1
|
Spencer N, Łukasik P, Meyer M, Veloso C, McCutcheon JP. No Transcriptional Compensation for Extreme Gene Dosage Imbalance in Fragmented Bacterial Endosymbionts of Cicadas. Genome Biol Evol 2023; 15:evad100. [PMID: 37267326 PMCID: PMC10287537 DOI: 10.1093/gbe/evad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Bacteria that form long-term intracellular associations with host cells lose many genes, a process that often results in tiny, gene-dense, and stable genomes. Paradoxically, the some of the same evolutionary processes that drive genome reduction and simplification may also cause genome expansion and complexification. A bacterial endosymbiont of cicadas, Hodgkinia cicadicola, exemplifies this paradox. In many cicada species, a single Hodgkinia lineage with a tiny, gene-dense genome has split into several interdependent cell and genome lineages. Each new Hodgkinia lineage encodes a unique subset of the ancestral unsplit genome in a complementary way, such that the collective gene contents of all lineages match the total found in the ancestral single genome. This splitting creates genetically distinct Hodgkinia cells that must function together to carry out basic cellular processes. It also creates a gene dosage problem where some genes are encoded by only a small fraction of cells while others are much more abundant. Here, by sequencing DNA and RNA of Hodgkinia from different cicada species with different amounts of splitting-along with its structurally stable, unsplit partner endosymbiont Sulcia muelleri-we show that Hodgkinia does not transcriptionally compensate to rescue the wildly unbalanced gene and genome ratios that result from lineage splitting. We also find that Hodgkinia has a reduced capacity for basic transcriptional control independent of the splitting process. Our findings reveal another layer of degeneration further pushing the limits of canonical molecular and cell biology in Hodgkinia and may partially explain its propensity to go extinct through symbiont replacement.
Collapse
Affiliation(s)
- Noah Spencer
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Mariah Meyer
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
2
|
Kim Tiam S, Boubakri H, Bethencourt L, Abrouk D, Fournier P, Herrera-Belaroussi A. Genomic Insights of Alnus-Infective Frankia Strains Reveal Unique Genetic Features and New Evidence on Their Host-Restricted Lifestyle. Genes (Basel) 2023; 14:530. [PMID: 36833457 PMCID: PMC9956245 DOI: 10.3390/genes14020530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023] Open
Abstract
The present study aimed to use comparative genomics to explore the relationships between Frankia and actinorhizal plants using a data set made of 33 Frankia genomes. The determinants of host specificity were first explored for "Alnus-infective strains" (i.e., Frankia strains belonging to Cluster Ia). Several genes were specifically found in these strains, including an agmatine deiminase which could possibly be involved in various functions as access to nitrogen sources, nodule organogenesis or plant defense. Within "Alnus-infective strains", Sp+ Frankia genomes were compared to Sp- genomes in order to elucidate the narrower host specificity of Sp+ strains (i.e., Sp+ strains being capable of in planta sporulation, unlike Sp- strains). A total of 88 protein families were lost in the Sp+ genomes. The lost genes were related to saprophytic life (transcriptional factors, transmembrane and secreted proteins), reinforcing the proposed status of Sp+ as obligatory symbiont. The Sp+ genomes were also characterized by a loss of genetic and functional paralogs, highlighting a reduction in functional redundancy (e.g., hup genes) or a possible loss of function related to a saprophytic lifestyle (e.g., genes involved in gas vesicle formation or recycling of nutrients).
Collapse
Affiliation(s)
- Sandra Kim Tiam
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
- UMR CNRS 5557 Ecologie Microbienne, INRA UMR 1418, Centre d’Etude des Substances Naturelles, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Lorine Bethencourt
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Danis Abrouk
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Pascale Fournier
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Aude Herrera-Belaroussi
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| |
Collapse
|
3
|
Regulatory Interplay between RNase III and Antisense RNAs in E. coli: the Case of AsflhD and FlhD, Component of the Master Regulator of Motility. mBio 2022; 13:e0098122. [PMID: 36000733 PMCID: PMC9600491 DOI: 10.1128/mbio.00981-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to respond to ever-changing environmental cues, bacteria display resilient regulatory mechanisms controlling gene expression. At the post-transcriptional level, this is achieved by a combination of RNA-binding proteins, such as ribonucleases (RNases), and regulatory RNAs, including antisense RNAs (asRNAs). Bound to their complementary mRNA, asRNAs are primary targets for the double-strand-specific endoribonuclease, RNase III. Taking advantage of our own and previously published transcriptomic data sets obtained in strains inactivated for RNase III, we selected several candidate asRNAs and confirmed the existence of RNase III-sensitive asRNAs for crp, ompR, phoP, and flhD genes, all encoding global regulators of gene expression in Escherichia coli. Using FlhD, a component of the master regulator of motility (FlhD4C2), as our model, we demonstrate that the asRNA AsflhD, transcribed from the coding sequence of flhD, is involved in the fine-tuning of flhD expression and thus participates in the control of motility.
Collapse
|
4
|
Galán-Vásquez E, Gómez-García MDC, Pérez-Rueda E. A landscape of gene regulation in the parasitic amoebozoa Entamoeba spp. PLoS One 2022; 17:e0271640. [PMID: 35913975 PMCID: PMC9342746 DOI: 10.1371/journal.pone.0271640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
Entamoeba are amoeboid extracellular parasites that represent an important group of organisms for which the regulatory networks must be examined to better understand how genes and functional processes are interrelated. In this work, we inferred the gene regulatory networks (GRNs) in four Entamoeba species, E. histolytica, E. dispar, E. nuttalli, and E. invadens, and the GRN topological properties and the corresponding biological functions were evaluated. From these analyses, we determined that transcription factors (TFs) of E. histolytica, E. dispar, and E. nuttalli are associated mainly with the LIM family, while the TFs in E. invadens are associated with the RRM_1 family. In addition, we identified that EHI_044890 regulates 121 genes in E. histolytica, EDI_297980 regulates 284 genes in E. dispar, ENU1_120230 regulates 195 genes in E. nuttalli, and EIN_249270 regulates 257 genes in E. invadens. Finally, we identified that three types of processes, Macromolecule metabolic process, Cellular macromolecule metabolic process, and Cellular nitrogen compound metabolic process, are the main biological processes for each network. The results described in this work can be used as a basis for the study of gene regulation in these organisms.
Collapse
Affiliation(s)
- Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
- * E-mail: (EG-V); (EP-R)
| | - María del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Unidad Académica Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
- * E-mail: (EG-V); (EP-R)
| |
Collapse
|
5
|
Cano R, Lenz AR, Galan-Vasquez E, Ramirez-Prado JH, Perez-Rueda E. Gene Regulatory Network Inference and Gene Module Regulating Virulence in Fusarium oxysporum. Front Microbiol 2022; 13:861528. [PMID: 35722316 PMCID: PMC9201490 DOI: 10.3389/fmicb.2022.861528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022] Open
Abstract
In this work, we inferred the gene regulatory network (GRN) of the fungus Fusarium oxysporum by using the regulatory networks of Aspergillus nidulans FGSC A4, Neurospora crassa OR74A, Saccharomyces cerevisiae S288c, and Fusarium graminearum PH-1 as templates for sequence comparisons. Topological properties to infer the role of transcription factors (TFs) and to identify functional modules were calculated in the GRN. From these analyzes, five TFs were identified as hubs, including FOXG_04688 and FOXG_05432, which regulate 2,404 and 1,864 target genes, respectively. In addition, 16 communities were identified in the GRN, where the largest contains 1,923 genes and the smallest contains 227 genes. Finally, the genes associated with virulence were extracted from the GRN and exhaustively analyzed, and we identified a giant module with ten TFs and 273 target genes, where the most highly connected node corresponds to the transcription factor FOXG_05265, homologous to the putative bZip transcription factor CPTF1 of Claviceps purpurea, which is involved in ergotism disease that affects cereal crops and grasses. The results described in this work can be used for the study of gene regulation in this organism and open the possibility to explore putative genes associated with virulence against their host.
Collapse
Affiliation(s)
- Regnier Cano
- Centro de Investigaciones Científicas de Yucatán, Mérida, Mexico
| | - Alexandre Rafael Lenz
- Departamento de Ciências Exatas e da Terra, Universidade do Estado da Bahia, Salvador, Brazil
| | - Edgardo Galan-Vasquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico, Mexico
| | | | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Académica Yucatán Universidad Nacional Autónoma de México, Mérida, Mexico
| |
Collapse
|
6
|
Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JHP. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch Microbiol 2022; 204:144. [PMID: 35044532 DOI: 10.1007/s00203-022-02757-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Microorganisms are ubiquitous on Earth and can inhabit almost every environment. In a complex heterogeneous environment or in face of ecological disturbance, the microbes adjust to fluctuating environmental conditions through a cascade of cellular and molecular systems. Their habitats differ from cold microcosms of Antarctica to the geothermal volcanic areas, terrestrial to marine, highly alkaline zones to the extremely acidic areas and freshwater to brackish water sources. The diverse ecological microbial niches are attributed to the versatile, adaptable nature under fluctuating temperature, nutrient availability and pH of the microorganisms. These organisms have developed a series of mechanisms to face the environmental changes and thereby keep their role in mediate important ecosystem functions. The underlying mechanisms of adaptable microbial nature are thoroughly investigated at the cellular, genetic and molecular levels. The adaptation is mediated by a spectrum of processes like natural selection, genetic recombination, horizontal gene transfer, DNA damage repair and pleiotropy-like events. This review paper provides the fundamentals insight into the microbial adaptability besides highlighting the molecular network of microbial adaptation under different environmental conditions.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | | | | |
Collapse
|
7
|
Rangel-Chávez CP, Galán-Vásquez E, Pescador-Tapia A, Delaye L, Martínez-Antonio A. RNA polymerases in strict endosymbiont bacteria with extreme genome reduction show distinct erosions that might result in limited and differential promoter recognition. PLoS One 2021; 16:e0239350. [PMID: 34324516 PMCID: PMC8321222 DOI: 10.1371/journal.pone.0239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/22/2021] [Indexed: 11/26/2022] Open
Abstract
Strict endosymbiont bacteria present high degree genome reduction, retain smaller proteins, and in some instances, lack complete functional domains compared to free-living counterparts. Until now, the mechanisms underlying these genetic reductions are not well understood. In this study, the conservation of RNA polymerases, the essential machinery for gene expression, is analyzed in endosymbiont bacteria with extreme genome reductions. We analyzed the RNA polymerase subunits to identify and define domains, subdomains, and specific amino acids involved in precise biological functions known in Escherichia coli. We also perform phylogenetic analysis and three-dimensional models over four lineages of endosymbiotic proteobacteria with the smallest genomes known to date: Candidatus Hodgkinia cicadicola, Candidatus Tremblaya phenacola, Candidatus Tremblaya Princeps, Candidatus Nasuia deltocephalinicola, and Candidatus Carsonella ruddii. We found that some Hodgkinia strains do not encode for the RNA polymerase α subunit. The rest encode genes for α, β, β', and σ subunits to form the RNA polymerase. However, 16% shorter, on average, respect their orthologous in E. coli. In the α subunit, the amino-terminal domain is the most conserved. Regarding the β and β' subunits, both the catalytic core and the assembly domains are the most conserved. However, they showed compensatory amino acid substitutions to adapt to changes in the σ subunit. Precisely, the most erosive diversity occurs within the σ subunit. We identified broad amino acid substitution even in those recognizing and binding to the -10-box promoter element. In an overall conceptual image, the RNA polymerase from Candidatus Nasuia conserved the highest similarity with Escherichia coli RNA polymerase and their σ70. It might be recognizing the two main promoter elements (-10 and -35) and the two promoter accessory elements (-10 extended and UP-element). In Candidatus Carsonella, the RNA polymerase could recognize all the promoter elements except the -10-box extended. In Candidatus Tremblaya and Hodgkinia, due to the α carboxyl-terminal domain absence, they might not recognize the UP-promoter element. We also identified the lack of the β flap-tip helix domain in most Hodgkinia's that suggests the inability to bind the -35-box promoter element.
Collapse
Affiliation(s)
- Cynthia Paola Rangel-Chávez
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, CDMX, México
| | - Azucena Pescador-Tapia
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Luis Delaye
- Evolutionary Genomics Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| |
Collapse
|
8
|
Soberanes-Gutiérrez CV, Pérez-Rueda E, Ruíz-Herrera J, Galán-Vásquez E. Identifying Genes Devoted to the Cell Death Process in the Gene Regulatory Network of Ustilago maydis. Front Microbiol 2021; 12:680290. [PMID: 34093501 PMCID: PMC8175908 DOI: 10.3389/fmicb.2021.680290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/30/2021] [Indexed: 01/26/2023] Open
Abstract
Cell death is a process that can be divided into three morphological patterns: apoptosis, autophagy and necrosis. In fungi, cell death is induced in response to intracellular and extracellular perturbations, such as plant defense molecules, toxins and fungicides, among others. Ustilago maydis is a dimorphic fungus used as a model for pathogenic fungi of animals, including humans, and plants. Here, we reconstructed the transcriptional regulatory network of U. maydis, through homology inferences by using as templates the well-known gene regulatory networks (GRNs) of Saccharomyces cerevisiae, Aspergillus nidulans and Neurospora crassa. Based on this GRN, we identified transcription factors (TFs) as hubs and functional modules and calculated diverse topological metrics. In addition, we analyzed exhaustively the module related to cell death, with 60 TFs and 108 genes, where diverse cell proliferation, mating-type switching and meiosis, among other functions, were identified. To determine the role of some of these genes, we selected a set of 11 genes for expression analysis by qRT-PCR (sin3, rlm1, aif1, tdh3 [isoform A], tdh3 [isoform B], ald4, mca1, nuc1, tor1, ras1, and atg8) whose homologues in other fungi have been described as central in cell death. These genes were identified as downregulated at 72 h, in agreement with the beginning of the cell death process. Our results can serve as the basis for the study of transcriptional regulation, not only of the cell death process but also of all the cellular processes of U. maydis.
Collapse
Affiliation(s)
- Cinthia V. Soberanes-Gutiérrez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Mexico
| | - Ernesto Pérez-Rueda
- Unidad Académica Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Mexico
| | - José Ruíz-Herrera
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Mexico
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigación en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México - Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
9
|
Determination and Dissection of DNA-Binding Specificity for the Thermus thermophilus HB8 Transcriptional Regulator TTHB099. Int J Mol Sci 2020; 21:ijms21217929. [PMID: 33114549 PMCID: PMC7662524 DOI: 10.3390/ijms21217929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/26/2023] Open
Abstract
Transcription factors (TFs) have been extensively researched in certain well-studied organisms, but far less so in others. Following the whole-genome sequencing of a new organism, TFs are typically identified through their homology with related proteins in other organisms. However, recent findings demonstrate that structurally similar TFs from distantly related bacteria are not usually evolutionary orthologs. Here we explore TTHB099, a cAMP receptor protein (CRP)-family TF from the extremophile Thermus thermophilus HB8. Using the in vitro iterative selection method Restriction Endonuclease Protection, Selection and Amplification (REPSA), we identified the preferred DNA-binding motif for TTHB099, 5′–TGT(A/g)NBSYRSVN(T/c)ACA–3′, and mapped potential binding sites and regulated genes within the T. thermophilus HB8 genome. Comparisons with expression profile data in TTHB099-deficient and wild type strains suggested that, unlike E. coli CRP (CRPEc), TTHB099 does not have a simple regulatory mechanism. However, we hypothesize that TTHB099 can be a dual-regulator similar to CRPEc.
Collapse
|
10
|
Li X, Ren F, Cai G, Huang P, Chai Q, Gundogdu O, Jiao X, Huang J. Investigating the Role of FlhF Identifies Novel Interactions With Genes Involved in Flagellar Synthesis in Campylobacter jejuni. Front Microbiol 2020; 11:460. [PMID: 32265885 PMCID: PMC7105676 DOI: 10.3389/fmicb.2020.00460] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
FlhF is a key protein required for complete flagellar synthesis, and its deletion results in the complete absence of a flagella and thus motility in Campylobacter jejuni. However, the specific mechanism still remains unknown. In this study, RNA-Seq, EMSAs, ChIP-qPCR and β-Galactosidase assays were performed to elucidate the novel interactions between FlhF and genes involved in flagellar synthesis. Results showed that FlhF has an overall influence on the transcription of flagellar genes with an flhF mutant displaying down-regulation of most flagellar related genes. FlhF can directly bind to the flgI promoter to regulate its expression, which has significant expression change in an flhF mutant. The possible binding site of FlhF to the flgI promoter was explored by continuously narrowing the flgI promoter region and performing further point mutations. Meanwhile, FlhF can directly bind to the promoters of rpoD, flgS, and fliA encoding early flagellin regulators, thereby directly or indirectly regulating the synthesis of class I, II, and III flagellar genes, respectively. Collectively, this study demonstrates that FlhF may directly regulate the transcription of flagellar genes by binding to their promoters as a transcriptional regulator, which will be helpful in understanding the mechanism of FlhF in flagellar biosynthetic and bacterial flagellation in general.
Collapse
Affiliation(s)
- Xiaofei Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Fangzhe Ren
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Guoqiang Cai
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Pingyu Huang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Qinwen Chai
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, China
| | - Jinlin Huang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, China
| |
Collapse
|
11
|
Abstract
Bacteria participate in a wide diversity of symbiotic associations with eukaryotic hosts that require precise interactions for bacterial recognition and persistence. Most commonly, host-associated bacteria interfere with host gene expression to modulate the immune response to the infection. However, many of these bacteria also interfere with host cellular differentiation pathways to create a hospitable niche, resulting in the formation of novel cell types, tissues, and organs. In both of these situations, bacterial symbionts must interact with eukaryotic regulatory pathways. Here, we detail what is known about how bacterial symbionts, from pathogens to mutualists, control host cellular differentiation across the central dogma, from epigenetic chromatin modifications, to transcription and mRNA processing, to translation and protein modifications. We identify four main trends from this survey. First, mechanisms for controlling host gene expression appear to evolve from symbionts co-opting cross-talk between host signaling pathways. Second, symbiont regulatory capacity is constrained by the processes that drive reductive genome evolution in host-associated bacteria. Third, the regulatory mechanisms symbionts exhibit correlate with the cost/benefit nature of the association. And, fourth, symbiont mechanisms for interacting with host genetic regulatory elements are not bound by native bacterial capabilities. Using this knowledge, we explore how the ubiquitous intracellular Wolbachia symbiont of arthropods and nematodes may modulate host cellular differentiation to manipulate host reproduction. Our survey of the literature on how infection alters gene expression in Wolbachia and its hosts revealed that, despite their intermediate-sized genomes, different strains appear capable of a wide diversity of regulatory manipulations. Given this and Wolbachia's diversity of phenotypes and eukaryotic-like proteins, we expect that many symbiont-induced host differentiation mechanisms will be discovered in this system.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | | |
Collapse
|
12
|
Monteiro LMO, Arruda LM, Sanches-Medeiros A, Martins-Santana L, Alves LDF, Defelipe L, Turjanski AG, Guazzaroni ME, de Lorenzo V, Silva-Rocha R. Reverse Engineering of an Aspirin-Responsive Transcriptional Regulator in Escherichia coli. ACS Synth Biol 2019; 8:1890-1900. [PMID: 31362496 DOI: 10.1021/acssynbio.9b00191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bacterial transcription factors (TFs) are key devices for the engineering of complex circuits in many biotechnological applications, yet there are few well-characterized inducer-responsive TFs that could be used in the context of an animal or human host. We have deciphered the inducer recognition mechanism of two AraC/XylS regulators from Pseudomonas putida (BenR and XylS) for creating a novel expression system responsive to acetyl salicylate (i.e., aspirin). Using protein homology modeling and molecular docking with the cognate inducer benzoate and a suite of chemical analogues, we identified the conserved binding pocket of BenR and XylS. By means of site-directed mutagenesis, we identified a single amino acid position required for efficient inducer recognition and transcriptional activation. Whereas this modification in BenR abolishes protein activity, in XylS, it increases the response to several inducers, including acetyl salicylic acid, to levels close to those achieved by the canonical inducer. Moreover, by constructing chimeric proteins with swapped N-terminal domains, we created novel regulators with mixed promoter and inducer recognition profiles. As a result, a collection of engineered TFs was generated with an enhanced response to benzoate, 3-methylbenzoate, 2-methylbenzoate, 4-methylbenzoate, salicylic acid, aspirin, and acetylsalicylic acid molecules for eliciting gene expression in E. coli.
Collapse
Affiliation(s)
| | - Letı́cia Magalhães Arruda
- Cell and Molecular Biology Department, FMRP − University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Ananda Sanches-Medeiros
- Cell and Molecular Biology Department, FMRP − University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Leonardo Martins-Santana
- Cell and Molecular Biology Department, FMRP − University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Luana de Fátima Alves
- Biology Department, FFCLRP − University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Lucas Defelipe
- Departamento de Quı́mica Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- IQUIBICEN/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Adrian Gustavo Turjanski
- Departamento de Quı́mica Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- IQUIBICEN/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | | | - Vı́ctor de Lorenzo
- Systems Biology Program, National Center of Biotechnology − CSIC, Madrid 28049, Spain
| | - Rafael Silva-Rocha
- Cell and Molecular Biology Department, FMRP − University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| |
Collapse
|
13
|
Rivera-Gómez N, Martínez-Núñez MA, Pastor N, Rodriguez-Vazquez K, Perez-Rueda E. Dissecting the protein architecture of DNA-binding transcription factors in bacteria and archaea. MICROBIOLOGY-SGM 2017; 163:1167-1178. [PMID: 28777072 DOI: 10.1099/mic.0.000504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene regulation at the transcriptional level is a central process in all organisms where DNA-binding transcription factors play a fundamental role. This class of proteins binds specifically at DNA sequences, activating or repressing gene expression as a function of the cell's metabolic status, operator context and ligand-binding status, among other factors, through the DNA-binding domain (DBD). In addition, TFs may contain partner domains (PaDos), which are involved in ligand binding and protein-protein interactions. In this work, we systematically evaluated the distribution, abundance and domain organization of DNA-binding TFs in 799 non-redundant bacterial and archaeal genomes. We found that the distributions of the DBDs and their corresponding PaDos correlated with the size of the genome. We also identified specific combinations between the DBDs and their corresponding PaDos. Within each class of DBDs there are differences in the actual angle formed at the dimerization interface, responding to the presence/absence of ligands and/or crystallization conditions, setting the orientation of the resulting helices and wings facing the DNA. Our results highlight the importance of PaDos as central elements that enhance the diversity of regulatory functions in all bacterial and archaeal organisms, and our results also demonstrate the role of PaDos in sensing diverse signal compounds. The highly specific interactions between DBDs and PaDos observed in this work, together with our structural analysis highlighting the difficulty in predicting both inter-domain geometry and quaternary structure, suggest that these systems appeared once and evolved with diverse duplication events in all the analysed organisms.
Collapse
Affiliation(s)
- Nancy Rivera-Gómez
- Centro de Investigaciones en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Mario Alberto Martínez-Núñez
- Laboratorio de Estudios Ecogenómicos, Facultad de Ciencias, Unidad Académica de Ciencias y Tecnología de Yucatán, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, IICBA. Universidad Autónoma del Estado de Morelos Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, México
| | - Katya Rodriguez-Vazquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización. Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas. Ciudad Universitaria, Universidad Nacional Autónoma de México, México, D.F, México
| | - Ernesto Perez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.,Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
| |
Collapse
|
14
|
Fisunov GY, Garanina IA, Evsyutina DV, Semashko TA, Nikitina AS, Govorun VM. Reconstruction of Transcription Control Networks in Mollicutes by High-Throughput Identification of Promoters. Front Microbiol 2016; 7:1977. [PMID: 27999573 PMCID: PMC5138195 DOI: 10.3389/fmicb.2016.01977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/25/2016] [Indexed: 01/05/2023] Open
Abstract
Bacteria of the class Mollicutes have significantly reduced genomes and gene expression control systems. They are also efficient pathogens that can colonize a broad range of hosts including plants and animals. Despite their simplicity, Mollicutes demonstrate complex transcriptional responses to various conditions, which contradicts their reduction in gene expression regulation mechanisms. We analyzed the conservation and distribution of transcription regulators across the 50 Mollicutes species. The majority of the transcription factors regulate transport and metabolism, and there are four transcription factors that demonstrate significant conservation across the analyzed bacteria. These factors include repressors of chaperone HrcA, cell cycle regulator MraZ and two regulators with unclear function from the WhiA and YebC/PmpR families. We then used three representative species of the major clades of Mollicutes (Acholeplasma laidlawii, Spiroplasma melliferum, and Mycoplasma gallisepticum) to perform promoter mapping and activity quantitation. We revealed that Mollicutes evolved towards a promoter architecture simplification that correlates with a diminishing role of transcription regulation and an increase in transcriptional noise. Using the identified operons structure and a comparative genomics approach, we reconstructed the transcription control networks for these three species. The organization of the networks reflects the adaptation of bacteria to specific conditions and hosts.
Collapse
Affiliation(s)
- Gleb Y Fisunov
- Federal Research and Clinical Centre of Physical-Chemical Medicine Moscow, Russia
| | - Irina A Garanina
- Federal Research and Clinical Centre of Physical-Chemical MedicineMoscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of SciencesMoscow, Russia
| | - Daria V Evsyutina
- Federal Research and Clinical Centre of Physical-Chemical Medicine Moscow, Russia
| | - Tatiana A Semashko
- Federal Research and Clinical Centre of Physical-Chemical Medicine Moscow, Russia
| | - Anastasia S Nikitina
- Federal Research and Clinical Centre of Physical-Chemical MedicineMoscow, Russia; Moscow Institute of Physics and TechnologyMoscow, Russia
| | - Vadim M Govorun
- Federal Research and Clinical Centre of Physical-Chemical MedicineMoscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of SciencesMoscow, Russia; Moscow Institute of Physics and TechnologyMoscow, Russia
| |
Collapse
|