1
|
Ejmalian N, Mirzaei S, Mirzaie-Asl A, Chaichi M. A Potential Involvement of Metallothionein in the Zinc Tolerance of Trichoderma harzianum: Experimental Findings. Protein J 2024; 43:503-512. [PMID: 38488956 DOI: 10.1007/s10930-024-10185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Metallothioneins are a group of cysteine-rich proteins that play an important role in the homeostasis and detoxification of heavy metals. The objective of this research was to explore the significance of metallothionein in Trichoderma harzianum tolerance to zinc. At the inhibitory concentration of 1000 ppm, the fungus adsorbed 16.7 ± 0.4 mg/g of metal. The HPLC and SDS-PAGE electrophoresis data suggested that the fungus production of metallothionein was twice as high in the presence of zinc as in the control group. The examination of the genes; metallothionein expression activator (MEA) and Cu fist revealed that the MEA, with a C2H2 zinc finger domain, increased significantly in the presence of zinc. It was observed that in T. harzianum, the enhanced expression of the metallothionein gene was managed by the metallothionein activator under zinc overload conditions. According to our knowledge, this is the first report on the role of metallothionein in the resistance of T. harzianum to zinc.
Collapse
Affiliation(s)
- Negin Ejmalian
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Soheila Mirzaei
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Asghar Mirzaie-Asl
- Department of Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mehrdad Chaichi
- Department of Seed and Plant Improvement Research, Hamedan Agricultural and Natural Resources, Research and Education Center, Agricultural Research, Education and Extension Organization, Hamedan, Iran
| |
Collapse
|
2
|
Zheng J, Xie X, Li C, Wang H, Yu Y, Huang B. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1596-1613. [PMID: 36786203 DOI: 10.1080/15226514.2023.2176466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Endophytic fungi exist widely in plants and play an important role in the growth and adaptation of plants. They could be used in phytoremediation techniques against heavy metal contaminated soil since beneficial microbial symbionts can endow plants with resistance to external heavy metal stresses. This review summarized the regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. Potential endophytic fungi in enhancing plant's adaption to heavy metal stresses include arbuscular mycorrhizal fungi, dark septate endophytic fungi, plant growth promoting endophytic fungi. The mechanisms involve coevolution strategy, immune regulation and detoxification transport to improve the ability of plants to adapt to heavy metal stress. They can increase the synthesis of host hormones and maintaining the balance of endogenous hormones, strengthen osmotic regulation, regulate carbon and nitrogen metabolism, and increase immune activity, antioxidant enzyme and glutathione activity. They also help to improve the detoxification transport and heavy metal emission capacity of the host by significantly producing iron carrier, metallothionein and 1-aminocyclopropane-1-carboxylic acid deaminase. The combination of endophytic fungi and hyperaccumulation plants provides a promising technology for the ecological restoration of heavy metal contaminated soil. Endophytic fungi reserves further development on enhancing host plant's adaptability to heavy metal stresses.
Collapse
Affiliation(s)
- Jiadong Zheng
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xingguang Xie
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Chunyan Li
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Hongxia Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yaru Yu
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Baokang Huang
- School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Balzano S, Sardo A. Bioinformatic prediction of putative metallothioneins in non-ciliate protists. Biol Lett 2022; 18:20220039. [PMID: 35414221 PMCID: PMC9006003 DOI: 10.1098/rsbl.2022.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular ligands that bind heavy metals (HMs) and thereby minimize their detrimental effects to cellular metabolism are attracting great interest for a number of applications including bioremediation and development of HM-biosensors. Metallothioneins (MTs) are short, cysteine-rich, genetically encoded proteins involved in intracellular metal-binding and play a key role in detoxification of HMs. We searched approximately 700 genomes and transcriptomes of non-ciliate protists for novel putative MTs by similarity and structural analyses and found 21 unique proteins playing a potential role as MTs. Most putative MTs derive from heterokonts and dinoflagellates and share common features such as (i) a putative metal-binding domain in proximity of the N-terminus, (ii) two putative MT-specific domains near the C-terminus and (iii) one to three CTCGXXCXCGXXCXCXXC patterns. Although the biological function of these proteins has not been experimentally proven, knowledge of their genetic sequences adds useful information on proteins that are potentially involved in HM-binding and can contribute to the design of future biomolecular assays on HM-microbe interactions and MT-based biosensors.
Collapse
Affiliation(s)
- Sergio Balzano
- Stazione Zoologica Anton Dohrn Napoli (SZN), Department of Ecosustainable Marine Biotechnology, via Ammiraglio Ferdinando Acton 55, 80133, Naples, Italy.,NIOZ Royal Netherlands Institute for Sea Research, 1790AB Den Burg, The Netherlands
| | - Angela Sardo
- Stazione Zoologica Anton Dohrn Napoli (SZN), Department of Ecosustainable Marine Biotechnology, via Ammiraglio Ferdinando Acton 55, 80133, Naples, Italy.,Istituto di Scienze Applicate e Sistemi Intelligenti - CNR, via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| |
Collapse
|
4
|
Li Y, Tang H, Zhao W, Yang Y, Fan X, Zhan G, Li J, Sun S. Study of Dimorphism Transition Mechanism of Tremella fuciformis Based on Comparative Proteomics. J Fungi (Basel) 2022; 8:jof8030242. [PMID: 35330244 PMCID: PMC8955754 DOI: 10.3390/jof8030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Tremella fuciformis is a dimorphic fungus that can undertake a reversible transition between yeast-like conidia and hyphal forms. The transformation mechanism and proteomic differences between these two forms have not been reported. Therefore, in this study, we attempted to explore the differential protein profiles of dikaryotic yeast-like conidia from fruiting bodies and mycelia (FBMds) and dikaryotic mycelia (DM) by synthetically applying high-resolution MS1-based quantitative data-independent acquisition (HRMS1-DIA) full proteomics and parallel reaction monitoring (PRM) targeted proteomics. The results showed that a total of 5687 proteins were quantified, and 2220 of them (39.01%) showed more than a two-fold change in expression. The functional analysis of the differentially expressed proteins (DEPs) confirmed that the DEPs were mainly located in the membrane and nucleus. The FBMds tended to express proteins involved in biosynthesis, metabolism, DNA replication and transcription, and DNA damage repair. At the same time, DM exhibited an increased expression of proteins involved in signal transduction mechanisms such as the mitogen-activated protein kinase (MAPK) signaling pathway and the Ras signaling pathway. Further, phosphorylation analysis confirmed the importance of the MAPK signaling pathway in T. fuciformis dimorphism, and comparative metabolism analysis demonstrated the metabolic difference between FBMds and DM. The information obtained in the present study will provide new insights into the difference between FBMds and DM and lay a foundation for further research on the dimorphism formation mechanism of T. fuciformis.
Collapse
Affiliation(s)
- Yaxing Li
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (W.Z.); (Y.Y.); (G.Z.); (J.L.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.T.); (X.F.)
| | - Haohao Tang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.T.); (X.F.)
| | - Weichao Zhao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (W.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Yang Yang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (W.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Xiaolu Fan
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.T.); (X.F.)
| | - Guanping Zhan
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (W.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Jiahuan Li
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (W.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Shujing Sun
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (W.Z.); (Y.Y.); (G.Z.); (J.L.)
- Correspondence:
| |
Collapse
|
5
|
Liu B, Dong P, Zhang X, Feng Z, Wen Z, Shi L, Xia Y, Chen C, Shen Z, Lian C, Chen Y. Identification and characterization of eight metallothionein genes involved in heavy metal tolerance from the ectomycorrhizal fungus Laccaria bicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14430-14442. [PMID: 34617232 DOI: 10.1007/s11356-021-16776-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Metallothioneins (MTs) are small, cysteine-rich, heavy metal-binding proteins involved in metal homeostasis and detoxification. The increasing numbers of available genomic sequences of ectomycorrhizal (ECM) fungi enable deeper insights into the characteristics of MT genes in these fungi that form the most important symbiosis with the host trees in forest ecosystems. The aim of this study was to establish a comprehensive, genome-wide inventory of MT genes from the ECM fungus Laccaria bicolor. Eight MT genes in L. bicolor were cloned, and the expression patterns of their transcripts at various developmental stages based on expressed sequence tag (EST) counts were analyzed. The expression levels of four MTs were significantly increased during symbiosis stages. Quantitative real-time PCR (qRT-PCR) analysis revealed that transcripts of LbMT1 were dominant in free-living mycelia and strongly induced by excessive copper (Cu), cadmium (Cd), and hydrogen peroxide (H2O2). To determine whether these eight MTs functioned as metal chelators, we expressed them in the Cu- and Cd-sensitive yeast mutants, cup1∆ and yap1∆, respectively. All LbMT proteins provided similar levels of Cu(II) or Cd(II) tolerance, but did not affect by H2O2. Our findings provide novel data on the evolution and diversification of fungal MT gene duplicates, a valuable resource for understanding the vast array of biological processes in which these proteins are involved.
Collapse
Affiliation(s)
- Binhao Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinzhe Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihang Feng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhugui Wen
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, Jiangsu, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midoricho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China.
- Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midoricho, Nishitokyo, Tokyo, 188-0002, Japan.
| |
Collapse
|
6
|
Calatayud S, Garcia-Risco M, Palacios Ò, Capdevila M, Cañestro C, Albalat R. Tunicates Illuminate the Enigmatic Evolution of Chordate Metallothioneins by Gene Gains and Losses, Independent Modular Expansions, and Functional Convergences. Mol Biol Evol 2021; 38:4435-4448. [PMID: 34146103 PMCID: PMC8476144 DOI: 10.1093/molbev/msab184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To investigate novel patterns and processes of protein evolution, we have focused in the metallothioneins (MTs), a singular group of metal-binding, cysteine-rich proteins that, due to their high degree of sequence diversity, still represents a "black hole" in Evolutionary Biology. We have identified and analyzed more than 160 new MTs in nonvertebrate chordates (especially in 37 species of ascidians, 4 thaliaceans, and 3 appendicularians) showing that prototypic tunicate MTs are mono-modular proteins with a pervasive preference for cadmium ions, whereas vertebrate and cephalochordate MTs are bimodular proteins with diverse metal preferences. These structural and functional differences imply a complex evolutionary history of chordate MTs-including de novo emergence of genes and domains, processes of convergent evolution, events of gene gains and losses, and recurrent amplifications of functional domains-that would stand for an unprecedented case in the field of protein evolution.
Collapse
Affiliation(s)
- Sara Calatayud
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Mario Garcia-Risco
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Calatayud S, Garcia-Risco M, Capdevila M, Cañestro C, Palacios Ò, Albalat R. Modular Evolution and Population Variability of Oikopleura dioica Metallothioneins. Front Cell Dev Biol 2021; 9:702688. [PMID: 34277643 PMCID: PMC8283569 DOI: 10.3389/fcell.2021.702688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/09/2021] [Indexed: 01/29/2023] Open
Abstract
Chordate Oikopleura dioica probably is the fastest evolving metazoan reported so far, and thereby, a suitable system in which to explore the limits of evolutionary processes. For this reason, and in order to gain new insights on the evolution of protein modularity, we have investigated the organization, function and evolution of multi-modular metallothionein (MT) proteins in O. dioica. MTs are a heterogeneous group of modular proteins defined by their cysteine (C)-rich domains, which confer the capacity of coordinating different transition metal ions. O. dioica has two MTs, a bi-modular OdiMT1 consisting of two domains (t-12C and 12C), and a multi-modular OdiMT2 with six t-12C/12C repeats. By means of mass spectrometry and spectroscopy of metal-protein complexes, we have shown that the 12C domain is able to autonomously bind four divalent metal ions, although the t-12C/12C pair –as it is found in OdiMT1– is the optimized unit for divalent metal binding. We have also shown a direct relationship between the number of the t-12C/12C repeats and the metal-binding capacity of the MTs, which means a stepwise mode of functional and structural evolution for OdiMT2. Finally, after analyzing four different O. dioica populations worldwide distributed, we have detected several OdiMT2 variants with changes in their number of t-12C/12C domain repeats. This finding reveals that the number of repeats fluctuates between current O. dioica populations, which provides a new perspective on the evolution of domain repeat proteins.
Collapse
Affiliation(s)
- Sara Calatayud
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Mario Garcia-Risco
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Sácký J, Černý J, Šantrůček J, Borovička J, Leonhardt T, Kotrba P. Cadmium hyperaccumulating mushroom Cystoderma carcharias has two metallothionein isoforms usable for cadmium and copper storage. Fungal Genet Biol 2021; 153:103574. [PMID: 34015433 DOI: 10.1016/j.fgb.2021.103574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Cystoderma carcharias is one of the few macrofungal species that can hyperaccumulate Cd. As we have previously documented in C. carcharias collected from a smelter-polluted area, it stores 40% of Cd and nearly 90% of Cu in sporocarps in complex(es) of identical size. In this paper we examined whether metallothionein (MT) peptides that bind Cd and Cu through cysteinyl-thiolate bonds were associated with the metals in these complexes. Screening of a sporocarp cDNA expression library in yeasts allowed the identification of two transcripts, CcMT1 and CcMT2, encoding functional 34-amino acid (AA) MTs sharing 56% identity and appearing to be encoded by duplicate genes. CcMT1 conferred reasonable tolerance to Cu and a substantially higher tolerance to Cd than CcMT2, while CcMT2 clearly protected the yeasts better against Cu toxicity. While size-exclusion chromatography revealed that CcMT1 was contained in all Cd/Cu complexes isolated from wild grown sporocarps, CcMT2 was detected in a much narrower subset of the fractions. The striking difference between the CcMTs is that CcMT1 lacks the third metal-biding cysteinyl (C) within an otherwise highly conserved-in-agaricomycetes-MTs C-AA4-C-AA-C-AA3-C-AA-C-AA4-C-AA-C motif. The elimination of the corresponding cysteinyl in CcMT2 only reduced the Cu-tolerant phenotype in yeasts to the levels observed with CcMT1. Altogether, these results indicate that CcMT2 is rather adjusted to perform Cu-related tasks and point to CcMT1 as the ligand for the storage of both Cd and Cu in C.carcharias, which is the first macrofungal species in which the potential of MT in Cd handling can be seen.
Collapse
Affiliation(s)
- Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Jiří Černý
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Jiří Šantrůček
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Jan Borovička
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00 Prague 6, Czech Republic; Nuclear Physics Institute of the Czech Academy of Sciences, Hlavní 130, 250 68 Husinec-Řež, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| |
Collapse
|
9
|
Chatterjee S, Kumari S, Rath S, Priyadarshanee M, Das S. Diversity, structure and regulation of microbial metallothionein: metal resistance and possible applications in sequestration of toxic metals. Metallomics 2020; 12:1637-1655. [PMID: 32996528 DOI: 10.1039/d0mt00140f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metallothioneins (MTs) are a group of cysteine-rich, universal, low molecular weight proteins distributed widely in almost all major taxonomic groups ranging from tiny microbes to highly organized vertebrates. The primary function of this protein is storage, transportation and binding of metals, which enable microorganisms to detoxify heavy metals. In the microbial world, these peptides were first identified in a cyanobacterium Synechococcus as the SmtA protein which exhibits high affinity towards rising level of zinc and cadmium to preserve metal homeostasis in a cell. In yeast, MTs aid in reserving copper and confer protection against copper toxicity by chelating excess copper ions in a cell. Two MTs, CUP1 and Crs5, originating from Saccharomyces cerevisiae predominantly bind to copper though are capable of binding with zinc and cadmium ions. MT superfamily 7 is found in ciliated protozoa which show high affinity towards copper and cadmium. Several tools and techniques, such as western blot, capillary electrophoresis, inductively coupled plasma, atomic emission spectroscopy and high performance liquid chromatography, have been extensively utilized for the detection and quantification of microbial MTs which are utilized for the efficient remediation and sequestration of heavy metals from a contaminated environment.
Collapse
Affiliation(s)
- Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| | | | | | | | | |
Collapse
|
10
|
Cadmium Uptake, MT Gene Activation and Structure of Large-Sized Multi-Domain Metallothioneins in the Terrestrial Door Snail Alinda biplicata (Gastropoda, Clausiliidae). Int J Mol Sci 2020; 21:ijms21051631. [PMID: 32120996 PMCID: PMC7084494 DOI: 10.3390/ijms21051631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Terrestrial snails (Gastropoda) possess Cd-selective metallothioneins (CdMTs) that inactivate Cd2+ with high affinity. Most of these MTs are small Cysteine-rich proteins that bind 6 Cd2+ equivalents within two distinct metal-binding domains, with a binding stoichiometry of 3 Cd2+ ions per domain. Recently, unusually large, so-called multi-domain MTs (md-MTs) were discovered in the terrestrial door snail Alinda biplicata (A.b.). The aim of this study is to evaluate the ability of A.b. to cope with Cd stress and the potential involvement of md-MTs in its detoxification. Snails were exposed to increasing Cd concentrations, and Cd-tissue concentrations were quantified. The gene structure of two md-MTs (9md-MT and 10md-MT) was characterized, and the impact of Cd exposure on MT gene transcription was quantified via qRT PCR. A.b. efficiently accumulates Cd at moderately elevated concentrations in the feed, but avoids food uptake at excessively high Cd levels. The structure and expression of the long md-MT genes of A.b. were characterized. Although both genes are intronless, they are still transcribed, being significantly upregulated upon Cd exposure. Overall, our results contribute new knowledge regarding the metal handling of Alinda biplicata in particular, and the potential role of md-MTs in Cd detoxification of terrestrial snails, in general.
Collapse
|
11
|
Metallic and metalloid elements in various developmental stages of Amanita muscaria (L.) Lam. Fungal Biol 2020; 124:174-182. [PMID: 32220378 DOI: 10.1016/j.funbio.2020.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
There is growing evidence that mushrooms (fruiting bodies) can be suitable for biogeochemical prospecting for minerals and as indicators of heavy metal and radioactive contaminants in the terrestrial environment. Apart from the nutritional aspect, knowledge of accumulation dynamics and distribution of elements in fruiting bodies, from emergence to senescence, is essential as is standardization when choosing mushroom species as potential bioindicators and for monitoring purposes. We studied the effect of fruitbody developmental stage on the contents of the elements (Li, K, V, Cr, Mn, Mg, Co, Ni, Cu, Zn, As, Rb, Sr, Ag, Al, Cd, Sb, Cs, Ba, Pb, Tl and U) in the individual parts of the Amanita muscaria fruiting body. Elements such as K, Mg, Mn, Ni, Co, Cu, Zn and Se remained similar throughout all developmental stages studied, however for K, differences occurred in the values of caps and stipes, as expressed by the cap to stipe concentration quotient (index QC/S). The other elements quantified, i.e., Li, V, Cr, As, Rb, Sr, Ag, Al, Cd, Sb, Cs, Ba, Pb, Tl and U are considered as nonessential or toxic (with the exception of V in A. muscaria). Their accumulation in the fruiting bodies and their distribution between cap and stipe did not show a uniform pattern. Pb, Sb, Tl, Ba, Sr, Li, Rb and Cs decreased with increasing maturity of the fruitbodies, implying that translocation, distribution and accumulation in stipes and caps was not a continuous process, while V, Cr, As, Ag, Cd, and U remained at the same concentration, similarly to the essential elements. Our results for A. muscaria confirm that elemental distribution in different parts of fruiting bodies is variable for each element and may change during maturation. Soil properties, species specificity and the pattern of fruitbody development may all contribute to the various types of elemental distribution and suggest that the results for one species in one location may have only limited potential for generalization.
Collapse
|
12
|
Espart A, Artime S, Tort-Nasarre G, Yara-Varón E. Cadmium exposure during pregnancy and lactation: materno-fetal and newborn repercussions of Cd(ii), and Cd-metallothionein complexes. Metallomics 2019; 10:1359-1367. [PMID: 30221266 DOI: 10.1039/c8mt00174j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cadmium (Cd) is a non-physiological heavy metal that can be harmful at low concentrations. Increasing anthropogenic activities are incrementing the risk of accumulation of this heavy metal in different organs and tissues of the body. In the case of pregnant women, the threat is more serious due to the implications affecting not only their own health but also fetal development as well. Metallothioneins (MTs), small cysteine-rich proteins, are involved in zinc (Zn) and copper homeostasis in mammals but can, however, also bind with Cd if present. The accumulation of Cd in maternal tissues (e.g. placenta, maternal blood, and mammary glands) induces the synthesis of MTs, preferably MT2, in an attempt to sequester the metal to avoid toxicity. The formed Cd-MT complexes will avoid the Cd transport from the placenta to the fetus and end up accumulating in the maternal kidneys. At the same time, high concentrations of MTs will increase the formation of Zn-MT complexes, therefore decreasing the amount of Zn ions available to be transported to the fetus by means of Zn transporters such as ZnT2, ZIP14 and DMT1. Although MTs cannot transport Cd from the mother to the fetus, the divalent DMT1 transporter is suggested to carry the metal to the fetus. As a consequence, the low levels of Zn(ii) in the fetus, together with the presence of Cd(ii) coming from the mother either via the placenta and cord blood or via breast milk induce changes in the fetal development including fetal growth retardation, and low weight or height of the newborn. Likewise, the concentrations of Cd(ii) in the newborn can cause alterations such as cognitive disabilities. In summary, the presence of Cd(ii) in the maternal tissues will induce MT synthesis in an attempt to detoxify these tissues and reduce the possible toxicity of Cd in fetal and newborn tissues.
Collapse
Affiliation(s)
- Anna Espart
- Department of Nursing and Physiotherapy, University of Lleida, c. Montserrat Roig 2, Lleida, E-25198, Spain. and Health Care Research Group (GRECS), Lleida Institute for Biomedical Research Dr PifarréFoundation, IRBLleida, Av. Alcalde Rovira Roure 80, Lleida, E-25198, Spain
| | - Sebastián Artime
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain
| | - Glòria Tort-Nasarre
- Department of Nursing and Physiotherapy, University of Lleida, c. Montserrat Roig 2, Lleida, E-25198, Spain.
| | - Edinson Yara-Varón
- Department of Chemistry, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| |
Collapse
|
13
|
Kan G, Ju Y, Zhou Y, Shi C, Qiao Y, Yang Y, Wang R, Wang X. Cloning and functional characterization of a novel metallothionein gene in Antarctic sea-ice yeast (Rhodotorula mucilaginosa). J Basic Microbiol 2019; 59:879-889. [DOI: 10.1002/jobm.201900240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/07/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Ying Zhou
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Cuijuan Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Yongping Qiao
- Department of Traumatology; Wendeng Osteopath Hospital; Wendeng China
| | - Yu Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Ruiqi Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| |
Collapse
|
14
|
Kalsotra T, Khullar S, Agnihotri R, Reddy MS. Metal induction of two metallothionein genes in the ectomycorrhizal fungus Suillus himalayensis and their role in metal tolerance. MICROBIOLOGY-SGM 2018; 164:868-876. [PMID: 29762106 DOI: 10.1099/mic.0.000666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metallothioneins (MTs) are small proteins with highly conserved cysteine residues and are involved in metal homeostasis and metal detoxification. Two metallothionein genes ShMT1 and ShMT2 from the ectomycorrhizal fungus Suillus himalayensis were characterised for their potential role in heavy metal detoxification. The response of these MTs to the exogenous concentrations of copper and cadmium was studied by qPCR analysis. The exogenous copper but not the cadmium at the tested concentrations induced the expression of the MT genes. The functional role of ShMTs was validated by expressing the two genes through functional complementation in yeast mutant strain cup1Δ (copper-sensitive), ycf1Δ (cadmium- sensitive) and zrc1Δ (zinc-sensitive). The mutant strain successfully expressed the two genes resulting in wild-type phenotype restoration of copper, cadmium and zinc tolerance. The present study shows that the ectomycorrhizal fungus S. himalayensis encodes two metallothionein genes (ShMT1 and ShMT2) which are more inducible by copper than cadmium and could play an important role in their detoxification.
Collapse
Affiliation(s)
- Tania Kalsotra
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Shikha Khullar
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Radhika Agnihotri
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Mondem Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
15
|
Calatayud S, Garcia-Risco M, Rojas NS, Espinosa-Sánchez L, Artime S, Palacios Ò, Cañestro C, Albalat R. Metallothioneins of the urochordate Oikopleura dioica have Cys-rich tandem repeats, large size and cadmium-binding preference. Metallomics 2018; 10:1585-1594. [DOI: 10.1039/c8mt00177d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oikopleura dioica has the longest metallothionein described so far, made of repeats generated by a modular and step-wise evolution.
Collapse
Affiliation(s)
- Sara Calatayud
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Mario Garcia-Risco
- Departament de Química
- Facultat de Ciències
- Universitat Autònoma de Barcelona
- E-08193 Cerdanyola del Vallès
- Spain
| | - Natalia S. Rojas
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Lizethe Espinosa-Sánchez
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Sebastián Artime
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Òscar Palacios
- Departament de Química
- Facultat de Ciències
- Universitat Autònoma de Barcelona
- E-08193 Cerdanyola del Vallès
- Spain
| | - Cristian Cañestro
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Ricard Albalat
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| |
Collapse
|
16
|
Ziller A, Fraissinet-Tachet L. Metallothionein diversity and distribution in the tree of life: a multifunctional protein. Metallomics 2018; 10:1549-1559. [DOI: 10.1039/c8mt00165k] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metallothioneins are diverse, but not represented yet in all phyla. Moreover, they play a central role as a [MT:T:TO] protein system.
Collapse
Affiliation(s)
- Antoine Ziller
- Microbial Ecology
- CNRS UMR 5557
- UMR INRA 1418
- Université Lyon1
- Université de Lyon
| | | |
Collapse
|
17
|
Maiti BK, Almeida RM, Moura I, Moura JJ. Rubredoxins derivatives: Simple sulphur-rich coordination metal sites and its relevance for biology and chemistry. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Palacios Ò, Jiménez-Martí E, Niederwanger M, Gil-Moreno S, Zerbe O, Atrian S, Dallinger R, Capdevila M. Analysis of Metal-Binding Features of the Wild Type and Two Domain-Truncated Mutant Variants of Littorina littorea Metallothionein Reveals Its Cd-Specific Character. Int J Mol Sci 2017; 18:E1452. [PMID: 28684668 PMCID: PMC5535943 DOI: 10.3390/ijms18071452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/27/2017] [Accepted: 07/01/2017] [Indexed: 11/16/2022] Open
Abstract
After the resolution of the 3D structure of the Cd₉-aggregate of the Littorina littorea metallothionein (MT), we report here a detailed analysis of the metal binding capabilities of the wild type MT, LlwtMT, and of two truncated mutants lacking either the N-terminal domain, Lltr2MT, or both the N-terminal domain, plus four extra flanking residues (SSVF), Lltr1MT. The recombinant synthesis and in vitro studies of these three proteins revealed that LlwtMT forms unique M₉-LlwtMT complexes with Zn(II) and Cd(II), while yielding a complex mixture of heteronuclear Zn,Cu-LlwtMT species with Cu(I). As expected, the truncated mutants gave rise to unique M₆-LltrMT complexes and Zn,Cu-LltrMT mixtures of lower stoichiometry with respect to LlwtMT, with the SSVF fragment having an influence on their metal binding performance. Our results also revealed a major specificity, and therefore a better metal-coordinating performance of the three proteins for Cd(II) than for Zn(II), although the analysis of the Zn(II)/Cd(II) displacement reaction clearly demonstrates a lack of any type of cooperativity in Cd(II) binding. Contrarily, the analysis of their Cu(I) binding abilities revealed that every LlMT domain is prone to build Cu₄-aggregates, the whole MT working by modules analogously to, as previously described, certain fungal MTs, like those of C. neoformans and T. mesenterica. It is concluded that the Littorina littorea MT is a Cd-specific protein that (beyond its extended binding capacity through an additional Cd-binding domain) confers to Littorina littorea a particular adaptive advantage in its changeable marine habitat.
Collapse
Affiliation(s)
- Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Elena Jiménez-Martí
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain.
| | - Michael Niederwanger
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
| | - Selene Gil-Moreno
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland.
| | - Sílvia Atrian
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain.
| | - Reinhard Dallinger
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
19
|
Nguyen H, Rineau F, Vangronsveld J, Cuypers A, Colpaert JV, Ruytinx J. A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa
and SlMTb
genes in the ectomycorrhizal fungus Suillus luteus. Environ Microbiol 2017; 19:2577-2587. [DOI: 10.1111/1462-2920.13729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Hoai Nguyen
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - François Rineau
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Jan V. Colpaert
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Joske Ruytinx
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| |
Collapse
|
20
|
Ziller A, Yadav RK, Capdevila M, Reddy MS, Vallon L, Marmeisse R, Atrian S, Palacios Ò, Fraissinet-Tachet L. Metagenomics analysis reveals a new metallothionein family: Sequence and metal-binding features of new environmental cysteine-rich proteins. J Inorg Biochem 2016; 167:1-11. [PMID: 27886631 DOI: 10.1016/j.jinorgbio.2016.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/28/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022]
Abstract
Metallothioneins are cysteine-rich proteins, which function as (i) metal carriers in basal cell metabolism and (ii) protective metal chelators in conditions of metal excess. Metallothioneins have been characterized from different eukaryotic model and cultivable species. Presently, they are categorized in 15 families but evolutionary relationships between these metallothionein families remain unresolved. Several cysteine-rich protein encoding genes that conferred Cd-tolerance in Cd-sensitive yeast mutants have previously been isolated from soil eukaryotic metatranscriptomes. They were called CRPs for "cysteine-rich proteins". These proteins, of unknown taxonomic origins, share conserved cysteine motifs and could be considered as metallothioneins. In the present work, we analyzed these CRPs with respect to their amino acid sequence features and their metal-binding abilities towards Cd, Zn and Cu metal ions. Sequence analysis revealed that they share common features with different known metallothionein families, but also exhibit unique specific features. Noticeably, CRPs display two separate cysteine-rich domains which, when expressed separately in yeast, confer Cd-tolerance. The N-terminal domain contains some conserved atypical Cys motifs, such as one CCC and two CXCC ones. Five CRPs were expressed and purified as recombinant proteins and their metal-binding characteristics were studied. All these CRPs chelated Cd(II), Zn(II) and Cu(I), although displaying a better capacity for Zn(II) coordination. All CRPs are able to confer Cd-tolerance, and four of them confer Zn-tolerance in the Zn-sensitive zrc1Δ yeast mutant. We designated these CRPs as environmental metallothioneins belonging to a new formerly undescribed metallothionein family.
Collapse
Affiliation(s)
- Antoine Ziller
- Microbial Ecology, CNRS UMR 5557, INRA UMR 1418, Université Lyon 1, Université de Lyon, F-69622 Villeurbanne, France
| | - Rajiv Kumar Yadav
- Microbial Ecology, CNRS UMR 5557, INRA UMR 1418, Université Lyon 1, Université de Lyon, F-69622 Villeurbanne, France
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | - Laurent Vallon
- Microbial Ecology, CNRS UMR 5557, INRA UMR 1418, Université Lyon 1, Université de Lyon, F-69622 Villeurbanne, France
| | - Roland Marmeisse
- Microbial Ecology, CNRS UMR 5557, INRA UMR 1418, Université Lyon 1, Université de Lyon, F-69622 Villeurbanne, France
| | - Silvia Atrian
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Laurence Fraissinet-Tachet
- Microbial Ecology, CNRS UMR 5557, INRA UMR 1418, Université Lyon 1, Université de Lyon, F-69622 Villeurbanne, France.
| |
Collapse
|