1
|
Lee JH, Meyer EJ, Nenke MA, Lightman SL, Torpy DJ. Cortisol, Stress, and Disease-Bidirectional Associations; Role for Corticosteroid-Binding Globulin? J Clin Endocrinol Metab 2024:dgae412. [PMID: 38941154 DOI: 10.1210/clinem/dgae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 06/30/2024]
Abstract
Selye described stress as a unified neurohormonal mechanism maintaining homeostasis. Acute stress system activation is adaptive through neurocognitive, catecholaminergic, and immunomodulation mechanisms, followed by a reset via cortisol. Stress system components, the sympathoadrenomedullary system, hypothalamic-pituitary-adrenal axis, and limbic structures are implicated in many chronic diseases by establishing an altered homeostatic state, allostasis. Consequent "primary stress system disorders" were popularly accepted, with phenotypes based on conditions such as Cushing syndrome, pheochromocytoma, and adrenal insufficiency. Cardiometabolic and major depressive disorders are candidates for hypercortisolemic etiology, contrasting the "hypocortisolemic symptom triad" of stress sensitivity, chronic fatigue, and pain. However, acceptance of chronic stress etiology requires cause-and-effect associations, and practical utility such as therapeutics altering stress system function. Inherent predispositions to stress system perturbations may be relevant. Glucocorticoid receptor (GR) variants have been associated with metabolic/neuropsychological states. The SERPINA6 gene encoding corticosteroid-binding globulin (CBG), was the sole genetic factor in a single-nucleotide variation-genome-wide association study linkage study of morning plasma cortisol, a risk factor for cardiovascular disease, with alterations in tissue-specific GR-related gene expression. Studies showed genetically predicted high cortisol concentrations are associated with hypertension and anxiety, and low CBG concentrations/binding affinity, with the hypocortisolemic triad. Acquired CBG deficiency in septic shock results in 3-fold higher mortality when hydrocortisone administration produces equivocal results, consistent with CBG's role in spatiotemporal cortisol delivery. We propose some stress system disorders result from constitutional stress system variants rather than stressors themselves. Altered CBG:cortisol buffering may influence interstitial cortisol ultradian surges leading to pathological tissue effects, an example of stress system variants contributing to stress-related disorders.
Collapse
Affiliation(s)
- Jessica H Lee
- Department of Medicine, Adelaide University, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Emily Jane Meyer
- Department of Medicine, Adelaide University, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Endocrine and Diabetes Services, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Marni Anne Nenke
- Department of Medicine, Adelaide University, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Endocrine and Diabetes Services, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Stafford L Lightman
- Systems Neuroendocrinology Research Group, University of Bristol, Bristol, BS1 3NY, UK
| | - David J Torpy
- Department of Medicine, Adelaide University, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|
2
|
Silveira‐Rosa T, Mateus‐Pinheiro A, Correia JS, Silva JM, Martins‐Macedo J, Araújo B, Machado‐Santos AR, Alves ND, Silva M, Loureiro‐Campos E, Sotiropoulos I, Bessa JM, Rodrigues AJ, Sousa N, Patrício P, Pinto L. Suppression of adult cytogenesis in the rat brain leads to sex-differentiated disruption of the HPA axis activity. Cell Prolif 2022; 55:e13165. [PMID: 34970787 PMCID: PMC8828259 DOI: 10.1111/cpr.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The action of stress hormones, mainly glucocorticoids, starts and coordinates the systemic response to stressful events. The HPA axis activity is predicated on information processing and modulation by upstream centres, such as the hippocampus where adult-born neurons (hABN) have been reported to be an important component in the processing and integration of new information. Still, it remains unclear whether and how hABN regulates HPA axis activity and CORT production, particularly when considering sex differences. MATERIALS AND METHODS Using both sexes of a transgenic rat model of cytogenesis ablation (GFAP-Tk rat model), we examined the endocrinological and behavioural effects of disrupting the generation of new astrocytes and neurons within the hippocampal dentate gyrus (DG). RESULTS Our results show that GFAP-Tk male rats present a heightened acute stress response. In contrast, GFAP-Tk female rats have increased corticosterone secretion at nadir, a heightened, yet delayed, response to an acute stress stimulus, accompanied by neuronal hypertrophy in the basal lateral amygdala and increased expression of the glucocorticoid receptors in the ventral DG. CONCLUSIONS Our results reveal that hABN regulation of the HPA axis response is sex-differentiated.
Collapse
Affiliation(s)
- Tiago Silveira‐Rosa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - António Mateus‐Pinheiro
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Department of Internal MedicineCoimbra Hospital and University CenterCoimbraPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Joana Margarida Silva
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Joana Martins‐Macedo
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ana Rita Machado‐Santos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Present address:
Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA
- Present address:
New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Mariana Silva
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Eduardo Loureiro‐Campos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - João Miguel Bessa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| |
Collapse
|
3
|
Thomas J, Thomson EM. Modulation by Ozone of Glucocorticoid-Regulating Factors in the Lungs in Relation to Stress Axis Reactivity. TOXICS 2021; 9:toxics9110290. [PMID: 34822681 PMCID: PMC8622418 DOI: 10.3390/toxics9110290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Exposure to air pollutants increases levels of circulating glucocorticoid stress hormones that exert profound effects relevant to health and disease. However, the nature and magnitude of tissue-level effects are modulated by factors that regulate local glucocorticoid activity; accordingly, inter-individual differences could contribute to susceptibility. In the present study, we characterized effects of ozone (O3) inhalation on glucocorticoid-regulating factors in the lungs of rat strains with contrasting hypothalamic–pituitary–adrenal stress axis responses. Hyper-responsive Fischer (F344) and less responsive Lewis (LEW) rats were exposed to air or 0.8 ppm O3 for 4 h by nose-only inhalation. Levels of the high-specificity and -affinity corticosteroid-binding globulin protein increased in the lungs of both strains proportional to the rise in corticosterone levels following O3 exposure. Ozone reduced the ratio of 11β-hydroxysteroid dehydrogenase type 1 (HSDB1)/HSDB2 mRNA in the lungs of F344 but not LEW, indicating strain-specific transcriptional regulation of the major glucocorticoid metabolism factors that control tissue-level action. Intercellular adhesion molecule (ICAM)-1 and total elastase activity were increased by O3 in both strains, consistent with extravasation and tissue remodeling processes following injury. However, mRNA levels of inflammatory markers were significantly higher in the lungs of O3-exposed LEW compared to F344. The data show that strain differences in the glucocorticoid response to O3 are accompanied by corresponding changes in regulatory factors, and that these effects are collectively associated with a differential inflammatory response to O3. Innate differences in glucocorticoid regulatory factors may modulate the pulmonary effects of inhaled pollutants, thereby contributing to differential susceptibility.
Collapse
Affiliation(s)
- Jith Thomas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Errol M. Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada;
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-941-7151
| |
Collapse
|
4
|
Umlauff L, Weil P, Zimmer P, Hackney AC, Bloch W, Schumann M. Oral Contraceptives Do Not Affect Physiological Responses to Strength Exercise. J Strength Cond Res 2021; 35:894-901. [PMID: 33555830 DOI: 10.1519/jsc.0000000000003958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Umlauff, L, Weil, P, Zimmer, P, Hackney, AC, Bloch, W, and Schumann, M. Oral contraceptives do not affect physiological responses to strength exercise. J Strength Cond Res 35(4): 894-901, 2021-This study investigated the effect of oral contraceptive (OC) use on acute changes in steroid hormone concentrations and tryptophan (TRP) metabolites in response to strength exercise. Twenty-one women (age: 23 ± 3 years), 8 combined OC users (OC group) and 13 naturally cycling women (menstrual cycle [MC] group), participated. Testing was performed during the pill-free interval for the OC group and the follicular phase for the MC group. Subjects completed an intense strength exercise protocol (4 × 10 repetitions back squat). Blood samples were taken at baseline (T0), post-exercise (T1), and after 24 hours (T2) to determine serum concentrations of cortisol, estradiol, testosterone, TRP, and kynurenine (KYN). Statistical significance was defined as p ≤ 0.05. At T0, the OC group showed higher cortisol (OC: 493.7 ± 47.1 ng·mL-1, MC: 299.1 ± 62.7 ng·mL-1, p < 0.001) and blood lactate (OC: 1.81 ± 0.61 mmol·L-1, MC: 1.06 ± 0.30 mmol·L-1, p = 0.001) and lower estradiol (OC: 31.12 ± 4.24 pg·mL-1, MC: 38.34 ± 7.50 pg·mL-1, p = 0.023) and KYN (OC: 1.15 ± 0.23 µmol·L-1, MC: 1.75 ± 0.50 µmol·L-1, p = 0.005). No significant interactions (group × time, p > 0.05) were found for the hormones and TRP metabolites assessed. Oral contraceptive use did not affect the physiological response of steroid hormones and TRP metabolites to acute strength exercise during the low hormone phase of the contraceptive or MC in healthy young women, even when some baseline concentrations differed between groups. Consequently, these findings provide important implications for practitioners testing heterogeneous groups of female athletes.
Collapse
Affiliation(s)
- Lisa Umlauff
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Peter Weil
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Department of Performance and Health (Sports Medicine), Institute of Sport and Sport Science, Technical University Dortmund, Dortmund, Germany; and
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, North Carolina
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Moritz Schumann
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
5
|
Corticosteroid-binding-globulin (CBG)-deficient mice show high pY216-GSK3β and phosphorylated-Tau levels in the hippocampus. PLoS One 2021; 16:e0246930. [PMID: 33592009 PMCID: PMC7886218 DOI: 10.1371/journal.pone.0246930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) is the specific carrier of circulating glucocorticoids, but evidence suggests that it also plays an active role in modulating tissue glucocorticoid activity. CBG polymorphisms affecting its expression or affinity for glucocorticoids are associated with chronic pain, chronic fatigue, headaches, depression, hypotension, and obesity with an altered hypothalamic pituitary adrenal axis. CBG has been localized in hippocampus of humans and rodents, a brain area where glucocorticoids have an important regulatory role. However, the specific CBG function in the hippocampus is yet to be established. The aim of this study was to investigate the effect of the absence of CBG on hippocampal glucocorticoid levels and determine whether pathways regulated by glucocorticoids would be altered. We used cbg-/- mice, which display low total-corticosterone and high free-corticosterone blood levels at the nadir of corticosterone secretion (morning) and at rest to evaluate the hippocampus for total- and free-corticosterone levels; 11β-hydroxysteroid dehydrogenase expression and activity; the expression of key proteins involved in glucocorticoid activity and insulin signaling; microtubule-associated protein tau phosphorylation, and neuronal and synaptic function markers. Our results revealed that at the nadir of corticosterone secretion in the resting state the cbg-/- mouse hippocampus exhibited slightly elevated levels of free-corticosterone, diminished FK506 binding protein 5 expression, increased corticosterone downstream effectors and altered MAPK and PI3K pathway with increased pY216-GSK3β and phosphorylated tau. Taken together, these results indicate that CBG deficiency triggers metabolic imbalance which could lead to damage and long-term neurological pathologies.
Collapse
|
6
|
Jiménez-Alesanco A, Marcuello M, Pastor-Jiménez M, López-Puerto L, Bonjoch L, Gironella M, Carrascal M, Abian J, de-Madaria E, Closa D. Acute pancreatitis promotes the generation of two different exosome populations. Sci Rep 2019; 9:19887. [PMID: 31882721 PMCID: PMC6934470 DOI: 10.1038/s41598-019-56220-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small extracellular vesicles that act as intercellular messengers. Previous studies revealed that, during acute pancreatitis, circulating exosomes could reach the alveolar compartment and activate macrophages. However, proteomic analysis suggested that the most likely origin of these exosomes could be the liver instead of the pancreas. The present study aimed to characterize the exosomes released by pancreas to pancreatitis-associated ascitic fluid (PAAF) as well as those circulating in plasma in an experimental model of taurocholate-induced acute pancreatitis in rats. We provide evidence that during acute pancreatitis two different populations of exosomes are generated with relevant differences in cell distribution, protein and microRNA content as well as different implications in their physiological effects. During pancreatitis plasma exosomes, but not PAAF exosomes, are enriched in the inflammatory miR-155 and show low levels of miR-21 and miR-122. Mass spectrometry-based proteomic analysis showed that PAAF exosomes contains 10–30 fold higher loading of histones and ribosomal proteins compared to plasma exosomes. Finally, plasma exosomes have higher pro-inflammatory activity on macrophages than PAAF exosomes. These results confirm the generation of two different populations of exosomes during acute pancreatitis. Deep understanding of their specific functions will be necessary to use them as therapeutic targets at different stages of the disease.
Collapse
Affiliation(s)
- A Jiménez-Alesanco
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M Marcuello
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)-IDIBAPS-Hospital Clínic de Barcelona, Barcelona, Spain
| | - M Pastor-Jiménez
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - L López-Puerto
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - L Bonjoch
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M Gironella
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)-IDIBAPS-Hospital Clínic de Barcelona, Barcelona, Spain
| | - M Carrascal
- Proteomics Facility, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas/Universitat Autònoma de Barcelona (CSIC/UAB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - J Abian
- Proteomics Facility, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas/Universitat Autònoma de Barcelona (CSIC/UAB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E de-Madaria
- Pancreatic Unit, Department of Gastroenterology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL - Fundación FISABIO), Alicante, Spain
| | - D Closa
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
7
|
Corticosteroid-Binding Globulin is expressed in the adrenal gland and its absence impairs corticosterone synthesis and secretion in a sex-dependent manner. Sci Rep 2019; 9:14018. [PMID: 31570737 PMCID: PMC6769001 DOI: 10.1038/s41598-019-50355-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Corticosteroid-binding globulin (CBG) is synthesized by the liver and secreted into the bloodstream where binds to glucocorticoids. Thus CBG has the role of glucocorticoid transport and free hormone control. In addition, CBG has been detected in some extrahepatic tissues without a known role. CBG-deficient mice show decreased total corticosterone levels with missing of classical sexual dimorphism, increased free corticosterone, higher adrenal gland size and altered HPA axis response to stress. Our aim was to ascertain whether CBG deficiency could affect the endocrine synthetic activity of adrenal gland and if the adrenal gland produces CBG. We determined the expression in adrenal gland of proteins involved in the cholesterol uptake and its transport to mitochondria and the main enzymes involved in the corticosterone, aldosterone and catecholamine synthesis. The results showed that CBG is synthesized in the adrenal gland. CBG-deficiency reduced the expression of ACTH receptor, SRB1 and the main genes involved in the adrenal hormones synthesis, stronger in females resulting in the loss of sexual dimorphism in corticosteroid adrenal synthesis, despite corticosterone content in adrenal glands from CBG-deficient females was similar to wildtype ones. In conclusion, these results point to an unexplored and relevant role of CBG in the adrenal gland functionality related to corticosterone production and release.
Collapse
|
8
|
Åhrman E, Hallgren O, Malmström L, Hedström U, Malmström A, Bjermer L, Zhou XH, Westergren-Thorsson G, Malmström J. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. J Proteomics 2018; 189:23-33. [DOI: 10.1016/j.jprot.2018.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/05/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022]
|
9
|
Tchoukaev A, Taytard J, Rousselet N, Rebeyrol C, Debray D, Blouquit-Laye S, Moisan MP, Foury A, Guillot L, Corvol H, Tabary O, Le Rouzic P. Opposite Expression of Hepatic and Pulmonary Corticosteroid-Binding Globulin in Cystic Fibrosis Patients. Front Pharmacol 2018; 9:545. [PMID: 29922157 PMCID: PMC5996105 DOI: 10.3389/fphar.2018.00545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/08/2018] [Indexed: 01/02/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by a chronic pulmonary inflammation. In CF, glucocorticoids (GC) are widely used, but their efficacy and benefit/risk ratio are still debated. In plasma, corticosteroid-binding globulin (CBG) binds 90% of GC and delivers them to the inflammatory site. The main goal of this work was to study CBG expression in CF patients in order to determine whether CBG could be used to optimize GC treatment. The expression of CBG was measured in liver samples from CF cirrhotic and non-CF cirrhotic patients by qPCR and Western blot and in lung samples from non-CF and CF patients by qPCR. CBG binding assays with 3H-cortisol and the measurement of the elastase/α1-antitrypsin complex were performed using the plasmas. CBG expression increased in the liver at the transcript and protein level but not in the plasma of CF patients. This is possibly due to an increase of plasmatic elastase. We demonstrated that pulmonary CBG was expressed in the bronchi and bronchioles and its expression decreased in the CF lungs, at both levels studied. Despite the opposite expression of hepatic and pulmonary CBG in CF patients, the concentration of CBG in the plasma was normal. Thus, CBG might be useful to deliver an optimized synthetic GC displaying high affinity for CBG to the main inflammatory site in the context of CF, e.g., the lung.
Collapse
Affiliation(s)
- Anastasia Tchoukaev
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Jessica Taytard
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France.,Pediatric Respiratory Department, Trousseau Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Nathalie Rousselet
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Carine Rebeyrol
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Dominique Debray
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France.,Pediatric Hepatology Unit, Necker Enfants Malades Hospital, Paris, France
| | - Sabine Blouquit-Laye
- INSERM U1173, UFR des Sciences de la Santé Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France
| | - Marie-Pierre Moisan
- INRA, Laboratoire NutriNeurO, UMR 1286, Université de Bordeaux, Bordeaux, France
| | - Aline Foury
- INRA, Laboratoire NutriNeurO, UMR 1286, Université de Bordeaux, Bordeaux, France
| | - Loic Guillot
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Harriet Corvol
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France.,Pediatric Respiratory Department, Trousseau Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Olivier Tabary
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Philippe Le Rouzic
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| |
Collapse
|
10
|
Corticosteroid-binding globulin, induced in testicular Leydig cells by perfluorooctanoic acid, promotes steroid hormone synthesis. Arch Toxicol 2018; 92:2013-2025. [DOI: 10.1007/s00204-018-2207-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/25/2018] [Indexed: 12/19/2022]
|
11
|
Gulfo J, Ledda A, Serra E, Cabot C, Esteve M, Grasa M. Altered lipid partitioning and glucocorticoid availability in CBG-deficient male mice with diet-induced obesity. Obesity (Silver Spring) 2016; 24:1677-86. [PMID: 27323695 DOI: 10.1002/oby.21543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate how deficiency in corticosteroid-binding globulin (CBG), the specific carrier of glucocorticoids, affects glucocorticoid availability and adipose tissue in obesity. METHODS C57BL/6 (WT) and CBG-deficient (KO) male mice were fed during 12 weeks with standard or hyperlipidic diet (HL). Glucocorticoid availability and metabolic parameters were assessed. RESULTS Body weight and food intake were increased in KO compared with WT mice fed a standard diet and were similar when fed a HL diet. Expression of CBG was found in white adipose tissue by immunochemistry, real-time PCR, and Western blot. In obesity, the subcutaneous depot developed less in KO mice compared with WT, which was associated with a minor adipocyte area and peroxisome proliferator-activated receptor-γ expression. Conversely, the epididymal depot displayed higher weight and adipocyte area in KO than in WT mice. CBG deficiency caused a fall of hepatic 11β-hydroxysteroid dehydrogenase type 2 expression and an increase in epidymal adipose tissue, particularly in HL mice. CONCLUSIONS Deficiency in CBG drives lipid partitioning from subcutaneous to visceral adipose depot under a context of lipid excess and differentially modulates 11β-hydroxysteroid dehydrogenase type 2 expression.
Collapse
Affiliation(s)
- José Gulfo
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| | - Angelo Ledda
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| | - Elisabet Serra
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Cristina Cabot
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Montserrat Esteve
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| | - Mar Grasa
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| |
Collapse
|