1
|
Yamagishi Y, Nakayama N, Doke A, Iwame S, Nishida Y, Arakawa Y, Mikamo H. Rapid screening of positive blood cultures for extended-spectrum β-lactamases and metallo-β-lactamases using a drug susceptibility testing microfluidic method. J Infect Chemother 2024; 30:1128-1133. [PMID: 38697390 DOI: 10.1016/j.jiac.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES An increasing number of drug-resistant bacteria have been identified recently. In particular, drug-resistant bacteria have been linked to unfavorable prognoses in patients with bacteremia, highlighting the need for rapid testing. Our previous studies have focused on the utility of a drug susceptibility testing microfluidic (DSTM) method using microfluidic channels. A system with this DSTM method for screening for β-lactamases can rapidly detect extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs). In this study, we have evaluated the clinical utility of pre-treatment for screening positive blood cultures using the DSTM method. METHODS A total of 178 positive blood cultures and five simulated samples of MBL-producing bacteria were prepared at Kochi University Hospital, Japan. The pretreatment consisted of a two-step centrifugation. The obtained sediments were screened with the DSTM method for the production of β-lactamase based on morphological changes in the bacteria after 3 h of incubation. RESULTS The pretreatment functioned properly for all samples. Of the 25 ESBL samples, 21 were positive for ESBLs. Four false-negative samples, all obtained from the same patient, contained CTX-M-2 enzyme-producing Proteus mirabilis and showed insusceptibility to an ESBL inhibitor. The simulated samples prepared for MBL screening were positive for MBLs. CONCLUSIONS When combined with a method for rapidly identifying bacterial species, DSTM may enable patients with bloodstream infections to start receiving appropriate treatment within 4 h after positive blood cultures are screened.
Collapse
Affiliation(s)
- Yuka Yamagishi
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi University, Kochi, Japan.
| | | | - Akito Doke
- Division of Clinical Laboratory, Kochi Medical School Hospital, Kochi University, Kochi, Japan
| | - Saya Iwame
- Division of Clinical Laboratory, Kochi Medical School Hospital, Kochi University, Kochi, Japan
| | - Yoshie Nishida
- Division of Clinical Laboratory, Kochi Medical School Hospital, Kochi University, Kochi, Japan
| | - Yu Arakawa
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi University, Kochi, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan
| |
Collapse
|
2
|
Suleiman M, Abu-Aqil G, Lapidot I, Huleihel M, Salman A. Significant reduction of the culturing time required for bacterial identification and antibiotic susceptibility determination by infrared spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3745-3756. [PMID: 38818530 DOI: 10.1039/d4ay00604f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Rapid testing of bacteria for antibiotic susceptibility is essential for effective treatment and curbing the emergence of multidrug-resistant bacteria. The misuse of antibiotics, coupled with the time-consuming classical testing methods, intensifies the threat of antibiotic resistance, a major global health concern. In this study, employing infrared spectroscopy-based machine learning techniques, we significantly shortened the time required for susceptibility testing to 10 hours, a significant improvement from the 24 hours in our previous studies as well as the conventional methods that typically take at least 48 hours. This remarkable reduction in turnaround time (from 48 hours to 10 hours), achieved by minimizing the culturing period, offers a game-changing advantage for clinical applications. Our study involves a dataset comprising 400 bacterial samples (200 E. coli, 100 Klebsiella pneumoniae, and 100 Pseudomonas aeruginosa) with an impressive 96% accuracy in the taxonomic classification at the species level and up to 82% accuracy in bacterial susceptibility to various antibiotics.
Collapse
Affiliation(s)
- Manal Suleiman
- Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - George Abu-Aqil
- Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Itshak Lapidot
- Department of Electrical Engineering, ACLP-Afeka Center for Language Processing, Afeka Tel-Aviv Academic College of Engineering, Tel-Aviv 69107, Israel
- Laboratoire Informatique d'Avignon (LIA), Avignon Université, 339 Chemin des Meinajaries, 84000 Avignon, France
| | - Mahmoud Huleihel
- Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Ahmad Salman
- Department of Physics, SCE - Shamoon College of Engineering, Beer-Sheva 84100, Israel.
| |
Collapse
|
3
|
David A, Louis M, Tahrioui A, Rodrigues S, Labbé C, Maillot O, Barreau M, Lesouhaitier O, Cornelis P, Chevalier S, Bouffartigues E. cmpX overexpression in Pseudomonas aeruginosa affects biofilm formation and cell morphology in response to shear stress. Biofilm 2024; 7:100191. [PMID: 38544741 PMCID: PMC10965496 DOI: 10.1016/j.bioflm.2024.100191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing chronic infections that are related to its ability to form biofilms. Mechanosensitive ion channels (Mcs) are cytoplasmic membrane proteins whose opening depends on a mechanical stress impacting the lipid bilayer. CmpX is a homologue of the small conductance MscS of Escherichia coli. The cmpX gene is part of a transcriptional cfrX-cmpX unit that is under the control of the cell envelope stress response ECF sigma factor SigX. CmpX was shown to regulate the activity of the hybrid sensor kinase PA1611 involved in the regulation of transition from a planktonic to a biofilm lifestyle. The deletion of cmpX leads to increased biofilm formation under static conditions. Herein, the effect of cmpX overexpression was investigated by confocal laser scanning microscopy in terms of biofilm formation and architecture, and matrix components production, in dynamic conditions. We show that overexpression of cmpX in P. aeruginosa leads to enhanced and altered biofilm architecture that seems to be associated to increased matrix components and the emergence of filamentous cells. These phenotypic alterations might occur potentially through a shear stress induced by the medium flow rate. Importance CmpX is involved in biofilm formation and cell filamentation with regards to the medium flow.
Collapse
Affiliation(s)
- Audrey David
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Mélissande Louis
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Ali Tahrioui
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100, Lorient, France
| | - Clarisse Labbé
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Olivier Maillot
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Magalie Barreau
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Pierre Cornelis
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Sylvie Chevalier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Emeline Bouffartigues
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| |
Collapse
|
4
|
Wu W, Mu Y. Microfluidic technologies for advanced antimicrobial susceptibility testing. BIOMICROFLUIDICS 2024; 18:031504. [PMID: 38855477 PMCID: PMC11162290 DOI: 10.1063/5.0190112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Antimicrobial resistance is getting serious and becoming a threat to public health worldwide. The improper and excessive use of antibiotics is responsible for this situation. The standard methods used in clinical laboratories, to diagnose bacterial infections, identify pathogens, and determine susceptibility profiles, are time-consuming and labor-intensive, leaving the empirical antimicrobial therapy as the only option for the first treatment. To prevent the situation from getting worse, evidence-based therapy should be given. The choosing of effective drugs requires powerful diagnostic tools to provide comprehensive information on infections. Recent progress in microfluidics is pushing infection diagnosis and antimicrobial susceptibility testing (AST) to be faster and easier. This review summarizes the recent development in microfluidic assays for rapid identification and AST in bacterial infections. Finally, we discuss the perspective of microfluidic-AST to develop the next-generation infection diagnosis technologies.
Collapse
Affiliation(s)
- Wenshuai Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Mu
- Author to whom correspondence should be addressed:
| |
Collapse
|
5
|
Zhou S, Chen B, Fu ES, Yan H. Computer vision meets microfluidics: a label-free method for high-throughput cell analysis. MICROSYSTEMS & NANOENGINEERING 2023; 9:116. [PMID: 37744264 PMCID: PMC10511704 DOI: 10.1038/s41378-023-00562-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 09/26/2023]
Abstract
In this paper, we review the integration of microfluidic chips and computer vision, which has great potential to advance research in the life sciences and biology, particularly in the analysis of cell imaging data. Microfluidic chips enable the generation of large amounts of visual data at the single-cell level, while computer vision techniques can rapidly process and analyze these data to extract valuable information about cellular health and function. One of the key advantages of this integrative approach is that it allows for noninvasive and low-damage cellular characterization, which is important for studying delicate or fragile microbial cells. The use of microfluidic chips provides a highly controlled environment for cell growth and manipulation, minimizes experimental variability and improves the accuracy of data analysis. Computer vision can be used to recognize and analyze target species within heterogeneous microbial populations, which is important for understanding the physiological status of cells in complex biological systems. As hardware and artificial intelligence algorithms continue to improve, computer vision is expected to become an increasingly powerful tool for in situ cell analysis. The use of microelectromechanical devices in combination with microfluidic chips and computer vision could enable the development of label-free, automatic, low-cost, and fast cellular information recognition and the high-throughput analysis of cellular responses to different compounds, for broad applications in fields such as drug discovery, diagnostics, and personalized medicine.
Collapse
Affiliation(s)
- Shizheng Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| | - Bingbing Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| | - Edgar S. Fu
- Graduate School of Computing and Information Science, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Hong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| |
Collapse
|
6
|
Bassetti M, Kanj SS, Kiratisin P, Rodrigues C, Van Duin D, Villegas MV, Yu Y. Early appropriate diagnostics and treatment of MDR Gram-negative infections. JAC Antimicrob Resist 2022; 4:dlac089. [PMID: 36111208 PMCID: PMC9469888 DOI: 10.1093/jacamr/dlac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The term difficult-to-treat resistance has been recently coined to identify Gram-negative bacteria exhibiting resistance to all fluoroquinolones and all β-lactam categories, including carbapenems. Such bacteria are posing serious challenges to clinicians trying to identify the best therapeutic option for any given patient. Delayed appropriate therapy has been associated with worse outcomes including increase in length of stay, increase in total in-hospital costs and ∼20% increase in the risk of in-hospital mortality. In addition, time to appropriate antibiotic therapy has been shown to be an independent predictor of 30 day mortality in patients with resistant organisms. Improving and anticipating aetiological diagnosis through optimizing not only the identification of phenotypic resistance to antibiotic classes/agents, but also the identification of specific resistance mechanisms, would have a major impact on reducing the frequency and duration of inappropriate early antibiotic therapy. In light of these considerations, the present paper reviews the increasing need for rapid diagnosis of bacterial infections and efficient laboratory workflows to confirm diagnoses and facilitate prompt de-escalation to targeted therapy, in line with antimicrobial stewardship principles. Rapid diagnostic tests currently available and future perspectives for their use are discussed. Early appropriate diagnostics and treatment of MDR Gram-negative infections require a multidisciplinary approach that includes multiple different diagnostic methods and further consensus of algorithms, protocols and guidelines to select the optimal antibiotic therapy.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Science, University of Genoa, Italy
- Infectious Diseases Clinic, Ospedale Policlinico San Martino Hospital – IRCCS, Genoa, Italy
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Camilla Rodrigues
- Department of Microbiology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - David Van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - María Virginia Villegas
- Grupo de Investigaciones en Resistencia Antimicrobiana y Epidemiología Hospitalaria (RAEH), Universidad El Bosque, Bogotá DC, Colombia
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Bourguignon N, Alessandrello M, Booth R, Lobo CB, Juárez Tomás MS, Cumbal L, Perez M, Bhansali S, Ferrero M, Lerner B. Bioremediation on a chip: A portable microfluidic device for efficient screening of bacterial biofilm with polycyclic aromatic hydrocarbon removal capacity. CHEMOSPHERE 2022; 303:135001. [PMID: 35605730 DOI: 10.1016/j.chemosphere.2022.135001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/11/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pollutants of critical environmental and public health concern and their elimination from contaminated sites is significant for the environment. Biodegradation studies have demonstrated the ability of bacteria in biofilm conformation to enhance the biodegradation of pollutants. In this study, we used our newly developed microfluidic platform to explore biofilm development, properties, and applications of fluid flow, as a new technique for screening PAHs-degrading biofilms. The optimization and evaluation of the flow condition in the microchannels were performed through computational fluid dynamics (CFD). The formation of biofilms by PAHs-degrading bacteria Pseudomonas sp. P26 and Gordonia sp. H19, as pure cultures and co-culture, was obtained in the developed microchips. The removal efficiencies of acenaphthene, fluoranthene and pyrene were determined by HPLC. All the biofilms formed in the microchips removed all tested PAHs, with the higher removal percentages observed with the Pseudomonas sp. P26 biofilm (57.4% of acenaphthene, 40.9% of fluoranthene, and 28.9% of pyrene). Pseudomonas sp. P26 biofilm removed these compounds more efficiently than planktonic cultures. This work proved that the conformation of biofilms enhances the removal rate. It also provided a new tool to rapid and low-cost screen for effective pollutant-degrading biofilms.
Collapse
Affiliation(s)
- Natalia Bourguignon
- IREN Center, National Technological University, Buenos Aires, 1706, Argentina; Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| | - Mauricio Alessandrello
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), Tucumán, Argentina
| | - Ross Booth
- Roche Sequencing Solutions, Inc., 4300 Hacienda Dr, Pleasanton, CA, 94588, USA
| | - Constanza Belén Lobo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), Tucumán, Argentina
| | | | - Luis Cumbal
- Centro de Nanociencia y Nanotecnologia, Universidad de Las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui, P.O. BOX 171-5-231B, Ecuador
| | - Maximiliano Perez
- IREN Center, National Technological University, Buenos Aires, 1706, Argentina; Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| | - Marcela Ferrero
- YPF Tecnologia, Av. del Petróleo Argentino, 900-1198, Berisso, Buenos Aires, Argentina.
| | - Betiana Lerner
- IREN Center, National Technological University, Buenos Aires, 1706, Argentina; Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
8
|
Metabolic preference assay for rapid diagnosis of bloodstream infections. Nat Commun 2022; 13:2332. [PMID: 35484129 PMCID: PMC9050716 DOI: 10.1038/s41467-022-30048-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Bloodstream infections (BSIs) cause >500,000 infections and >80,000 deaths per year in North America. The length of time between the onset of symptoms and administration of appropriate antimicrobials is directly linked to mortality rates. It currently takes 2–5 days to identify BSI pathogens and measure their susceptibility to antimicrobials – a timeline that directly contributes to preventable deaths. To address this, we demonstrate a rapid metabolic preference assay (MPA) that uses the pattern of metabolic fluxes observed in ex-vivo microbial cultures to identify common pathogens and determine their antimicrobial susceptibility profiles. In a head-to-head race with a leading platform (VITEK 2, BioMérieux) used in diagnostic laboratories, MPA decreases testing timelines from 40 hours to under 20. If put into practice, this assay could reduce septic shock mortality and reduce the use of broad spectrum antibiotics. It is currently slow to identify bloodstream infection pathogens. Here the authors report a rapid metabolic preference assay that uses the pattern of metabolic fluxes observed in ex-vivo microbial cultures to identify common pathogens and determine their antimicrobial susceptibility profiles.
Collapse
|
9
|
Pérez‐Rodríguez S, García‐Aznar JM, Gonzalo‐Asensio J. Microfluidic devices for studying bacterial taxis, drug testing and biofilm formation. Microb Biotechnol 2022; 15:395-414. [PMID: 33645897 PMCID: PMC8867988 DOI: 10.1111/1751-7915.13775] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Some bacteria have coevolved to establish symbiotic or pathogenic relationships with plants, animals or humans. With human association, the bacteria can cause a variety of diseases. Thus, understanding bacterial phenotypes at the single-cell level is essential to develop beneficial applications. Traditional microbiological techniques have provided great knowledge about these organisms; however, they have also shown limitations, such as difficulties in culturing some bacteria, the heterogeneity of bacterial populations or difficulties in recreating some physical or biological conditions. Microfluidics is an emerging technique that complements current biological assays. Since microfluidics works with micrometric volumes, it allows fine-tuning control of the test conditions. Moreover, it allows the recruitment of three-dimensional (3D) conditions, in which several processes can be integrated and gradients can be generated, thus imitating physiological 3D environments. Here, we review some key microfluidic-based studies describing the effects of different microenvironmental conditions on bacterial response, biofilm formation and antimicrobial resistance. For this aim, we present different studies classified into six groups according to the design of the microfluidic device: (i) linear channels, (ii) mixing channels, (iii) multiple floors, (iv) porous devices, (v) topographic devices and (vi) droplet microfluidics. Hence, we highlight the potential and possibilities of using microfluidic-based technology to study bacterial phenotypes in comparison with traditional methodologies.
Collapse
Affiliation(s)
- Sandra Pérez‐Rodríguez
- Aragón Institute of Engineering Research (I3A)Department of Mechanical EngineeringUniversity of ZaragozaZaragoza50018Spain
- Multiscale in Mechanical and Biological Engineering (M2BE)IIS‐AragónZaragozaSpain
- Grupo de Genética de MicobacteriasDepartment of Microbiology, Faculty of MedicineUniversity of ZaragozaIIS AragónZaragoza50009Spain
| | - José Manuel García‐Aznar
- Aragón Institute of Engineering Research (I3A)Department of Mechanical EngineeringUniversity of ZaragozaZaragoza50018Spain
- Multiscale in Mechanical and Biological Engineering (M2BE)IIS‐AragónZaragozaSpain
| | - Jesús Gonzalo‐Asensio
- Grupo de Genética de MicobacteriasDepartment of Microbiology, Faculty of MedicineUniversity of ZaragozaIIS AragónZaragoza50009Spain
- CIBER Enfermedades RespiratoriasInstituto de Salud Carlos IIIMadrid28029Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI)Zaragoza50018Spain
| |
Collapse
|
10
|
Yamagishi Y, Nakayama N, Matsunaga N, Sakanashi D, Suematsu H, Matsumoto Y, Mikamo H. Novel approach for rapid detection of extended spectrum β-lactamase and metalloid-β-lactamase using drug susceptibility testing microfluidic device (DSTM). J Infect Chemother 2022; 28:526-531. [PMID: 35016830 DOI: 10.1016/j.jiac.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/28/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND/PURPOSE Rapid detection of β-lactamases is important in a recent situation where resistant bacteria are increasing. By using the drug susceptibility testing microfluidic device (DSTM), rapid screening of extended spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) has become possible. METHODS β-lactams and β-lactamase inhibitors were pre-fixed in the DSTM for use. A bacterial suspension in Mueller-Hinton broth (McF 0.25) was introduced into the device, and the effects of β-lactamase inhibitor on morphological changes caused by β-lactam were evaluated after 3 h incubation. RESULTS Clinical isolates genetically confirmed to produce β-lactamase were used. Of the 84 ESBL-producing strains, 80 strains (95%) turned to be ESBL positive, and five strains (6%) of them MBL were positive as well as ESBL. Four strains (5%) were negative for both ESBL and MBL. Of the 24 MBL-producing strains, 23 strains (96%) were positive for MBL. All the 43 AmpC-producing strains were negative for both ESBL and MBL. Of the 156 ESBL- and MBL-nonproducing strains, 155 strains (99%) were negative for both ESBL and MBL, and one strain was positive for ESBL. With this method, the detection sensitivity was 95% and the specificity was 100% for ESBL, whereas the detection sensitivity was 96% and the specificity was 98% for MBL. These results were not significantly different from the results of the disc diffusion method. CONCLUSION The DSTM method allows rapid detection of β-lactamases in 3 h and may be a useful replacement for the disc diffusion method.
Collapse
Affiliation(s)
- Yuka Yamagishi
- Department of Clinical Infectious Diseases, Kochi Medical School Hospital, Kochi, Japan; Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan
| | - Norihisa Nakayama
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan; Fukoku CO., LTD, Saitama, Japan
| | | | - Daisuke Sakanashi
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan; Department of Infection Control and Prevention, Aichi Medical University Hospital, Aichi, Japan
| | - Hiroyuki Suematsu
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Aichi, Japan
| | - Yoshimi Matsumoto
- Fukoku CO., LTD, Saitama, Japan; Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan; Department of Infection Control and Prevention, Aichi Medical University Hospital, Aichi, Japan.
| |
Collapse
|
11
|
Needs SH, Saiprom N, Rafaque Z, Imtiaz W, Chantratita N, Runcharoen C, Thammachote J, Anun S, Peacock SJ, Ray P, Andrews S, Edwards AD. Miniaturised broth microdilution for simplified antibiotic susceptibility testing of Gram negative clinical isolates using microcapillary devices. Analyst 2022; 147:3558-3569. [DOI: 10.1039/d2an00305h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Miniaturised antibiotic susceptibility testing: 100 times smaller microcapillary broth microdilution gives equivalent result to standard microplate broth microdilution.
Collapse
Affiliation(s)
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Zara Rafaque
- Department of Microbiology, Faculty of Health Sciences, Hazara University, Mansehra, Pakistan
| | - Wajiha Imtiaz
- School of Biological Sciences, University of Reading, RG6 6DX, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Chakkaphan Runcharoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Jeeranan Thammachote
- Division of Clinical Microbiology, Medical Technology Department, Bhuddhasothon Hospital, Chachoengsao, Thailand
| | - Suthatip Anun
- Division of Clinical Microbiology, Medical Technology Department, Bhuddhasothon Hospital, Chachoengsao, Thailand
| | | | - Partha Ray
- The Nature Conservancy, Virginia, USA
- School of Agriculture Policy and Development, University of Reading, UK
| | - Simon Andrews
- School of Biological Sciences, University of Reading, RG6 6DX, UK
| | - Alexander D. Edwards
- School of Pharmacy, University of Reading, RG6 6DX, UK
- CFT Ltd, Daux Road, Billingshurst, RH14 9SJ, UK
| |
Collapse
|
12
|
Im Y, Kim S, Park J, Sung HJ, Jeon JS. Antibiotic susceptibility test under a linear concentration gradient using travelling surface acoustic waves. LAB ON A CHIP 2021; 21:3449-3457. [PMID: 34342326 DOI: 10.1039/d1lc00418b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An efficient and accurate antibiotic susceptibility test (AST) is indispensable for measuring the antimicrobial resistance of pathogenic bacteria. A minimal inhibitory concentration (MIC) can be obtained without performing repeated dilutions of the antibiotic by forming a linear antibiotic concentration gradient in a microfluidic channel. We demonstrated a device designed to use travelling surface acoustic waves (TSAWs) to enable a rapid formation of an antibiotic gradient in a few seconds. The TSAWs produced by a focused interdigital transducer deposited on the surface of a piezoelectric (LiNbO3) substrate generated an acoustic streaming flow inside a microfluidic channel, which mixed confluent streams of antibiotics in a controlled fashion. The growth of bacteria exposed to the antibiotic gradient was determined by measuring the MIC, which was used as an indicator of the effectiveness of the AST. The concentration gradient produced using our device was linear, a feature that enhanced the reliability of measurements throughout the microchannel. Two ASTs, namely Pseudomonas aeruginosa against gentamicin and levofloxacin were chosen for the case of slowly proliferating bacteria, and one AST, namely Escherichia coli against gentamicin, were chosen for the rapidly proliferating case. Appropriate antibiotic doses for Pseudomonas aeruginosa and Escherichia coli were each obtained in an efficient manner.
Collapse
Affiliation(s)
- Yongtaek Im
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Seunggyu Kim
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Jinsoo Park
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea.
| | - Hyung Jin Sung
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Jessie S Jeon
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
13
|
On the Wireless Microwave Sensing of Bacterial Membrane Potential in Microfluidic-Actuated Platforms. SENSORS 2021; 21:s21103420. [PMID: 34069045 PMCID: PMC8156227 DOI: 10.3390/s21103420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022]
Abstract
The investigation of the electromagnetic properties of biological particles in microfluidic platforms may enable microwave wireless monitoring and interaction with the functional activity of microorganisms. Of high relevance are the action and membrane potentials as they are some of the most important parameters of living cells. In particular, the complex mechanisms of a cell’s action potential are comparable to the dynamics of bacterial membranes, and consequently focusing on the latter provides a simplified framework for advancing the current techniques and knowledge of general bacterial dynamics. In this work, we provide a theoretical analysis and experimental results on the microwave detection of microorganisms within a microfluidic-based platform for sensing the membrane potential of bacteria. The results further advance the state of microwave bacteria sensing and microfluidic control and their implications for measuring and interacting with cells and their membrane potentials, which is of great importance for developing new biotechnologically engineered systems and solutions.
Collapse
|
14
|
Kaprou GD, Bergšpica I, Alexa EA, Alvarez-Ordóñez A, Prieto M. Rapid Methods for Antimicrobial Resistance Diagnostics. Antibiotics (Basel) 2021; 10:209. [PMID: 33672677 PMCID: PMC7924329 DOI: 10.3390/antibiotics10020209] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most challenging threats in public health; thus, there is a growing demand for methods and technologies that enable rapid antimicrobial susceptibility testing (AST). The conventional methods and technologies addressing AMR diagnostics and AST employed in clinical microbiology are tedious, with high turnaround times (TAT), and are usually expensive. As a result, empirical antimicrobial therapies are prescribed leading to AMR spread, which in turn causes higher mortality rates and increased healthcare costs. This review describes the developments in current cutting-edge methods and technologies, organized by key enabling research domains, towards fighting the looming AMR menace by employing recent advances in AMR diagnostic tools. First, we summarize the conventional methods addressing AMR detection, surveillance, and AST. Thereafter, we examine more recent non-conventional methods and the advancements in each field, including whole genome sequencing (WGS), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) spectrometry, Fourier transform infrared (FTIR) spectroscopy, and microfluidics technology. Following, we provide examples of commercially available diagnostic platforms for AST. Finally, perspectives on the implementation of emerging concepts towards developing paradigm-changing technologies and methodologies for AMR diagnostics are discussed.
Collapse
Affiliation(s)
- Georgia D. Kaprou
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Ieva Bergšpica
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia
| | - Elena A. Alexa
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| |
Collapse
|
15
|
Sweet E, Yang B, Chen J, Vickerman R, Lin Y, Long A, Jacobs E, Wu T, Mercier C, Jew R, Attal Y, Liu S, Chang A, Lin L. 3D microfluidic gradient generator for combination antimicrobial susceptibility testing. MICROSYSTEMS & NANOENGINEERING 2020; 6:92. [PMID: 34567702 PMCID: PMC8433449 DOI: 10.1038/s41378-020-00200-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/25/2020] [Accepted: 08/01/2020] [Indexed: 06/13/2023]
Abstract
Microfluidic concentration gradient generators (µ-CGGs) have been utilized to identify optimal drug compositions through antimicrobial susceptibility testing (AST) for the treatment of antimicrobial-resistant (AMR) infections. Conventional µ-CGGs fabricated via photolithography-based micromachining processes, however, are fundamentally limited to two-dimensional fluidic routing, such that only two distinct antimicrobial drugs can be tested at once. This work addresses this limitation by employing Multijet-3D-printed microchannel networks capable of fluidic routing in three dimensions to generate symmetric multidrug concentration gradients. The three-fluid gradient generation characteristics of the fabricated 3D µ-CGG prototype were quantified through both theoretical simulations and experimental validations. Furthermore, the antimicrobial effects of three highly clinically relevant antibiotic drugs, tetracycline, ciprofloxacin, and amikacin, were evaluated via experimental single-antibiotic minimum inhibitory concentration (MIC) and pairwise and three-way antibiotic combination drug screening (CDS) studies against model antibiotic-resistant Escherichia coli bacteria. As such, this 3D µ-CGG platform has great potential to enable expedited combination AST screening for various biomedical and diagnostic applications.
Collapse
Affiliation(s)
- Eric Sweet
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720 USA
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
| | - Brenda Yang
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Joshua Chen
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Reed Vickerman
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720 USA
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 USA
| | - Yujui Lin
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
| | - Alison Long
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Eric Jacobs
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Tinglin Wu
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Camille Mercier
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Ryan Jew
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720 USA
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Yash Attal
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Siyang Liu
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720 USA
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
| | - Andrew Chang
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
| | - Liwei Lin
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720 USA
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
| |
Collapse
|
16
|
Yoon J, Kim Y, Suh JW, Jin YY, Jung YG, Park W. Bacterial Isolation Microwell-Plug (μWELLplug) for Rapid Antibiotic Susceptibility Testing Using Morphology Analysis. ACS APPLIED BIO MATERIALS 2020; 3:4798-4808. [PMID: 35021726 DOI: 10.1021/acsabm.0c00317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The rapid and accurate diagnosis of infectious diseases with high morbidity rates is crucial because it can minimize the misuse and overuse of antibiotics and increase survival rates in dreadful conditions. The conventional antibiotic susceptibility test (AST) systems used to choose appropriate antibiotics require long wait times to obtain results and cannot prevent the misuse or overuse of antibiotics by clinicians who need to quickly treat patients and cannot wait to identify the underlying cause of their symptoms. Therefore, several rapid AST (rAST) methods have been developed to provide quick test results, but they are complicated to operate, require additional equipment or materials, and give less accurate results than the conventional AST methods. In this study, we propose an rAST method that can obtain precise outcomes from a simple process with a short running time using a bacterial isolation microwell-plug (μWELLplug) in a conventional 96-well plate. The specifically designed hydrogel component of the μWELLplug provides a simple process for cell isolation and the observation of bacterial growth and morphological changes induced by a variety of antibiotic concentrations. The μWELLplug is placed over each well of the 96-well plate, and then bacterial or eukaryotic cells are isolated in the microwells and treated with different antibiotic concentrations to observe their effects. Saccharomyces cerevisiae (yeast, eukaryote), Streptomyces atratus (actinomycetes, prokaryote), Escherichia coli, Staphylococcus aureus, and methicillin-resistant S. aureus were cultivated and tested using the μWELLplug. The minimum inhibitory concentration values from this system were obtained in 3-4 h and correlated well with those from the conventional AST methods whose running time is 18-24 h.
Collapse
Affiliation(s)
- Jinsik Yoon
- Department of Electronic Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Youngkyoung Kim
- Graduate School of Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Gyeonggi-do, Republic of Korea
| | - Joo-Won Suh
- Graduate School of Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Gyeonggi-do, Republic of Korea.,Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin 17058, Gyeonggi-do, Republic of Korea
| | - Ying-Yu Jin
- Graduate School of Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Gyeonggi-do, Republic of Korea
| | - Yong-Gyun Jung
- Graduate School of Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Gyeonggi-do, Republic of Korea.,Ezdiatech Inc., Anyang-si 14058, Gyeonggi-do, Republic of Korea
| | - Wook Park
- Department of Electronic Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
17
|
Shanmugakani RK, Srinivasan B, Glesby MJ, Westblade LF, Cárdenas WB, Raj T, Erickson D, Mehta S. Current state of the art in rapid diagnostics for antimicrobial resistance. LAB ON A CHIP 2020; 20:2607-2625. [PMID: 32644060 PMCID: PMC7428068 DOI: 10.1039/d0lc00034e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Antimicrobial resistance (AMR) is a fundamental global concern analogous to climate change threatening both public health and global development progress. Infections caused by antimicrobial-resistant pathogens pose serious threats to healthcare and human capital. If the increasing rate of AMR is left uncontrolled, it is estimated that it will lead to 10 million deaths annually by 2050. This global epidemic of AMR necessitates radical interdisciplinary solutions to better detect antimicrobial susceptibility and manage infections. Rapid diagnostics that can identify antimicrobial-resistant pathogens to assist clinicians and health workers in initiating appropriate treatment are critical for antimicrobial stewardship. In this review, we summarize different technologies applied for the development of rapid diagnostics for AMR and antimicrobial susceptibility testing (AST). We briefly describe the single-cell technologies that were developed to hasten the AST of infectious pathogens. Then, the different types of genotypic and phenotypic techniques and the commercially available rapid diagnostics for AMR are discussed in detail. We conclude by addressing the potential of current rapid diagnostic systems being developed as point-of-care (POC) diagnostic tools and the challenges to adapt them at the POC level. Overall, this review provides an insight into the current status of rapid and POC diagnostic systems for AMR.
Collapse
Affiliation(s)
- Rathina Kumar Shanmugakani
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Balaji Srinivasan
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Marshall J. Glesby
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Lars F. Westblade
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Washington B. Cárdenas
- Laboratorio para Investigaciones Biomédicas, Escuela Superior Politécnica del Litoral, Guayaquil, Guayas, Ecuador
| | - Tony Raj
- St. John’s Research Institute, Bangalore, Karnataka, India
| | - David Erickson
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Saurabh Mehta
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
18
|
Hassan SU, Tariq A, Noreen Z, Donia A, Zaidi SZJ, Bokhari H, Zhang X. Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics. Diagnostics (Basel) 2020; 10:E509. [PMID: 32708045 PMCID: PMC7459612 DOI: 10.3390/diagnostics10080509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Point-of-care (POC) or near-patient testing allows clinicians to accurately achieve real-time diagnostic results performed at or near to the patient site. The outlook of POC devices is to provide quicker analyses that can lead to well-informed clinical decisions and hence improve the health of patients at the point-of-need. Microfluidics plays an important role in the development of POC devices. However, requirements of handling expertise, pumping systems and complex fluidic controls make the technology unaffordable to the current healthcare systems in the world. In recent years, capillary-driven flow microfluidics has emerged as an attractive microfluidic-based technology to overcome these limitations by offering robust, cost-effective and simple-to-operate devices. The internal wall of the microchannels can be pre-coated with reagents, and by merely dipping the device into the patient sample, the sample can be loaded into the microchannel driven by capillary forces and can be detected via handheld or smartphone-based detectors. The capabilities of capillary-driven flow devices have not been fully exploited in developing POC diagnostics, especially for antimicrobial resistance studies in clinical settings. The purpose of this review is to open up this field of microfluidics to the ever-expanding microfluidic-based scientific community.
Collapse
Affiliation(s)
- Sammer-Ul Hassan
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Aamira Tariq
- Department of Biosciences, Comsats University Islamabad Campus, Islamabad, Pakistan
| | - Zobia Noreen
- Department of Biosciences, Comsats University Islamabad Campus, Islamabad, Pakistan
| | - Ahmed Donia
- Department of Biosciences, Comsats University Islamabad Campus, Islamabad, Pakistan
| | - Syed Z J Zaidi
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Habib Bokhari
- Department of Biosciences, Comsats University Islamabad Campus, Islamabad, Pakistan
| | - Xunli Zhang
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
19
|
Vasala A, Hytönen VP, Laitinen OH. Modern Tools for Rapid Diagnostics of Antimicrobial Resistance. Front Cell Infect Microbiol 2020; 10:308. [PMID: 32760676 PMCID: PMC7373752 DOI: 10.3389/fcimb.2020.00308] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Fast, robust, and affordable antimicrobial susceptibility testing (AST) is required, as roughly 50% of antibiotic treatments are started with wrong antibiotics and without a proper diagnosis of the pathogen. Validated growth-based AST according to EUCAST or CLSI (European Committee on Antimicrobial Susceptibility Testing, Clinical Laboratory Standards Institute) recommendations is currently suggested to guide the antimicrobial therapy. Any new AST should be validated against these standard methods. Many rapid diagnostic techniques can already provide pathogen identification. Some of them can additionally detect the presence of resistance genes or resistance proteins, but usually isolated pure cultures are needed for AST. We discuss the value of the technologies applying nucleic acid amplification, whole genome sequencing, and hybridization as well as immunodiagnostic and mass spectrometry-based methods and biosensor-based AST. Additionally, we evaluate the potential of integrated systems applying microfluidics to integrate cultivation, lysis, purification, and signal reading steps. We discuss technologies and commercial products with potential for Point-of-Care Testing (POCT) and their capability to analyze polymicrobial samples without pre-purification steps. The purpose of this critical review is to present the needs and drivers for AST development, to show the benefits and limitations of AST methods, to introduce promising new POCT-compatible technologies, and to discuss AST technologies that are likely to thrive in the future.
Collapse
Affiliation(s)
- Antti Vasala
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P. Hytönen
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Olli H. Laitinen
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
20
|
Huang HK, Cheng HW, Liao CC, Lin SJ, Chen YZ, Wang JK, Wang YL, Huang NT. Bacteria encapsulation and rapid antibiotic susceptibility test using a microfluidic microwell device integrating surface-enhanced Raman scattering. LAB ON A CHIP 2020; 20:2520-2528. [PMID: 32542276 DOI: 10.1039/d0lc00425a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The antibiotic susceptibility test (AST) is a general laboratory procedure for bacterial identification and characterization and can be utilized to determine effective antimicrobials for individual patients. Due to the low bacterial concentration, conventional AST usually requires a prolonged bacterial culture time and a labor-intensive sample pretreatment process. Therefore, it cannot perform timely diagnosis or treatment, which results in a high mortality rate for seriously infected patients. To address this problem, we developed a microfluidic microwell device integrating surface-enhanced Raman scattering (SERS) technology, or the so called the Microwell-SERS system, to enable a rapid and high-throughput AST. Our results show that the Microwell-SERS system can successfully encapsulate bacteria in a miniaturized microwell with a greatly increased effective bacteria concentration, resulting in a shorter bacterial culture time. By attaching a microchannel onto the microwell, a smooth liquid and air exchange can purify the surrounding buffer and isolate bacteria in an individual microwell for independent SERS measurement. For proof-of-concept, we demonstrated a 2 h AST on susceptible and resistant E. coli and S. aureus with a concentration of 103 CFU mL-1 in the Microwell-SERS system, whereas the previous SERS-AST method required 108 CFU mL-1 bacterial suspension droplets dispensing on a SERS substrate. Based on the above features, we envision that the Microwell-SERS system could achieve highly sensitive, label-free, bacteria detection and rapid AST to enable timely and accurate bacterial infection disease diagnosis.
Collapse
Affiliation(s)
- Hsiu-Kang Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ma L, Petersen M, Lu X. Identification and Antimicrobial Susceptibility Testing of Campylobacter Using a Microfluidic Lab-on-a-Chip Device. Appl Environ Microbiol 2020; 86:e00096-20. [PMID: 32111591 PMCID: PMC7170473 DOI: 10.1128/aem.00096-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/22/2020] [Indexed: 01/14/2023] Open
Abstract
Campylobacter spp. have been recognized as major foodborne pathogens worldwide. An increasing frequency of antibiotic-resistant pathogens, including Campylobacter spp., have been identified to transmit from food products to humans and cause severe threats to public health. To better mitigate the antibiotic resistance crisis, rapid detection methods are required to provide timely antimicrobial resistance surveillance data for agri-food systems. Herein, we developed a polymer-based microfluidic device for the identification and antimicrobial susceptibility testing (AST) of Campylobacter spp. An array of bacterial incubation chambers were created in the microfluidic device, where chromogenic medium and antibiotics were loaded. The growth of Campylobacter spp. was visualized by color change due to chromogenic reactions. This platform achieved 100% specificity for Campylobacter identification. Sensitive detection of multiple Campylobacter species (C. jejuni, C. coli, and C. lari) was obtained in artificially contaminated milk and poultry meat, with detection limits down to 1 × 102 CFU/ml and 1 × 104 CFU/25 g, respectively. On-chip AST determined Campylobacter antibiotic susceptibilities by the lowest concentration of antibiotics that can inhibit bacterial growth (i.e., no color change observed). High coincidences (91% to 100%) of on-chip AST and the conventional agar dilution method were achieved against several clinically important antibiotics. For a presumptive colony, on-chip identification and AST were completed in parallel within 24 h, whereas standard methods, including biochemical assays and traditional culture-based AST, take several days for multiple sequential steps. In conclusion, this lab-on-a-chip device can achieve rapid and reliable detection of antibiotic-resistant Campylobacter spp.IMPORTANCE Increasing concerns of antibiotic-resistant Campylobacter spp. with regard to public health emphasize the importance of efficient and fast detection. This study described the timely identification and antimicrobial susceptibility testing of Campylobacter spp. by using a microfluidic device. Our developed method not only reduced the total analysis time, but it also simplified food sample preparation and chip operation for end users. Due to the miniaturized size of the lab-on-a-chip platform, the detection was achieved by using up to 1,000 times less of the reagents than with standard reference methods, making it a competitive approach for rapid screening and surveillance study in food industries. In addition, multiple clinically important Campylobacter species (C. jejuni, C. coli, and C. lari) could be tested by our device. This device has potential for wide application in food safety management and clinical diagnostics, especially in resource-limited regions.
Collapse
Affiliation(s)
- Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Marlen Petersen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Allen C, Turner C, Kalsi S, Jamieson D, Li Y, Morgan H, Sutton JM. Development of a rapid phenotypic test on a microfluidic device for carbapenemase detection using the chromogenic compound nitrocefin. Diagn Microbiol Infect Dis 2020; 96:114926. [PMID: 32044188 DOI: 10.1016/j.diagmicrobio.2019.114926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
Routine identification of carbapenemase-producing bacterial isolates is a lengthy process often taking up to 72 h to generate results with standard culture-based tests. Here we describe a rapid test based on the hydrolysis of nitrocefin to identify isolates producing β-lactamase enzymes. A cocktail of inhibitors has been optimized in the reaction mix to provide specificity for carbapenemase enzymes. The developed assay has also been translated to a microfluidic platform with an optical readout (optofluidic chip). The chip has a long absorbance path (25 mm) to provide high sensitivity. A sample-to-answer has been achieved in under 30 min on these chips using colonies from culture plates. The test on this platform has the potential to provide a rapid indicative (presumptive positive) test for carbapenemase producers direct from bacteria isolated from patient samples, to rapidly trigger infection control measures and identify samples that should be prioritized for more specialized carbapenemase diagnostic assays.
Collapse
Affiliation(s)
- Collette Allen
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Carrie Turner
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Sumit Kalsi
- Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ; Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ
| | - David Jamieson
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Yuetao Li
- Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ; Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ
| | - Hywel Morgan
- Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ; Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ
| | - J Mark Sutton
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
23
|
Mizoguchi M, Matsumoto Y, Saito R, Sato T, Moriya K. Direct antibiotic susceptibility testing of blood cultures of gram-negative bacilli using the Drug Susceptibility Testing Microfluidic (DSTM) device. J Infect Chemother 2020; 26:554-562. [PMID: 32115345 DOI: 10.1016/j.jiac.2020.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 10/24/2022]
Abstract
Proper treatment of bloodstream infections requires rapid, early determination of appropriate antibiotic agents, emphasizing the need for more rapid drug susceptibility testing. The Drug Susceptibility Testing Microfluidic (DSTM) device represents a novel method in which a small amount of bacterial suspension is injected into the microchip-like device and cultured for 3 h. However, it remains unknown whether the DSTM method can directly determine antibiotic susceptibilities from positive blood cultures. Here, we developed a new approach to directly assess drug susceptibility, using the DSTM method for positive blood cultures. We compare the utility and accuracy of DSTM with those of conventional susceptibility testing methods. Fifty positive blood cultures identified as gram-negative bacilli were used herein. The outcomes of drug susceptibility and resistance assays for positive blood cultures were compared to those of conventional susceptibility testing methods to evaluate their utility and accuracy. Method agreement rates between DSTM and standard methods often exceed 90%, suggesting a high positive correlation with conventional methods. Furthermore, our results show that a combination of multiple drugs in the DSTM device helps identify extended-spectrum β-lactamase (ESBL)- and AmpC-β-lactamase (AmpC-)-producing microorganisms. In conclusion, DSTM method enables effective drug susceptibility and resistance screening within 3 h from positive blood cultures and is suitable for the rapid and personalized determination of the antimicrobial regimen.
Collapse
Affiliation(s)
- Miyuki Mizoguchi
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, 113-8655, Japan; Department of Microbiology and Immunology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yoshimi Matsumoto
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Ryoichi Saito
- Department of Microbiology and Immunology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoaki Sato
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| |
Collapse
|
24
|
Chitosan Films for Microfluidic Studies of Single Bacteria and Perspectives for Antibiotic Susceptibility Testing. mBio 2019; 10:mBio.01375-19. [PMID: 31431549 PMCID: PMC6703423 DOI: 10.1128/mbio.01375-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Current microfluidic techniques are powerful to study bacteria and determine their response to antibiotic treatment, but they are currently limited by their complex manipulation. Chitosan films are fully biocompatible and could thus be a viable replacement for existing commercial devices that currently use polylysine. Thus, the low cost of chitosan slides and their simple implementation make them highly versatile for research as well as clinical use. Single-cell microfluidics is a powerful method to study bacteria and determine their susceptibility to antibiotic treatment. Glass treatment by adhesive molecules is a potential solution to immobilize bacterial cells and perform microscopy, but traditional cationic polymers such as polylysine deeply affect bacterial physiology. In this work, we chemically characterized a class of chitosan polymers for their biocompatibility when adsorbed to glass. Chitosan chains of known length and composition allowed growth of Escherichia coli cells without any deleterious effects on cell physiology. Combined with a machine learning approach, this method could measure the antibiotic susceptibility of a diversity of clinical strains in less than 1 h and with higher accuracy than current methods. Finally, chitosan polymers also supported growth of Klebsiella pneumoniae, another bacterial pathogen of clinical significance.
Collapse
|
25
|
Chang KW, Cheng HW, Shiue J, Wang JK, Wang YL, Huang NT. Antibiotic Susceptibility Test with Surface-Enhanced Raman Scattering in a Microfluidic System. Anal Chem 2019; 91:10988-10995. [PMID: 31387345 DOI: 10.1021/acs.analchem.9b01027] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Antibiotic susceptibility test (AST) is essential in clinical diagnosis of serious bacterial infection, such as sepsis, while it typically takes 2-5 days for sample culture, antibiotic treatment, and reading result. Detecting metabolites secreted from bacteria with surface-enhanced Raman scattering (SERS) enables rapid determination of antibiotic susceptibility, reducing the AST time to 1-2 days. However, it still requires 1 day of culture time to obtain sufficient quantity of bacteria for sample washing, bacterial extraction, and antibiotic treatment. Additionally, the whole procedure, manually performed in open environment, often suffers from contamination and human error. To address the above problems, a microfluidic system integrating membrane filtration and the SERS-active substrate (MF-SERS) was developed to perform on-chip bacterial enrichment, metabolite collection, and in situ SERS measurements for antibiotic susceptibility test. Using Escherichia coli as the prototype bacterium, the lowest SERS detection limit of bacterial concentration of the MF-SERS system is 103 CFU/mL, which is 4 orders of magnitude lower than that using centrifugation-purification procedure, significantly shortening the bacterial culture time. The bacteria and secreted metabolites are enclosed during bacterial trapping, metabolite filtration, and SERS detection, thus minimizing possible contamination and human errors. Finally, the successful demonstration of AST on E. coli with a concentration of 103 CFU/mL is presented. Overall, the MF-SERS system with a miniature size and well-confined microenvironment allows the integration of multiple bacteria processes for bacterial enrichment, culture, and determination of AST.
Collapse
|
26
|
Ahuja K, Rather GM, Lin Z, Sui J, Xie P, Le T, Bertino JR, Javanmard M. Toward point-of-care assessment of patient response: a portable tool for rapidly assessing cancer drug efficacy using multifrequency impedance cytometry and supervised machine learning. MICROSYSTEMS & NANOENGINEERING 2019; 5:34. [PMID: 31645995 PMCID: PMC6799891 DOI: 10.1038/s41378-019-0073-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/31/2019] [Accepted: 03/25/2019] [Indexed: 05/07/2023]
Abstract
We present a novel method to rapidly assess drug efficacy in targeted cancer therapy, where antineoplastic agents are conjugated to antibodies targeting surface markers on tumor cells. We have fabricated and characterized a device capable of rapidly assessing tumor cell sensitivity to drugs using multifrequency impedance spectroscopy in combination with supervised machine learning for enhanced classification accuracy. Currently commercially available devices for the automated analysis of cell viability are based on staining, which fundamentally limits the subsequent characterization of these cells as well as downstream molecular analysis. Our approach requires as little as 20 μL of volume and avoids staining allowing for further downstream molecular analysis. To the best of our knowledge, this manuscript presents the first comprehensive attempt to using high-dimensional data and supervised machine learning, particularly phase change spectra obtained from multi-frequency impedance cytometry as features for the support vector machine classifier, to assess viability of cells without staining or labelling.
Collapse
Affiliation(s)
- Karan Ahuja
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ USA
| | - Gulam M. Rather
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ USA
| | - Zhongtian Lin
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ USA
| | - Jianye Sui
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ USA
| | - Pengfei Xie
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ USA
| | - Tuan Le
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ USA
| | - Joseph R. Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ USA
| |
Collapse
|
27
|
Lam SW, Bass SN. Advancing Infectious Diseases Diagnostic Testing and Applications to Antimicrobial Therapy in the ICU. J Pharm Pract 2019; 32:327-338. [PMID: 30808257 DOI: 10.1177/0897190019831162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Treatment of suspected infections in critically ill patients requires the timely initiation of appropriate antimicrobials and rapid de-escalation of unnecessary broad-spectrum coverage. New advances in rapid diagnostic tests can now offer earlier detection of pathogen and potential resistance mechanisms within hours of initial culture growth. These technologies, combined with pharmacist antimicrobial stewardship efforts, may result in shorten time to adequate coverage or earlier de-escalation of unnecessary broad spectrum antimicrobials, which could improve patient outcomes and lower overall treatment cost. Furthermore, de-escalation of antimicrobials may lead to decreased emergence of resistant organisms and adverse events associated with antimicrobials. Clinical pharmacists should be aware of new rapid diagnostic tests, including their application, clinical evidence, and limitations, in order to implement the most appropriate clinical treatment strategy when patients have positive cultures. This review will focus on commercially available rapid diagnostic tests for infections that are routinely encountered by critically ill patients, including gram-positive and gram-negative bacterial blood stream infections, Candida, and Clostridioides difficile.
Collapse
Affiliation(s)
- Simon W Lam
- 1 Department of Pharmacy, Pharmacoeconomics and Outcomes Research, Cleveland Clinic, Cleveland, OH, USA
| | - Stephanie N Bass
- 2 Department of Pharmacy, Medical Intensive Care Unit, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
28
|
Khan ZA, Siddiqui MF, Park S. Progress in antibiotic susceptibility tests: a comparative review with special emphasis on microfluidic methods. Biotechnol Lett 2018; 41:221-230. [PMID: 30542946 DOI: 10.1007/s10529-018-02638-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
Antibiotic susceptibility test (AST) is an umbrella term for techniques to determine the susceptibility of bacteria to antibiotics. The antibiotic-resistant bacteria are a major threat to public health and a directed therapy based on accurate AST results is paramount in resistance control. Here we have briefly covered the progress of conventional, molecular, and automated AST tools and their limitations. Various aspects of microfluidic AST such as optical, electrochemical, colorimetric, and mechanical methods have been critically reviewed. We also address the future requirements of the microfluidic devices for AST. Cumulatively, we have outlined the overview of AST that can help to expand and improve the existing techniques and emphasize that microfluidics could be the future of AST and introduction of microtechnologies in AST will be extremely advantageous, especially for point-of-care testing.
Collapse
Affiliation(s)
- Zeeshan A Khan
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea
| | - Mohd F Siddiqui
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea
| | - Seungkyung Park
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea.
| |
Collapse
|
29
|
Narang R, Mohammadi S, Ashani MM, Sadabadi H, Hejazi H, Zarifi MH, Sanati-Nezhad A. Sensitive, Real-time and Non-Intrusive Detection of Concentration and Growth of Pathogenic Bacteria using Microfluidic-Microwave Ring Resonator Biosensor. Sci Rep 2018; 8:15807. [PMID: 30361480 PMCID: PMC6202403 DOI: 10.1038/s41598-018-34001-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
Abstract
Infection diagnosis and antibiotic susceptibility testing (AST) are time-consuming and often laborious clinical practices. This paper presents a microwave-microfluidic biosensor for rapid, contactless and non-invasive device for testing the concentration and growth of Escherichia Coli (E. Coli) in medium solutions of different pH to increase the efficacy of clinical microbiology practices. The thin layer interface between the microfluidic channel and the microwave resonator significantly enhanced the detection sensitivity. The microfluidic chip, fabricated using standard soft lithography, was injected with bacterial samples and incorporated with a microwave microstrip ring resonator sensor with an operation frequency of 2.5 GHz and initial quality factor of 83 for detecting the concentration and growth of bacteria. The resonator had a coupling gap area on of 1.5 × 1.5 mm2 as of its sensitive region. The presence of different concentrations of bacteria in different pH solutions were detected via screening the changes in resonant amplitude and frequency responses of the microwave system. The sensor device demonstrated near immediate response to changes in the concentration of bacteria and maximum sensitivity of 3.4 MHz compared to a logarithm value of bacteria concentration. The minimum prepared optical transparency of bacteria was tested at an OD600 value of 0.003. The sensor’s resonant frequency and amplitude parameters were utilized to monitor bacteria growth during a 500-minute time frame, which demonstrated a stable response with respect to detecting the bacterial proliferation. A highly linear response was demonstrated for detecting bacteria concentration at various pH values. The growth of bacteria analyzed over the resonator showed an exponential growth curve with respect to time and concurred with the lag-log-stationary-death model of cell growth. This biosensor is one step forward to automate the complex AST workflow of clinical microbiology laboratories for rapid and automated detection of bacteria as well as screening the bacteria proliferation in response to antibiotics.
Collapse
Affiliation(s)
- Rakesh Narang
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 2N1, Canada.,Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Center for BioEngineering Research and Education, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Sevda Mohammadi
- Microelectronics and Advanced Sensors Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mehdi Mohammadi Ashani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 2N1, Canada.,Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Center for BioEngineering Research and Education, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Hamid Sadabadi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 2N1, Canada.,Wireless Fluidics Inc, Edmonton, AB, Canada
| | - Hossein Hejazi
- Subsurface Fluidics and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Mohammad Hossein Zarifi
- Microelectronics and Advanced Sensors Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 2N1, Canada. .,Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Center for BioEngineering Research and Education, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
30
|
Veses-Garcia M, Antypas H, Löffler S, Brauner A, Andersson-Svahn H, Richter-Dahlfors A. Rapid Phenotypic Antibiotic Susceptibility Testing of Uropathogens Using Optical Signal Analysis on the Nanowell Slide. Front Microbiol 2018; 9:1530. [PMID: 30042754 PMCID: PMC6048231 DOI: 10.3389/fmicb.2018.01530] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/20/2018] [Indexed: 01/30/2023] Open
Abstract
Achieving fast antimicrobial susceptibility results is a primary goal in the fight against antimicrobial resistance. Standard antibiotic susceptibility testing (AST) takes, however, at least a day from patient sample to susceptibility profile. Here, we developed and clinically validated a rapid phenotypic AST based on a miniaturized nanotiter plate, the nanowell slide, that holds 672 wells in a 500 nl format for bacterial cultivation. The multitude of nanowells allows multiplexing with a panel of six antibiotics relevant for urinary tract infections. Inclusion of seven concentrations per antibiotic plus technical replicates enabled us to determine a precise minimum inhibitory concentration for 70 clinical uropathogenic Escherichia coli isolates. By combining optical recordings of bacterial growth with an algorithm for optical signal analysis, we calculated Tlag, the point of transition from lag to exponential phase, in each nanoculture. Algorithm-assisted analysis determined antibiotic susceptibility as early as 3 h 40 min. In comparison to standard disk diffusion assays, the nanowell AST showed a total categorical agreement of 97.9% with 2.6% major errors and 0% very major errors for all isolate-antibiotic combination tested. Taking advantage of the optical compatibility of the nanowell slide, we performed microscopy to illustrate its potential in defining susceptibility profiles based on bacterial morphotyping. The excellent clinical performance of the nanowell AST, combined with a short detection time, morphotyping, and the very low consumption of reagents clearly show the advantage of this phenotypic AST as a diagnostic tool in a clinical setting.
Collapse
Affiliation(s)
- Marta Veses-Garcia
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Haris Antypas
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Löffler
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Helene Andersson-Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Agneta Richter-Dahlfors
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
|
32
|
Kara V, Duan C, Gupta K, Kurosawa S, Stearns-Kurosawa DJ, Ekinci KL. Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing. LAB ON A CHIP 2018; 18:743-753. [PMID: 29387860 PMCID: PMC5829026 DOI: 10.1039/c7lc01019b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Various nanomechanical movements of bacteria provide a signature of bacterial viability. Most notably, bacterial movements have been observed to subside rapidly and dramatically when the bacteria are exposed to effective antibiotics. Thus, monitoring bacterial movements, if performed with high fidelity, could offer a path to various clinical microbiological applications, including antibiotic susceptibility tests. Here, we introduce a robust and ultrasensitive electrical transduction technique for detecting the nanomechanical movements of bacteria. The technique is based on measuring the electrical fluctuations in a microfluidic channel, which the bacteria populate. The swimming of planktonic bacteria and the random oscillations of surface-immobilized bacteria both cause small but detectable electrical fluctuations. We show that this technique provides enough sensitivity to detect even the slightest movements of a single cell; we also demonstrate an antibiotic susceptibility test in a biological matrix. Given that it lends itself to smooth integration with other microfluidic methods and devices, the technique can be developed into a functional antibiotic susceptibility test, in particular, for urinary tract infections.
Collapse
Affiliation(s)
- Vural Kara
- Department of Mechanical Engineering, Division of Materials Science and Engineering, and the Photonics Center, Boston University, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Ierardi V, Domenichini P, Reali S, Chiappara GM, Devoto G, Valbusa U. Klebsiella pneumoniae antibiotic resistance identified by atomic force microscopy. J Biosci 2017; 42:623-636. [DOI: 10.1007/s12038-017-9713-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Drug screening of cancer cell lines and human primary tumors using droplet microfluidics. Sci Rep 2017; 7:9109. [PMID: 28831060 PMCID: PMC5567315 DOI: 10.1038/s41598-017-08831-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/19/2017] [Indexed: 01/23/2023] Open
Abstract
Precision Medicine in Oncology requires tailoring of therapeutic strategies to individual cancer patients. Due to the limited quantity of tumor samples, this proves to be difficult, especially for early stage cancer patients whose tumors are small. In this study, we exploited a 2.4 × 2.4 centimeters polydimethylsiloxane (PDMS) based microfluidic chip which employed droplet microfluidics to conduct drug screens against suspended and adherent cancer cell lines, as well as cells dissociated from primary tumor of human patients. Single cells were dispersed in aqueous droplets and imaged within 24 hours of drug treatment to assess cell viability by ethidium homodimer 1 staining. Our results showed that 5 conditions could be screened for every 80,000 cells in one channel on our chip under current circumstances. Additionally, screening conditions have been adapted to both suspended and adherent cancer cells, giving versatility to potentially all types of cancers. Hence, this study provides a powerful tool for rapid, low-input drug screening of primary cancers within 24 hours after tumor resection from cancer patients. This paves the way for further technological advancement to cutting down sample size and increasing drug screening throughput in advent to personalized cancer therapy.
Collapse
|
35
|
Jalali F, Ellett F, Irimia D. Rapid antibiotic sensitivity testing in microwell arrays. TECHNOLOGY 2017; 5:107-114. [PMID: 28781994 PMCID: PMC5542807 DOI: 10.1142/s2339547817500030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The widespread bacterial resistance to a broad range of antibiotics necessitates rapid antibiotic susceptibility testing before effective treatment could start in the clinic. Among resistant bacteria, Staphylococcus aureus is one of the most important, and Methicillin-resistant (MRSA) strains are a common cause of life threatening infections. However, standard susceptibility testing for S. aureus is time consuming and thus the start of effective antibiotic treatment is often delayed. To circumvent the limitations of current susceptibility testing systems, we designed an assay that enables measurements of bacterial growth with higher spatial and temporal resolution than standard techniques. The assay consists of arrays of microwells that confine small number of bacteria in small spaces, where their growth is monitored with high precision. These devices enabled us to investigate the effect of different antibiotics on S. aureus growth. We measured the Minimal Inhibitory Concentration (MIC) in less than 3 hours. In addition to being significantly faster than the 48 hours needed for traditional microbiological methods, the assay is also capable of differentiating the specific effects of different antibiotic classes on S. aureus growth. Overall, this assay has the potential to become a rapid, sensitive, and robust tool for use in hospitals and laboratories to assess antibiotic sensitivity.
Collapse
Affiliation(s)
- Fatemeh Jalali
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Felix Ellett
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
36
|
Maurer FP, Christner M, Hentschke M, Rohde H. Advances in Rapid Identification and Susceptibility Testing of Bacteria in the Clinical Microbiology Laboratory: Implications for Patient Care and Antimicrobial Stewardship Programs. Infect Dis Rep 2017; 9:6839. [PMID: 28458798 PMCID: PMC5391540 DOI: 10.4081/idr.2017.6839] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/30/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
Early availability of information on bacterial pathogens and their antimicrobial susceptibility is of key importance for the management of infectious diseases patients. Currently, using traditional approaches, it usually takes at least 48 hours for identification and susceptibility testing of bacterial pathogens. Therefore, the slowness of diagnostic procedures drives prolongation of empiric, potentially inappropriate, antibacterial therapies. Over the last couple of years, the improvement of available techniques (e.g. for susceptibility testing, DNA amplification assays), and introduction of novel technologies (e.g. MALDI-TOF) has fundamentally changed approaches towards pathogen identification and characterization. Importantly, these techniques offer increased diagnostic resolution while at the same time shorten the time-to-result, and are thus of obvious importance for antimicrobial stewardship. In this review, we will discuss recent advances in medical microbiology with special emphasis on the impact of novel techniques on antimicrobial stewardship programs.
Collapse
Affiliation(s)
- Florian P Maurer
- Institute of Medical Microbiology, Virology and Hygiene.,Antibiotic Stewardship Team, University Medical Centre Hamburg-Eppendorf, Hamburg
| | | | | | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene
| |
Collapse
|
37
|
Maurer FP, Hentschke M, Rohde H. [Advances in diagnostic microbiology : Opportunities and limitations]. Med Klin Intensivmed Notfmed 2017; 112:199-205. [PMID: 28342095 DOI: 10.1007/s00063-017-0275-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 02/04/2023]
Abstract
In the light of ever increasing problems related to the emergence of multidrug-resistant bacteria, rapid microbiological diagnostics are of growing importance. Timely pathogen detection and availability of susceptibility data are essential for optimal treatment, but are even more crucial for de-escalation of broad spectrum empiric therapies. Medical microbiology is, thus, an integral part of antimicrobial stewardship programs. Traditional microbiological techniques for species identification and susceptibility testing rely on bacterial growth and are, thus, characterized by inherent slowness. Time-to-report is usually 48 h or longer, and typically delays optimization of therapeutic regimens. Constant improvement of available techniques (e. g., molecular methods) and introduction of novel methods (e. g., matrix-assisted laser desorption ionization time-of-flight [MALDI-ToF] mass spectrometry) have fundamentally changed diagnostic procedures. As a consequence, sensitivity and specificity as well as time-to-report have been dramatically improved. In this manuscript, key methodological advances in medical microbiology are discussed, emphasizing consequences for daily management of infectious disease patients.
Collapse
Affiliation(s)
- F P Maurer
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland.,Antibiotic Stewardship Team, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland
| | - M Hentschke
- MVZ Labor Dr. Fenner und Kollegen, Bergstraße 14, 20095, Hamburg, Deutschland
| | - H Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland.
| |
Collapse
|
38
|
Microfluidics: innovative approaches for rapid diagnosis of antibiotic-resistant bacteria. Essays Biochem 2017; 61:91-101. [PMID: 28258233 DOI: 10.1042/ebc20160059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
The emergence of antibiotic-resistant bacteria has become a major global health concern. Rapid and accurate diagnostic strategies to determine the antibiotic susceptibility profile prior to antibiotic prescription and treatment are critical to control drug resistance. The standard diagnostic procedures for the detection of antibiotic-resistant bacteria, which rely mostly on phenotypic characterization, are time consuming, insensitive and often require skilled personnel, making them unsuitable for point-of-care (POC) diagnosis. Various molecular techniques have therefore been implemented to help speed up the process and increase sensitivity. Over the past decade, microfluidic technology has gained great momentum in medical diagnosis as a series of fluid handling steps in a laboratory can be simplified and miniaturized on to a small platform, allowing marked reduction of sample amount, high portability and tremendous possibility for integration with other detection technologies. These advantages render the microfluidic system a great candidate to be developed into an easy-to-use sample-to-answer POC diagnosis suitable for application in remote clinical settings. This review provides an overview of the current development of microfluidic technologies for the nucleic acid based and phenotypic-based detections of antibiotic resistance.
Collapse
|
39
|
Lee WB, Fu CY, Chang WH, You HL, Wang CH, Lee MS, Lee GB. A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method. Biosens Bioelectron 2017; 87:669-678. [DOI: 10.1016/j.bios.2016.09.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/25/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
|
40
|
Grushnikov A, Kikuchi K, Matsumoto Y, Kanade T, Yagi Y. Automatic Image Analysis for Rapid Drug Susceptibility Testing. ADVANCED BIOMEDICAL ENGINEERING 2017. [DOI: 10.14326/abe.6.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Andrey Grushnikov
- The Institute of Scientific and Industrial Research, Osaka University
| | - Kazuma Kikuchi
- The Institute of Scientific and Industrial Research, Osaka University
| | - Yoshimi Matsumoto
- The Institute of Scientific and Industrial Research, Osaka University
| | - Takeo Kanade
- The Institute of Scientific and Industrial Research, Osaka University
| | - Yasushi Yagi
- The Institute of Scientific and Industrial Research, Osaka University
| |
Collapse
|
41
|
Campbell J, McBeth C, Kalashnikov M, Boardman AK, Sharon A, Sauer-Budge AF. Microfluidic advances in phenotypic antibiotic susceptibility testing. Biomed Microdevices 2016; 18:103. [PMID: 27796676 PMCID: PMC5473355 DOI: 10.1007/s10544-016-0121-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strong natural selection for microbial antibiotic resistance has resulted from the extensive use and misuse of antibiotics. Though multiple factors are responsible for this crisis, the most significant factor - widespread prescription of broad-spectrum antibiotics - is largely driven by the fact that the standard process for determining antibiotic susceptibility includes a 1-2-day culture period, resulting in 48-72 h from patient sample to final determination. Clearly, disruptive approaches, rather than small incremental gains, are needed to address this issue. The field of microfluidics promises several advantages over existing macro-scale methods, including: faster assays, increased multiplexing, smaller volumes, increased portability for potential point-of-care use, higher sensitivity, and rapid detection methods. This Perspective will cover the advances made in the field of microfluidic, phenotypic antibiotic susceptibility testing (AST) over the past two years. Sections are organized based on the functionality of the chip - from simple microscopy platforms, to gradient generators, to antibody-based capture devices. Microfluidic AST methods that monitor growth as well as those that are not based on growth are presented. Finally, we will give our perspective on the major hurdles still facing the field, including the need for rapid sample preparation and affordable detection technologies.
Collapse
Affiliation(s)
- Jennifer Campbell
- Fraunhofer USA - Center for Manufacturing Innovation, Brookline, MA, 02446, USA
| | - Christine McBeth
- Fraunhofer USA - Center for Manufacturing Innovation, Brookline, MA, 02446, USA
| | - Maxim Kalashnikov
- Fraunhofer USA - Center for Manufacturing Innovation, Brookline, MA, 02446, USA
| | - Anna K Boardman
- Fraunhofer USA - Center for Manufacturing Innovation, Brookline, MA, 02446, USA
| | - Andre Sharon
- Fraunhofer USA - Center for Manufacturing Innovation, Brookline, MA, 02446, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Alexis F Sauer-Budge
- Fraunhofer USA - Center for Manufacturing Innovation, Brookline, MA, 02446, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
42
|
Xu B, Du Y, Lin J, Qi M, Shu B, Wen X, Liang G, Chen B, Liu D. Simultaneous Identification and Antimicrobial Susceptibility Testing of Multiple Uropathogens on a Microfluidic Chip with Paper-Supported Cell Culture Arrays. Anal Chem 2016; 88:11593-11600. [PMID: 27934103 DOI: 10.1021/acs.analchem.6b03052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Banglao Xu
- Department
of Laboratory Medicine, Guangzhou First People’s Hospital, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China
| | - Yan Du
- Department
of Laboratory Medicine, Guangzhou First People’s Hospital, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Jinqiong Lin
- Department
of Laboratory Medicine, Guangzhou First People’s Hospital, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Mingyue Qi
- Department
of Laboratory Medicine, Guangzhou First People’s Hospital, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Bowen Shu
- Department
of Laboratory Medicine, Guangzhou First People’s Hospital, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China
| | - Xiaoxia Wen
- Department
of Laboratory Medicine, Guangzhou First People’s Hospital, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Guangtie Liang
- Department
of Laboratory Medicine, Guangzhou First People’s Hospital, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China
| | - Bin Chen
- Department
of Laboratory Medicine, Guangzhou First People’s Hospital, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China
| | - Dayu Liu
- Department
of Laboratory Medicine, Guangzhou First People’s Hospital, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China
| |
Collapse
|
43
|
Dai J, Hamon M, Jambovane S. Microfluidics for Antibiotic Susceptibility and Toxicity Testing. Bioengineering (Basel) 2016; 3:bioengineering3040025. [PMID: 28952587 PMCID: PMC5597268 DOI: 10.3390/bioengineering3040025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022] Open
Abstract
The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA) bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing.
Collapse
Affiliation(s)
- Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Morgan Hamon
- Renal Regeneration Laboratory, VAGLAHS at Sepulveda, North Hills, CA 91343, USA.
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Sachin Jambovane
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA 99354, USA.
| |
Collapse
|