] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
Chalcones are precursors of flavonoid biosynthesis in plants. Both flavonoids and chalcones are intensively investigated because of a large spectrum of their biological activities. Among others, anticancer and antiangiogenic effects account for the research interest of these substances. Because of an essential role in cancer growth and metastasis, angiogenesis is considered to be a promising target for cancer treatment. Currently used antiangiogenic agents are either synthetic compounds or monoclonal antibodies. However, there are some limitations of their use including toxicity and high price, making the search for new antiangiogenic compounds very attractive. Nowadays it is well known that several natural compounds may modulate basic steps in angiogenesis. A lot of studies, also from our lab, showed that phytochemicals, including polyphenols, are potent modulators of angiogenesis. This review paper is focused on the antiangiogenic effect of flavonoids and chalcones and discusses possible underlying cellular and molecular mechanisms.
Collapse
|
21
|
Abusnina A, Lugnier C. Therapeutic potentials of natural compounds acting on cyclic nucleotide phosphodiesterase families. Cell Signal 2017; 39:55-65. [PMID: 28754627 DOI: 10.1016/j.cellsig.2017.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022]
Abstract
Intracellular cyclic AMP and/or cyclic GMP are characterized in the 1960th. These second messengers, hydrolysed specifically by cyclic nucleotide phosphodiesterase (PDE), play a major role in intracellular signalling. Natural products have been a rich source of drug discovery, Theophylline and Methylxanthine originated from tea leaves used for asthma treatment, whereas, Papaverine, a natural isoquinolein originated from Papaver somniferum traditionally used in impotency, altogether as caffeine where firstly described as PDE-inhibiting compounds. Since that time, the knowledge in PDE field has been drastically increased, allowing the design and development of new therapeutic drugs acting against different pathologies in the nanomolar range. During this period some natural compounds have been identified as PDE inhibitors and used in that context to investigate their therapeutic potential effects. The aim of this literature review is to point out the reported data and demonstrating the contribution of natural characterized molecules as PDE inhibitors in various pathologies that can open new fields of research for drug discovery, notably in epigenetic regulation.
Collapse
|
22
|
Park SA, Surh YJ. Modulation of tumor microenvironment by chemopreventive natural products. Ann N Y Acad Sci 2017. [DOI: 10.1111/nyas.13395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sin-Aye Park
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences; Seoul National University; Seoul South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences; Seoul National University; Seoul South Korea
- Cancer Research Institute; Seoul National University; Seoul South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy; Seoul National University; Seoul South Korea
| |
Collapse
|
23
|
Islam MS, Segars JH, Castellucci M, Ciarmela P. Dietary phytochemicals for possible preventive and therapeutic option of uterine fibroids: Signaling pathways as target. Pharmacol Rep 2017; 69:57-70. [DOI: 10.1016/j.pharep.2016.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
|