1
|
Shirima RS, Katusi GC, Mmbando AS, Fanuel G, Aslanis D, Kadam S, Lonji CT, Sylvester HA, Lluberas M, Okumu FO, Knols BGJ, Kaindoa EW. Semi-field evaluation of electrocuting eave tubes for the control of endophagic mosquitoes in south-east Tanzania. Parasit Vectors 2024; 17:349. [PMID: 39164768 PMCID: PMC11334355 DOI: 10.1186/s13071-024-06407-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Eave spaces are major entry points through which malaria vectors enter houses. Interventions that target mosquitoes at the eaves have recently been developed. However, most of these interventions are based on insecticides for which resistance has been reported. Here we evaluated the efficacy of mosquito electrocuting eave tubes (MEETs) against Anopheles gambiae sensu stricto (An. gambiae s.s.) and Anopheles funestus s.s. under semi-field conditions. METHODS Experiments were conducted in two semi-field chambers, each containing one experimental hut. Six electrocuting eave tubes were installed in each hut to assess their impact on laboratory-reared An. gambiae s.s. and An. funestus s.s.. Each species was assessed separately over 10 nights by releasing 200 unfed females per night into each chamber. One volunteer slept in each hut from 7 p.m. to 5 a.m. Mosquitoes were collected indoors and outdoors using mouth and Prokopack aspirators. RESULTS The placement of MEETs significantly reduced the nightly An. gambiae s.s. indoor and outdoor biting, by 21.1% and 37.4%, respectively. Indoor-biting An. funestus s.s. were reduced by 87.5% while outdoor-biting numbers of An. funestus s.s. declined by 10.4%. CONCLUSIONS MEETs represent a promising tool for controlling mosquitoes at the point of house entry. Further validation of their potential under natural field conditions is necessary. Several advantages over insecticide-based eave tubes are indicated and discussed in this article.
Collapse
Affiliation(s)
- Ruth S Shirima
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
| | - Godfrey C Katusi
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
- Department of Microbiology and Parasitology, Saint Francis University College of Health and Allied Sciences, Ifakara, Tanzania.
| | - Arnold S Mmbando
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Department of Biosciences, Durham University, Durham, DH13LE, UK
| | | | - Dimitrios Aslanis
- Diastec Ltd, 71-75 Shelton Street, Covent Garden, London, WC2H 9JQ, UK
| | - Suhas Kadam
- College of Agriculture, Dapoli, Maharashtra, India
| | | | | | | | - Fredros O Okumu
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Wits Research Institute for Malaria, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Bart G J Knols
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- K&S Consulting, Kalkestraat 20, 6669 CP, Dodewaard, The Netherlands
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Wits Research Institute for Malaria, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
2
|
Mapua SA, Samb B, Nambunga IH, Mkandawile G, Bwanaly H, Kaindoa EW, Odero JO, Masalu JP, Kahamba NF, Hape EE, Govella NJ, Okumu FO, Tripet F. Entomological survey of sibling species in the Anopheles funestus group in Tanzania confirms the role of Anopheles parensis as a secondary malaria vector. Parasit Vectors 2024; 17:261. [PMID: 38886827 PMCID: PMC11181546 DOI: 10.1186/s13071-024-06348-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Malaria transmission in Tanzania is driven by mosquitoes of the Anopheles gambiae complex and Anopheles funestus group. The latter includes An. funestus s.s., an anthropophilic vector, which is now strongly resistant to public health insecticides, and several sibling species, which remain largely understudied despite their potential as secondary vectors. This paper provides the initial results of a cross-country study of the species composition, distribution and malaria transmission potential of members of the Anopheles funestus group in Tanzania. METHODS Mosquitoes were collected inside homes in 12 regions across Tanzania between 2018 and 2022 using Centres for Disease Control and Prevention (CDC) light traps and Prokopack aspirators. Polymerase chain reaction (PCR) assays targeting the noncoding internal transcribed spacer 2 (ITS2) and 18S ribosomal DNA (18S rDNA) were used to identify sibling species in the An. funestus group and presence of Plasmodium infections, respectively. Where DNA fragments failed to amplify during PCR, we sequenced the ITS2 region to identify any polymorphisms. RESULTS The following sibling species of the An. funestus group were found across Tanzania: An. funestus s.s. (50.3%), An. parensis (11.4%), An. rivulorum (1.1%), An. leesoni (0.3%). Sequencing of the ITS2 region in the nonamplified samples showed that polymorphisms at the priming sites of standard species-specific primers obstructed PCR amplification, although the ITS2 sequences closely matched those of An. funestus s.s., barring these polymorphisms. Of the 914 samples tested for Plasmodium infections, 11 An. funestus s.s. (1.2%), and 2 An. parensis (0.2%) individuals were confirmed positive for P. falciparum. The highest malaria transmission intensities [entomological inoculation rate (EIR)] contributed by the Funestus group were in the north-western region [108.3 infectious bites/person/year (ib/p/y)] and the south-eastern region (72.2 ib/p/y). CONCLUSIONS Whereas An. funestus s.s. is the dominant malaria vector in the Funestus group in Tanzania, this survey confirms the occurrence of Plasmodium-infected An. parensis, an observation previously made in at least two other occasions in the country. The findings indicate the need to better understand the ecology and vectorial capacity of this and other secondary malaria vectors in the region to improve malaria control.
Collapse
Affiliation(s)
- Salum Abdallah Mapua
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania.
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK.
| | - Badara Samb
- Laboratoire d'Écologie Vectorielle et Parasitaire, Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, 5005, Dakar-Fann, BP, Senegal
| | - Ismail Hassan Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
| | - Gustav Mkandawile
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
| | - Hamis Bwanaly
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
| | - Emmanuel Wilson Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
| | - Joel Ouma Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - John Paliga Masalu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
| | - Najat Feruz Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Emmanuel Elirehema Hape
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicodem James Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| | - Fredros Oketch Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| | - Frederic Tripet
- Swiss Tropical and Public Health Institute, Kreuzgasse 2, 4123, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Matowo NS, Tanner M, Temba BA, Finda M, Mlacha YP, Utzinger J, Okumu FO. Participatory approaches for raising awareness among subsistence farmers in Tanzania about the spread of insecticide resistance in malaria vectors and the possible link to improper agricultural pesticide use. Malar J 2022; 21:277. [PMID: 36180865 PMCID: PMC9524312 DOI: 10.1186/s12936-022-04289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background Insecticide resistance is a key barrier to long-term malaria control, and it may be exacerbated by poor agricultural pesticide use. Current practices, however, do not link public health and agricultural pesticide use. This study investigated the perspectives of farmers and other stakeholders regarding the integration of agricultural and public health measures to address resistance. Additionally, the feasibility of participatory workshops to increase the farmers’ understanding and participation in pesticide stewardship was assessed. Methods Four themes were investigated: pesticide awareness, practices, and opinions of; insecticide resistance in malaria vectors; the effectiveness of current malaria prevention tools; and the links between agricultural and public health pesticide usage. Participatory workshops and field training were held with entomologists, farmers, and agricultural specialists, focusing on agro-ecosystem practices related to pest control; and local farmers were involved in live-testing for insecticides resistance of local Anopheles mosquitoes. Results Most farmers (94%) considered pesticides effective, and nearly half of them (n = 198, 46.4%) could identify and name crop pests and diseases, mostly using local names. Three quarters were unaware of mosquito larvae in their fields, and only 7% considered their fields as potential sources of mosquitoes. Two thirds were uninformed of any effects that agricultural pesticides may have on mosquitoes, and three quarters had never heard of resistance in malaria mosquitoes. Experts from various sectors acknowledged that agricultural pesticides might impact malaria control through increasing resistance. They did, however, emphasize the importance of crop protection and advocated for the use of pesticides sparingly and non-chemical approaches. Farmers learnt how to discriminate between malaria vectors and non-vectors, identify agricultural pests and diseases, choose and use pesticides effectively, and conduct resistance tests during the participatory workshops. Conclusion This study emphasizes the significance of enhancing subsistence farmers’ awareness of mosquito ecology as well as merging public health and agricultural pest management measures. Participatory techniques have the potential to raise stakeholder awareness and engagement, resulting in more effective resistance management.
Collapse
Affiliation(s)
- Nancy Stephen Matowo
- Environmental and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania. .,Swiss Tropical and Public Health Institute, Allschwil, Switzerland. .,University of Basel, Basel, Switzerland. .,Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | - Benigni Alfred Temba
- Department of Veterinary Physiology, Pharmacology and Toxicology, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Marceline Finda
- Environmental and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Yeromin Paul Mlacha
- Environmental and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.,Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | - Fredros Oketch Okumu
- Environmental and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Dormont L, Mulatier M, Carrasco D, Cohuet A. Mosquito Attractants. J Chem Ecol 2021; 47:351-393. [PMID: 33725235 DOI: 10.1007/s10886-021-01261-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
Vector control and personal protection against anthropophilic mosquitoes mainly rely on the use of insecticides and repellents. The search for mosquito-attractive semiochemicals has been the subject of intense studies for decades, and new compounds or odor blends are regularly proposed as lures for odor-baited traps. We present a comprehensive and up-to-date review of all the studies that have evaluated the attractiveness of volatiles to mosquitoes, including individual chemical compounds, synthetic blends of compounds, or natural host or plant odors. A total of 388 studies were analysed, and our survey highlights the existence of 105 attractants (77 volatile compounds, 17 organism odors, and 11 synthetic blends) that have been proved effective in attracting one or several mosquito species. The exhaustive list of these attractants is presented in various tables, while the most common mosquito attractants - for which effective attractiveness has been demonstrated in numerous studies - are discussed throughout the text. The increasing knowledge on compounds attractive to mosquitoes may now serve as the basis for complementary vector control strategies, such as those involving lure-and-kill traps, or the development of mass trapping. This review also points out the necessity of further improving the search for new volatile attractants, such as new compound blends in specific ratios, considering that mosquito attraction to odors may vary over the life of the mosquito or among species. Finally, the use of mosquito attractants will undoubtedly have an increasingly important role to play in future integrated vector management programs.
Collapse
Affiliation(s)
- Laurent Dormont
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| | - Margaux Mulatier
- Institut Pasteur de Guadeloupe, Laboratoire d'étude sur le contrôle des vecteurs (LeCOV), Lieu-Dit Morne Jolivièrex, 97139, Les Abymes, Guadeloupe, France
| | - David Carrasco
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
5
|
Kessy ST, Mnyone LL, Nyundo BA, Lyimo IN. Passive Outdoor Host Seeking Device (POHD): Designing and Evaluation against Outdoor Biting Malaria Vectors. ScientificWorldJournal 2020; 2020:4801068. [PMID: 32694955 PMCID: PMC7350071 DOI: 10.1155/2020/4801068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022] Open
Abstract
Odor-baited devices are increasingly needed to compliment long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) for control of residual malaria transmission. However, the odor-baited devices developed so far are bulky, dependent on the source of electricity and carbon dioxide (CO2), and they are logistically unsuitable for scaling up in surveillance and control of malaria vectors. We designed a passive and portable outdoor host seeking device (POHD) and preliminarily evaluated suitable components against Anopheles arabiensis that maintains residual malaria transmission. Experiments were conducted using semifield reared An. arabiensis within the semifield system at Ifakara Health Institute (IHI) in southeastern Tanzania. These mosquitoes were exposed to Suna traps® baited with BG lures or source of light and augmented with carbon dioxide (CO2) in view of identifying best attractants necessary to improve attractiveness of designed POHD. Two Suna traps® were hanged at the corner but outside the experimental hut in a diagonal line and rotated between four corners to control for the effect of position and wind direction on mosquito catches. Furthermore, mosquitoes were also exposed to either a bendiocarb-treated or bendiocarb-untreated POHD baited with Mbita blend, Ifakara blend, and worn socks and augmented with warmth (i.e., 1.5 liter bottle of warm water) inside an experimental hut or a screened rectangular box. This study demonstrated that mosquitoes were more strongly attracted to Suna trap® baited with BG lures and CO2 relative to those traps baited with a source of light and CO2. The POHD baited with synthetic blends attracted and killed greater proportion of An. arabiensis compared with POHD baited with worn socks. Efficacy of the POHD was unaffected by source of warmth, and it was reduced by about 50% when the device was tested inside a screened rectangular box relative to closed experimental hut. Overall, this study demonstrates that the POHD baited with synthetic blends (Mbita and Ifakara blends) and bendiocarb can effectively attract and kill outdoor biting malaria vector species. Such POHD baited with synthetic blends may require the source of CO2 to enhance attractiveness to mosquitoes. Further trials are, therefore, ongoing to evaluate attractiveness of improved design of POHD baited with slow-release formulation of synthetic blends and sustainable source of CO2 to malaria vectors under semifield and natural environments.
Collapse
Affiliation(s)
- Stella T. Kessy
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Morogoro, Tanzania
- College of Natural and Applied Science, Department of Zoology and Wildlife Conservation, University of Dar es Salaam, P.O. Box 35064, Dar es Salaam, Tanzania
| | - Ladslaus L. Mnyone
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Morogoro, Tanzania
- Sokoine University of Agriculture, Pest Management Centre, P.O. Box 3110, Morogoro, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bruno A. Nyundo
- College of Natural and Applied Science, Department of Zoology and Wildlife Conservation, University of Dar es Salaam, P.O. Box 35064, Dar es Salaam, Tanzania
| | - Issa N. Lyimo
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Morogoro, Tanzania
| |
Collapse
|
6
|
Semifield Evaluation of Improved Passive Outdoor Host Seeking Device (POHD) for Outdoor Control of Anopheles arabiensis Mosquitoes. ScientificWorldJournal 2020; 2020:8938309. [PMID: 32547328 PMCID: PMC7271259 DOI: 10.1155/2020/8938309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/07/2020] [Accepted: 04/13/2020] [Indexed: 12/03/2022] Open
Abstract
Despite the considerable progress made so far, the effectiveness and mass application of odour-baited outdoor mosquito control devices in pipelines is limited by several factors. These include the design and size of the devices, optimal placement of attractive blends, and nature of materials into which the blends are impregnated. The primary aim of this study was to manipulate these factors to improve the attractiveness of our recently developed passive outdoor host seeking device (POHD) to outdoor biting Anopheles arabiensis. Specifically, the study aimed to determine optimal placement of odour blends and killing bioactives in POHD for maximum attraction and killing of An. arabiensis and to assess the effects of blend types, formulation, and residual activity on attractiveness of the POHD to An. arabiensis. The POHDs baited with attractive blends, carbon dioxide (CO2), and bendiocarb-treated electrostatic netting were placed either towards the top or bottom openings, and other modifications were exposed to An. arabiensis under the semifield system at Ifakara Health Institute (IHI). Each night, a total of 100 starved female, 3–7-day-old, semifield reared An. arabiensis mosquitoes were released, collected the next morning (alive or dead), counted, and recorded. Live mosquitoes were maintained in the semifield insectary and monitored for 24 hours mortality. Each treatment combination of the POHD was tested in three replicates. Overall, the results indicated that the proportion of mosquitoes attracted to and killed in the POHD varied with position of attractants and killing agent (bendiocarb). The POHD with bottom placed attractants and bendiocarb attracted and killed higher proportion of mosquitoes compared to the POHD with top placed attractants and bendiocarb. The highest mortalities were observed when the POHD was baited with a combination of attractive blends and CO2. Moreover, the residual activity of attractive blends applied inside POHD varied with type and formulation of attractive blend. The POHD packed with Mbita and Ifakara blend in microencapsulated pellets (granules) attracted higher proportion of mosquitoes than that baited with soaked nylon-strip formulation of either blends. Interestingly, POHD baited with Mbita blend in microencapsulated pellets (granules) formulation attracted and killed higher proportion of mosquitoes (>90%) than that baited with Ifakara blend even 9 months after application. Conclusively, the POHD remained effective for a relatively longer period of time when baited with bottom placed synthetic blends and CO2 combination, thus warranting further trials under real life situations.
Collapse
|
7
|
Kessy ST, Nyundo BA, Mnyone LL, Lyimo IN. The Use of Granular Cyclopentanone as Alternative to Artificial Source of Carbon Dioxide in Improved Passive Outdoor Host Seeking Device (POHD). ScientificWorldJournal 2020; 2020:7620389. [PMID: 32581659 PMCID: PMC7306862 DOI: 10.1155/2020/7620389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/07/2020] [Accepted: 05/16/2020] [Indexed: 11/18/2022] Open
Abstract
Reliable sources of CO2 that are relatively cheap, obtainable, and easy to sustain are immediately required for scaling up of odor-baited mosquito surveillance and control devices. Several odor-baited devices are in the pipeline; however, their scale-up against residual malaria transmission, particularly in resource poor areas, is limited by the unavailability of reliable sources of CO2 and reliance on electrical power sources among other factors. We evaluated the use of granular cyclopentanone as an alternative to artificial or yeast fermentation-produced CO2 in passive outdoor host seeking device (POHD). Experiments were conducted against semifield reared An. arabiensis within the semifield system (SFS) at Ifakara Health Institute. Mosquitoes were tested against odor-baited POHDs augmented with yeast fermentation-produced CO2, granular cyclopentanone, attractive blends (Mbita or Ifakara), or their combinations. An insecticide, bendiocarb, was a killing agent used as a proxy for marking the mosquitoes visit the POHDs. Relative attractiveness of different treatment combinations was compared based on the proportion of dead mosquitoes that visited the POHD. The POHD augmented with granules of cyclopentanone alone was attractive to An. arabiensis as much as, or more than, POHDs augmented with yeast fermentation-produced CO2. The POHD baited with CO2 attracted more mosquitoes than those POHDs baited with synthetic blends alone; when these blends are combined with CO2, they attracted more mosquitoes than individual blends. More importantly, such POHDs baited with cyclopentanone attracted far greater proportion of mosquitoes than the POHD baited with either Mbita or Ifakara blend alone. The granular cyclopentanone strongly enhanced/potentiated the attractiveness of POHD baited with Mbita blends against mosquitoes compared to that of POHD baited with Ifakara blend. Moreover, the granular cyclopentanone retained its residual activity against An. arabiensis for up to 2 months after application particularly when used in combination with Mbita blend. In conclusion, this study demonstrates that cyclopentanone granules have the potential to substitute sources of CO2 in outdoor-based surveillance and control devices, thus warranting evaluation of such alternative under realistic field conditions.
Collapse
Affiliation(s)
- Stella T. Kessy
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Morogoro, Tanzania
| | - Bruno A. Nyundo
- Zoology and Wildlife Conservation Department, College of Natural and Applied Science, University of Dar Es Salaam, P.O. Box 35091, Dar Es Salaam, Tanzania
| | - Ladslaus L. Mnyone
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Morogoro, Tanzania
- Pest Management Centre, Sokoine University of Agriculture, P.O. Box 3110, Morogoro, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Issa N. Lyimo
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Morogoro, Tanzania
| |
Collapse
|
8
|
Sangoro OP, Gavana T, Finda M, Mponzi W, Hape E, Limwagu A, Govella NJ, Chaki P, Okumu FO. Evaluation of personal protection afforded by repellent-treated sandals against mosquito bites in south-eastern Tanzania. Malar J 2020; 19:148. [PMID: 32268907 PMCID: PMC7140554 DOI: 10.1186/s12936-020-03215-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/30/2020] [Indexed: 11/19/2022] Open
Abstract
Background Outdoor and early evening mosquito biting needs to be addressed if malaria elimination is to be achieved. While indoor-targeted interventions, such as insecticide-treated nets and indoor residual spraying, remain essential, complementary approaches that tackle persisting outdoor transmission are urgently required to maximize the impact. Major malaria vectors principally bite human hosts around the feet and ankles. Consequently, this study investigated whether sandals treated with efficacious spatial repellents can protect against outdoor biting mosquitoes. Methodology Sandals affixed with hessian bands measuring 48 cm2 treated with 0.06 g, 0.10 g and 0.15 g of transfluthrin were tested in large cage semi-field and full field experiments. Sandals affixed with hessian bands measuring 240 cm2 and treated with 0.10 g and 0.15 g of transfluthrin were also tested semi field experiments. Human landing catches (HLC) were used to assess reduction in biting exposure by comparing proportions of mosquitoes landing on volunteers wearing treated and untreated sandals. Sandals were tested against insectary reared Anopheles arabiensis mosquitoes in semi-field experiments and against wild mosquito species in rural Tanzania. Results In semi-field tests, sandals fitted with hessian bands measuring 48 cm2 and treated with 0.15 g, 0.10 g and 0.06 g transfluthrin reduced mosquito landings by 45.9%, (95% confidence interval (C.I.) 28–59%), 61.1% (48–71%), and 25.9% (9–40%), respectively compared to untreated sandals. Sandals fitted with hessian bands measuring 240 cm2 and treated with 0.15 g and 0.10 g transfluthrin reduced mosquito landings by 59% (43–71%) and 64% (48–74%), respectively. In field experiments, sandals fitted with hessian bands measuring 48 cm2 and treated with 0.15 g transfluthrin reduced mosquito landings by 70% (60–76%) against Anopheles gambiae sensu lato, and 66.0% (59–71%) against all mosquito species combined. Conclusion Transfluthrin-treated sandals conferred significant protection against mosquito bites in semi-field and field settings. Further evaluation is recommended for this tool as a potential complementary intervention against malaria. This intervention could be particularly useful for protecting against outdoor exposure to mosquito bites. Additional studies are necessary to optimize treatment techniques and substrates, establish safety profiles and determine epidemiological impact in different settings.
Collapse
Affiliation(s)
- Onyango P Sangoro
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania. .,International Centre for Insect Physiology and Ecology, Nairobi, Kenya.
| | - Tegemeo Gavana
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Marceline Finda
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Winfrida Mponzi
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Emmanuel Hape
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Alex Limwagu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, Tengeru, Arusha, United Republic of Tanzania
| | - Prosper Chaki
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Pan African Mosquito Control Association, Nairobi, Kenya
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, Tengeru, Arusha, United Republic of Tanzania
| |
Collapse
|
9
|
Sanou A, Moussa Guelbéogo W, Nelli L, Hyacinth Toé K, Zongo S, Ouédraogo P, Cissé F, Mirzai N, Matthiopoulos J, Sagnon N, Ferguson HM. Evaluation of mosquito electrocuting traps as a safe alternative to the human landing catch for measuring human exposure to malaria vectors in Burkina Faso. Malar J 2019; 18:386. [PMID: 31791336 PMCID: PMC6889701 DOI: 10.1186/s12936-019-3030-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Measuring human exposure to mosquito bites is a crucial component of vector-borne disease surveillance. For malaria vectors, the human landing catch (HLC) remains the gold standard for direct estimation of exposure. This method, however, is controversial since participants risk exposure to potentially infected mosquito bites. Recently an exposure-free mosquito electrocuting trap (MET) was developed to provide a safer alternative to the HLC. Early prototypes of the MET performed well in Tanzania but have yet to be tested in West Africa, where malaria vector species composition, ecology and behaviour are different. The performance of the MET relative to HLC for characterizing mosquito vector population dynamics and biting behaviour in Burkina Faso was evaluated. METHODS A longitudinal study was initiated within 12 villages in Burkina Faso in October 2016. Host-seeking mosquitoes were sampled monthly using HLC and MET collections over 14 months. Collections were made at 4 households on each night, with METs deployed inside and outside at 2 houses, and HLC inside and outside at another two. Malaria vector abundance, species composition, sporozoite rate and location of biting (indoor versus outdoor) were recorded. RESULTS In total, 41,800 mosquitoes were collected over 324 sampling nights, with the major malaria vector being Anopheles gambiae sensu lato (s.l.) complex. Overall the MET caught fewer An. gambiae s.l. than the HLC (mean predicted number of 0.78 versus 1.82 indoors, and 1.05 versus 2.04 outdoors). However, MET collections gave a consistent representation of seasonal dynamics in vector populations, species composition, biting behaviour (location and time) and malaria infection rates relative to HLC. As the relative performance of the MET was somewhat higher in outdoor versus indoor settings, this trapping method slightly underestimated the proportion of bites preventable by LLINs compared to the HLC (MET = 82.08%; HLC = 87.19%). CONCLUSIONS The MET collected proportionately fewer mosquitoes than the HLC. However, estimates of An. gambiae s.l. density in METs were highly correlated with HLC. Thus, although less sensitive, the MET is a safer alternative than the HLC. Its use is recommended particularly for sampling vectors in outdoor environments where it is most sensitive.
Collapse
Affiliation(s)
- Antoine Sanou
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso.
| | - W Moussa Guelbéogo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Luca Nelli
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - K Hyacinth Toé
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Pierre Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Fatoumata Cissé
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Nosrat Mirzai
- Bioelectronics Units, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - N'falé Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda nyooré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
10
|
Batista EPA, Ngowo H, Opiyo M, Shubis GK, Meza FC, Siria DJ, Eiras AE, Okumu FO. Field evaluation of the BG-Malaria trap for monitoring malaria vectors in rural Tanzanian villages. PLoS One 2018; 13:e0205358. [PMID: 30296287 PMCID: PMC6175526 DOI: 10.1371/journal.pone.0205358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
BG-Malaria (BGM) trap is a simple adaptation of the widely-used BG-Sentinel trap (BGS). It is proven to be highly effective for trapping the Brazilian malaria vector, Anopheles darlingi, in field conditions, and the African vector, Anopheles arabiensis, under controlled semi-field environments, but has not been field-tested in Africa. Here, we validated the BGM for field sampling of malaria vectors in south-eastern Tanzania. Using a series of Latin-Square experiments conducted nightly (6pm-7am) in rural villages, we compared mosquito catches between BGM, BGS and human landing catches (HLC). We also compared BGMs baited with different attractants (Ifakara-blend, Mbita-blend, BG-Lure and CO2). Lastly, we tested BGMs baited with Ifakara-blend from three odour-dispensing methods (BG-Cartridge, BG-Sachet and Nylon strips). One-tenth of the field-collected female Anopheles gambiae s.l. and Anopheles funestus were dissected to assess parity. BGM captured more An. gambiae s.l. than BGS (p < 0.001), but HLC caught more than either trap (p < 0.001). However, BGM captured more An. funestus than HLC. Proportions of parous An. gambiae s.l. and An. funestus consistently exceeded 50%, with no significant difference between methods. While the dominant species caught by HLC was An. gambiae s.l. (56.0%), followed by Culex spp. (33.1%) and Mansonia spp. (6.0%), the BGM caught mostly Culex (81.6%), followed by An. gambiae s.l. (10.6%) and Mansonia (5.8%). The attractant-baited BGMs were all significantly superior to un-baited controls (p < 0.001), although no difference was found between the specific attractants. The BG-Sachet was the most efficient dispenser for capturing An. gambiae s.l. (14.5(2.75–42.50) mosquitoes/trap/night), followed by BG-Cartridge (7.5(1.75–26.25)). The BGM caught more mosquitoes than BGS in field-settings, but sampled similar species diversity and physiological states as BGS. The physiological states of malaria vectors caught in BGM and BGS were similar to those naturally attempting to bite humans (HLC). The BGM was most efficient when baited with Ifakara blend, dispensed from BG-Sachet. We conclude that though BGM traps have potential for field-sampling of host-seeking African malaria vectors with representative physiological states, both BGM and BGS predominantly caught more culicines than Anopheles, compared to HLC, which caught mostly An. gambiae s.l.
Collapse
Affiliation(s)
- Elis P. A. Batista
- Laboratório de Ecologia Química de Insetos Vetores, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- * E-mail:
| | - Halfan Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Mercy Opiyo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Gasper K. Shubis
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Felician C. Meza
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Doreen J. Siria
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Alvaro E. Eiras
- Laboratório de Ecologia Química de Insetos Vetores, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Republic of South Africa
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Spitzen J, Takken W. Keeping track of mosquitoes: a review of tools to track, record and analyse mosquito flight. Parasit Vectors 2018; 11:123. [PMID: 29499744 PMCID: PMC5834890 DOI: 10.1186/s13071-018-2735-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
The health impact of mosquito-borne diseases causes a huge burden on human societies. Recent vector control campaigns have resulted in promising declines in incidence and prevalence of these diseases, notably malaria, but resistance to insecticides and drugs are on the rise, threatening to overturn these gains. Moreover, several vector-borne diseases have re-emerged, requiring prompt and effective response measures. To improve and properly implement vector control interventions, the behaviour of the vectors must be well understood with detailed examination of mosquito flight being an essential component. Current knowledge on mosquito behaviour across its life history is briefly presented, followed by an overview of recent developments in automated tracking techniques for detailed interpretation of mosquito behaviour. These techniques allow highly accurate recording and observation of mating, feeding and oviposition behaviour. Software programmes built with specific algorithms enable quantification of these behaviours. For example, the crucial role of heat on host landing and the multimodal integration of carbon dioxide (CO2) with other host cues, has been unravelled based on three-dimensional tracking of mosquito flight behaviour. Furthermore, the behavioural processes underlying house entry and subsequent host searching and finding can be better understood by analysis of detailed flight recordings. Further potential of these technologies to solve knowledge gaps is discussed. The use of tracking techniques can support or replace existing monitoring tools and provide insights on mosquito behaviour that can lead to innovative and more effective vector-control measures.
Collapse
Affiliation(s)
- Jeroen Spitzen
- Laboratory of Entomology, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
12
|
Mmbando AS, Ngowo HS, Kilalangongono M, Abbas S, Matowo NS, Moore SJ, Okumu FO. Small-scale field evaluation of push-pull system against early- and outdoor-biting malaria mosquitoes in an area of high pyrethroid resistance in Tanzania. Wellcome Open Res 2017; 2:112. [PMID: 29568808 PMCID: PMC5840620 DOI: 10.12688/wellcomeopenres.13006.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Despite high coverage of indoor interventions like insecticide-treated nets, mosquito-borne infections persist, partly because of outdoor-biting, early-biting and insecticide-resistant vectors. Push-pull systems, where mosquitoes are repelled from humans and attracted to nearby lethal targets, may constitute effective complementary interventions. Methods: A partially randomized cross-over design was used to test efficacy of push-pull in four experimental huts and four local houses, in an area with high pyrethroid resistance in Tanzania. The push-pull system consisted of 1.1% or 2.2% w/v transfluthrin repellent dispensers and an outdoor lure-and-kill device (odour-baited mosquito landing box). Matching controls were set up without push-pull. Adult male volunteers collected mosquitoes attempting to bite them outdoors, but collections were also done indoors using exit traps in experimental huts and by volunteers in the local houses. The collections were done hourly (1830hrs-0730hrs) and mosquito catches compared between push-pull and controls.
An. gambiae s.l. and
An. funestus s.l. were assessed by PCR to identify sibling species, and ELISA to detect
Plasmodium falciparum and blood meal sources. Results: Push-pull in experimental huts reduced outdoor-biting for
An. arabiensis and
Mansonia species by 30% and 41.5% respectively. However, the reductions were marginal and insignificant for
An. funestus (12.2%; p>0.05) and
Culex (5%; p>0.05). Highest protection against all species occurred before 2200hrs. There was no significant difference in number of mosquitoes inside exit traps in huts with or without push-pull. In local households, push-pull significantly reduced indoor and outdoor-biting of
An. arabiensis by 48% and 25% respectively, but had no effect on other species. Conclusion: This push-pull system offered modest protection against outdoor-biting
An. arabiensis, without increasing indoor mosquito densities. Additional experimentation is required to assess how transfluthrin-based products affect mosquito blood-feeding and mortality in push-pull contexts. This approach, if optimised, could potentially complement existing malaria interventions even in areas with high pyrethroid resistance.
Collapse
Affiliation(s)
- Arnold S Mmbando
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,Univeristy of Basel, Basel, Switzerland
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Masoud Kilalangongono
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Said Abbas
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Nancy S Matowo
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Sarah J Moore
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,Univeristy of Basel, Basel, Switzerland
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Semi-field assessment of the BG-Malaria trap for monitoring the African malaria vector, Anopheles arabiensis. PLoS One 2017; 12:e0186696. [PMID: 29045484 PMCID: PMC5646867 DOI: 10.1371/journal.pone.0186696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/05/2017] [Indexed: 11/19/2022] Open
Abstract
Odour-baited technologies are increasingly considered for effective monitoring of mosquito populations and for the evaluation of vector control interventions. The BG-Malaria trap (BGM), which is an upside-down variant of the widely used BG-Sentinel trap (BGS), has been demonstrated to be effective to sample the Brazilian malaria vector, Anopheles darlingi. We evaluated the BGM as an improved method for sampling the African malaria vectors, Anopheles arabiensis. Experiments were conducted inside a large semi-field cage to compare trapping efficiencies of BGM and BGS traps, both baited with the synthetic attractant, Ifakara blend, supplemented with CO2. We then compared BGMs baited with either of four synthetic mosquito lures, Ifakara blend, Mbita blend, BG-lure or CO2, and an unbaited BGM. Lastly, we compared BGMs baited with the Ifakara blend dispensed via either nylon strips, BG cartridges (attractant-infused microcapsules encased in cylindrical plastic cartridge) or BG sachets (attractant-infused microcapsules encased in plastic sachets). All tests were conducted between 6P.M. and 7A.M., with 200–600 laboratory-reared An. arabiensis released nightly in the test chamber. The median number of An. arabiensis caught by the BGM per night was 83, IQR:(73.5–97.75), demonstrating clear superiority over BGS (median catch = 32.5 (25.25–37.5)). Compared to unbaited controls, BGMs baited with Mbita blend caught most mosquitoes (45 (29.5–70.25)), followed by BGMs baited with CO2 (42.5 (27.5–64)), Ifakara blend (31 (9.25–41.25)) and BG lure (16 (4–22)). BGM caught 51 (29.5–72.25) mosquitoes/night, when the attractants were dispensed using BG-Cartridges, compared to BG-Sachet (29.5 (24.75–40.5)), and nylon strips (27 (19.25–38.25)), in all cases being significantly superior to unbaited controls (p < 000.1). The findings demonstrate potential of the BGM as a sampling tool for African malaria vectors over the standard BGS trap. Its efficacy can be optimized by selecting appropriate odour baits and odour-dispensing systems.
Collapse
|
14
|
Zhu L, Müller GC, Marshall JM, Arheart KL, Qualls WA, Hlaing WM, Schlein Y, Traore SF, Doumbia S, Beier JC. Is outdoor vector control needed for malaria elimination? An individual-based modelling study. Malar J 2017; 16:266. [PMID: 28673298 PMCID: PMC5496196 DOI: 10.1186/s12936-017-1920-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/27/2017] [Indexed: 11/17/2022] Open
Abstract
Background Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. Methods A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. Results In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, but there were no significant difference in the probability of mosquito extinction and the time when annual EIR is less than one between 50% LLIN and outdoor ATSBs; and there was no significant difference in EIR between all three interventions. A minimum of 2 months of efficacy period is needed to bring out the best possible effect of the vector control tools, and to achieve long-term mosquito reduction, a minimum of 3 months of efficacy period is needed. Conclusions The results highlight the value of incorporating outdoor vector control into IVM as a supplement to traditional indoor practices for malaria elimination in Africa, especially in village settings of clustered houses where LLINs alone is far from sufficient.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Günter C Müller
- Department of Microbiology and Molecular Genetics, IMRIC, Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, Hebrew University, Jerusalem, Israel.,Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Bamako, BP 1805, Bamako, Mali
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Kristopher L Arheart
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Whitney A Qualls
- Zoonosis Control Branch, Texas Department of State Health Services, Austin, TX, USA
| | - WayWay M Hlaing
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yosef Schlein
- Department of Microbiology and Molecular Genetics, IMRIC, Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Sekou F Traore
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Bamako, BP 1805, Bamako, Mali
| | - Seydou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Bamako, BP 1805, Bamako, Mali
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
15
|
Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M, Okumu FO. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania. PLoS One 2017; 12:e0177807. [PMID: 28542335 PMCID: PMC5436825 DOI: 10.1371/journal.pone.0177807] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/03/2017] [Indexed: 11/26/2022] Open
Abstract
Malaria is transmitted by many Anopheles species whose proportionate contributions vary across settings. We re-assessed the roles of Anopheles arabiensis and Anopheles funestus, and examined potential benefits of species-specific interventions in an area in south-eastern Tanzania, where malaria transmission persists, four years after mass distribution of long-lasting insecticide-treated nets (LLINs). Monthly mosquito sampling was done in randomly selected households in three villages using CDC light traps and back-pack aspirators, between January-2015 and January-2016, four years after the last mass distribution of LLINs in 2011. Multiplex polymerase chain reaction (PCR) was used to identify members of An. funestus and Anopheles gambiae complexes. Enzyme-linked immunosorbent assay (ELISA) was used to detect Plasmodium sporozoites in mosquito salivary glands, and to identify sources of mosquito blood meals. WHO susceptibility assays were done on wild caught female An. funestus s.l, and physiological ages approximated by examining mosquito ovaries for parity. A total of 20,135 An. arabiensis and 4,759 An. funestus were collected. The An. funestus group consisted of 76.6% An. funestus s.s, 2.9% An. rivulorum, 7.1% An. leesoni, and 13.4% unamplified samples. Of all mosquitoes positive for Plasmodium, 82.6% were An. funestus s.s, 14.0% were An. arabiensis and 3.4% were An. rivulorum. An. funestus and An. arabiensis contributed 86.21% and 13.79% respectively, of annual entomological inoculation rate (EIR). An. arabiensis fed on humans (73.4%), cattle (22.0%), dogs (3.1%) and chicken (1.5%), but An. funestus fed exclusively on humans. The An. funestus populations were 100% susceptible to organophosphates, pirimiphos methyl and malathion, but resistant to permethrin (10.5% mortality), deltamethrin (18.7%), lambda-cyhalothrin (18.7%) and DDT (26.2%), and had reduced susceptibility to bendiocarb (95%) and propoxur (90.1%). Parity rate was higher in An. funestus (65.8%) than An. arabiensis (44.1%). Though An. arabiensis is still the most abundant vector species here, the remaining malaria transmission is predominantly mediated by An. funestus, possibly due to high insecticide resistance and high survival probabilities. Interventions that effectively target An. funestus mosquitoes could therefore significantly improve control of persistent malaria transmission in south–eastern Tanzania.
Collapse
Affiliation(s)
- Emmanuel W. Kaindoa
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
- University of the Witwatersrand, School of Public Health, Faculty of Health Science, Johannesburg, South Africa
- * E-mail:
| | - Nancy S. Matowo
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Halfan S. Ngowo
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, G12 8QQ, University of Glasgow, Glasgow, United Kingdom
| | - Gustav Mkandawile
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
| | - Arnold Mmbando
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Marcelina Finda
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
| | - Fredros O. Okumu
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Morogoro, Tanzania
- University of the Witwatersrand, School of Public Health, Faculty of Health Science, Johannesburg, South Africa
- Institute of Biodiversity, Animal Health and Comparative Medicine, G12 8QQ, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Masalu JP, Finda M, Okumu FO, Minja EG, Mmbando AS, Sikulu-Lord MT, Ogoma SB. Efficacy and user acceptability of transfluthrin-treated sisal and hessian decorations for protecting against mosquito bites in outdoor bars. Parasit Vectors 2017; 10:197. [PMID: 28427437 PMCID: PMC5397833 DOI: 10.1186/s13071-017-2132-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/05/2017] [Indexed: 11/16/2022] Open
Abstract
Background A number of mosquito vectors bite and rest outdoors, which contributes to sustained residual malaria transmission in endemic areas. Spatial repellents are thought to create a protective “bubble” within which mosquito bites are reduced and may be ideal for outdoor use. This study builds on previous studies that proved efficacy of transfluthrin-treated hessian strips against outdoor biting mosquitoes. The goal of this study was to modify strips into practical, attractive and acceptable transfluthrin treated sisal and hessian emanators that confer protection against potential infectious bites before people use bed nets especially in the early evening and outdoors. This study was conducted in Kilombero Valley, Ulanga District, south-eastern Tanzania. Results The protective efficacy of hand-crafted transfluthrin-treated sisal decorative baskets and hessian wall decorations against early evening outdoor biting malaria vectors was measured by human landing catches (HLC) in outdoor bars during peak outdoor mosquito biting activity (19:00 to 23:00 h). Treated baskets and wall decorations reduced bites of Anopheles arabiensis mosquitoes by 89% (Relative Rate, RR = 0.11, 95% confidence interval, CI: 0.09–0.15, P < 0.001) and 86% (RR = 0.14, 95% CI: 0.11–0.18, P < 0.001), respectively. In addition, they significantly reduced exposure to outdoor bites of Culex spp. by 66% (RR = 0.34, 95% CI: 0.22–0.52, P < 0.001) and 56% (RR = 0.44, 95% CI: 0.29–0.66, P < 0.001), respectively. Conclusion Locally hand-crafted transfluthrin-treated sisal decorative baskets and hessian wall decorations are readily acceptable and confer protection against outdoor biting malaria vectors in the early evening and outdoors: when people are resting on the verandas, porches or in outdoor social places such as bars and restaurants. Additional research can help support the use of such items as complementary interventions to expand protection to communities currently experiencing outdoor transmission of mosquito-borne pathogens.
Collapse
Affiliation(s)
- John P Masalu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O Box 53, Morogoro, United Republic of Tanzania.
| | - Marceline Finda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O Box 53, Morogoro, United Republic of Tanzania
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O Box 53, Morogoro, United Republic of Tanzania.,School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Elihaika G Minja
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O Box 53, Morogoro, United Republic of Tanzania
| | - Arnold S Mmbando
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O Box 53, Morogoro, United Republic of Tanzania
| | | | - Sheila B Ogoma
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O Box 53, Morogoro, United Republic of Tanzania.,US National Research Council, National Academies of Sciences, Engineering and Medicine, Washington, DC, USA
| |
Collapse
|
17
|
Moore SJ. A new perspective on the application of mosquito repellents. THE LANCET. INFECTIOUS DISEASES 2016; 16:1093-1094. [PMID: 27371976 DOI: 10.1016/s1473-3099(16)30207-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Sarah Jane Moore
- Swiss Tropical and Public Health Institute, Basel CH-4002, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Bagamoyo, Pwani, Tanzania.
| |
Collapse
|
18
|
Mmbando AS, Okumu FO, Mgando JP, Sumaye RD, Matowo NS, Madumla E, Kaindoa E, Kiware SS, Lwetoijera DW. Effects of a new outdoor mosquito control device, the mosquito landing box, on densities and survival of the malaria vector, Anopheles arabiensis, inside controlled semi-field settings. Malar J 2015; 14:494. [PMID: 26645085 PMCID: PMC4673850 DOI: 10.1186/s12936-015-1013-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The significance of malaria transmission occurring outdoors has risen even in areas where indoor interventions such as long-lasting insecticidal nets and indoor residual spraying are common. The actual contamination rates and effectiveness of recently developed outdoor mosquito control device, the mosquito landing box (MLB), on densities and daily survival of host-seeking laboratory Anopheles arabiensis, which readily bites humans outdoors was demonstrated. METHODS Experiments were conducted in large semi-field systems (SFS) with human volunteers inside, to mimic natural ecosystems, and using MLBs baited with natural or synthetic human odours and carbon dioxide. The MLBs were dusted with 10% pyriproxyfen (PPF) or entomopathogenic fungi (Metarhizium anisopliae) spores to mark mosquitoes physically contacting the devices. Each night, 400 laboratory-reared An. arabiensis females were released in one SFS chamber with two MLBs, and another chamber without MLBs (control). Mosquitoes were individually recaptured while attempting to bite volunteers inside SFS or by aspiration from SFS walls. Mosquitoes from chambers with PPF-treated MLBs and respective controls were individually dipped in water-filled cups containing ten conspecific third-instar larvae, whose subsequent development was monitored. Mosquitoes recaptured from chambers with fungi-treated MLBs were observed for fungal hyphal growth on their cadavers. Separately, effects on daily survival were determined by exposing An. arabiensis in chambers having MLBs treated with 5% pirimiphos methyl compared to chambers without MLBs (control), after which the mosquitoes were recaptured and monitored individually until they died. RESULTS Up to 63% (152/240) and 43% (92/210) of mosquitoes recaptured inside treatment chambers were contaminated with pyriproxyfen and M. anisopliae, respectively, compared to 8% (19/240) and 0% (0/164) in controls. The mean number of larvae emerging from cups in which adults from chambers with PPF-treated MLBs were dipped was significantly lower [0.75 (0.50-1.01)], than in controls [28.79 (28.32-29.26)], P < 0.001). Daily survival of mosquitoes exposed to 5% pirimiphos methyl was nearly two-fold lower than controls [hazard ratio (HR) = 1.748 (1.551-1.920), P < 0.001]. CONCLUSION High contamination rates in exposed mosquitoes even in presence of humans, demonstrates potential of MLBs for controlling outdoor-biting malaria vectors, either by reducing their survival or directly killing host-seeking mosquitoes. The MLBs also have potential for dispensing filial infanticides, such as PPF, which mosquitoes can transmit to their aquatic habitats for mosquito population control.
Collapse
Affiliation(s)
- Arnold S Mmbando
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
- Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.
| | - Joseph P Mgando
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Robert D Sumaye
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Nancy S Matowo
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
- Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| | - Edith Madumla
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Emmanuel Kaindoa
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Samson S Kiware
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, USA.
| | - Dickson W Lwetoijera
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|