1
|
Kim S, Baril C, Rudraraju S, Ploeg HL. Influence of Porosity on Fracture Toughness and Fracture Behavior of Antibiotic-Loaded PMMA Bone Cement. J Biomech Eng 2022; 144:1114803. [PMID: 34286825 DOI: 10.1115/1.4051848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 11/08/2022]
Abstract
Aseptic loosening is the most common reason for the long-term revision of cemented arthroplasties with fracture of the cement being a postulated cause or contributing factor. In our previous studies we showed that adding an antibiotic to a polymethylmethacrylate (PMMA) bone cement led to detrimental effects on various mechanical properties of the cement such as bending strength, compressive strength and fracture toughness (KIC). This finding implied that the mechanical failure of antibiotic-loaded PMMA bone cement was influenced by its pore volume fraction. Up to now this aspect has not been studied. Hence the purposes of this study were to determine (1) the influence of antibiotic (telavancin) loading on the KIC of a widely used PMMA bone cement brand (Palacos®R) and (2) the influence of pore size and pore distribution on the fracture behavior of the KIC specimens. For (2) both experimental and numerical methods (extended finite element method [XFEM]) were used allowing a comparison between the two sets of results. We found that: (1) KIC decreased with increased porosity with the drop (relative to the value for the control cement) being significant when the telavancin loading was 4.8 wt/wt % (2 g of telavancin added to 40 g of control cement powder); (2) there was a critical pore size above which there was a significant decrease in KIC and is 1 mm; (3) crack propagation was strongly influenced by pore size and pore locations (pore-pore interactions); and, (4) there was good agreement between the experimental and XFEM results. The implications of these findings for the use of a telavancin-loaded PMMA bone cement in cemented total joint arthroplasties are commented upon.
Collapse
Affiliation(s)
- Sunjung Kim
- Mechanical Engineering, University of Wisconsin - Madison, Madison, WI 60085
| | - Caroline Baril
- Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Shiva Rudraraju
- Mechanical Engineering, University of Wisconsin - Madison, Madison, WI 60085
| | - Heidi-Lynn Ploeg
- Mechanical Engineering, University of Wisconsin - Madison, Madison, WI 60085; Department of Mechanical and Materials Engineering, Queen's University, McLaughlin Hall, 130 Stuart St., Room 303B, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
2
|
Koks S, Wood DJ, Reimann E, Awiszus F, Lohmann CH, Bertrand J, Prans E, Maasalu K, Märtson A. The Genetic Variations Associated With Time to Aseptic Loosening After Total Joint Arthroplasty. J Arthroplasty 2020; 35:981-988. [PMID: 31791832 DOI: 10.1016/j.arth.2019.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Total joint arthroplasty (TJA) is one of the most frequent surgical procedures performed in modern hospitals, and aseptic loosening is the most common indication for revision surgeries. We conducted a systemic exploration of potential genetic determinants for early aseptic loosening. METHODS Data from 423 patients undergoing TJA were collected and analyzed. Three analytical groups were formed based on joint arthroplasty status. Group 1 were TJA patients without symptoms of aseptic loosening of at least 1 year, group 2 were patients with primary TJA, and group 3 were patients receiving revision surgery because of aseptic loosening. Genome-wide genotyping comparing genotype frequencies between patients with and without aseptic loosening (group 3 vs groups 1 and 2) was conducted. A case-control association analysis and linear modeling were applied to identify the impact of the identified genes on implant survival with time to the revision as an outcome measure. RESULTS We identified 52 single-nucleotide polymorphisms (SNPs) with a genome-wide suggestive P value less than 10-5 to be associated with the implant loosening. The most remarkable odds ratios (OR) were found with the variations in the IFIT2/IFIT3 (OR, 21.6), CERK (OR, 12.6), and PAPPA (OR, 14.0) genes. Variations in the genotypes of 4 SNPs-rs115871127, rs16823835, rs13275667, and rs2514486-predicted variability in the time to aseptic loosening. The time to aseptic loosening varied from 8 to 16 years depending on the genotype, indicating a substantial effect of genetic variance. CONCLUSION Development of the aseptic loosening is associated with several genetic variations and we identified at least 4 SNPs with a significant effect on the time for loosening. These data could help to develop a personalized approach for TJA and loosening management.
Collapse
Affiliation(s)
- Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia; The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - David J Wood
- Department of Surgery, The University of Western Australia, Nedlands, WA, Australia
| | - Ene Reimann
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Friedemann Awiszus
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Ele Prans
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu, Estonia; Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu, Estonia; Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
3
|
Jagga S, Sharma AR, Bhattacharya M, Chakraborty C, Lee SS. Influence of single nucleotide polymorphisms (SNPs) in genetic susceptibility towards periprosthetic osteolysis. Genes Genomics 2019; 41:1113-1125. [PMID: 31313107 DOI: 10.1007/s13258-019-00845-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
Wear debris-induced inflammatory osteolysis remains a significant limiting factor for implant replacement surgeries. Hence, a comprehensive understanding of the complex network of cellular and molecular signals leading to these inflammatory responses is required. Both macrophages and monocytes have a critical role in the instigation of the inflammatory reaction to wear debris but differ in the extent to which they induce cytokine expression in patients. Lately, single nucleotide polymorphisms (SNPs) have been associated with genetic susceptibility among individual patients with implant failure. Studies have shown that SNPs in key pro-inflammatory cytokines and their receptors are associated with osteolytic susceptibility. Likewise, SNPs within several genes involved in the regulation of bone turnover have also been found to be associated with wear debris induced osteolysis. It is presumed that SNP variance might play a decisive role in the activation and signaling of macrophages, osteoblasts, chondrocytes, fibroblasts and other cells involved in inflammatory bone loss. Understanding the extent to which SNPs exist among genes that are responsible for inflammatory bone loss may provide potential targets for developing future therapeutic interventions. Herein, we attempt to summarize the various susceptible genes with possible SNP variance that could contribute to the severity of periprosthetic osteolysis in patients with implants.
Collapse
Affiliation(s)
- Supriya Jagga
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, Republic of Korea
| | - Manojit Bhattacharya
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, Republic of Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, Republic of Korea. .,Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Jagannathpur, Kolkata, West Bengal, 700126, India.
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, Republic of Korea.
| |
Collapse
|
4
|
MacInnes SJ, Hatzikotoulas K, Fenstad AM, Shah K, Southam L, Tachmazidou I, Hallan G, Dale H, Panoutsopoulou K, Furnes O, Zeggini E, Wilkinson JM. The 2018 Otto Aufranc Award: How Does Genome-wide Variation Affect Osteolysis Risk After THA? Clin Orthop Relat Res 2019; 477:297-309. [PMID: 30794219 PMCID: PMC6370091 DOI: 10.1097/01.blo.0000533629.49193.09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/04/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Periprosthetic osteolysis resulting in aseptic loosening is a leading cause of THA revision. Individuals vary in their susceptibility to osteolysis and heritable factors may contribute to this variation. However, the overall contribution that such variation makes to osteolysis risk is unknown. QUESTIONS/PURPOSES We conducted two genome-wide association studies to (1) identify genetic risk loci associated with susceptibility to osteolysis; and (2) identify genetic risk loci associated with time to prosthesis revision for osteolysis. METHODS The Norway cohort comprised 2624 patients after THA recruited from the Norwegian Arthroplasty Registry, of whom 779 had undergone revision surgery for osteolysis. The UK cohort included 890 patients previously recruited from hospitals in the north of England, 317 who either had radiographic evidence of and/or had undergone revision surgery for osteolysis. All participants had received a fully cemented or hybrid THA using a small-diameter metal or ceramic-on-conventional polyethylene bearing. Osteolysis susceptibility case-control analyses and quantitative trait analyses for time to prosthesis revision (a proxy measure of the speed of osteolysis onset) in those patients with osteolysis were undertaken in each cohort separately after genome-wide genotyping. Finally, a meta-analysis of the two independent cohort association analysis results was undertaken. RESULTS Genome-wide association analysis identified four independent suggestive genetic signals for osteolysis case-control status in the Norwegian cohort and 11 in the UK cohort (p ≤ 5 x 10). After meta-analysis, five independent genetic signals showed a suggestive association with osteolysis case-control status at p ≤ 5 x 10 with the strongest comprising 18 correlated variants on chromosome 7 (lead signal rs850092, p = 1.13 x 10). Genome-wide quantitative trait analysis in cases only showed a total of five and nine independent genetic signals for time to revision at p ≤ 5 x 10, respectively. After meta-analysis, 11 independent genetic signals showed suggestive evidence of an association with time to revision at p ≤ 5 x 10 with the largest association block comprising 174 correlated variants in chromosome 15 (lead signal rs10507055, p = 1.40 x 10). CONCLUSIONS We explored the heritable biology of osteolysis at the whole genome level and identify several genetic loci that associate with susceptibility to osteolysis or with premature revision surgery. However, further studies are required to determine a causal association between the identified signals and osteolysis and their functional role in the disease. CLINICAL RELEVANCE The identification of novel genetic risk loci for osteolysis enables new investigative avenues for clinical biomarker discovery and therapeutic intervention in this disease.
Collapse
Affiliation(s)
- Scott J MacInnes
- S. J. MacInnes, K. Shah, J. M. Wilkinson, Department of Oncology and Metabolism, University of Sheffield, The Medical School, Sheffield, UK K. Hatzikotoulas, I. Tachmazidou, K. Panoutsopoulou, E. Zeggini, Wellcome Trust Sanger Institute, Cambridge, UK A. M. Fenstad, H. Dale, The Norwegian Arthroplasty Register, Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway L. Southam, Wellcome Trust Centre for Human Genetics, Oxford, UK G. Hallan, O. Furnes, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
No Association of CALCA Polymorphisms and Aseptic Loosening after Primary Total Hip Arthroplasty. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3687415. [PMID: 29967770 PMCID: PMC6008809 DOI: 10.1155/2018/3687415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/08/2018] [Indexed: 12/29/2022]
Abstract
Studies of aseptic loosening showed an influence of calcitonin and α-CGRP, both encoded from the calcitonin/α-CGRP (CALCA) gene by alternative splicing. The aim of this study was to detect a possible association of the CALCA polymorphisms P1(rs1553005), P2(rs35815751), P3(rs5240), and P4(rs2956) with the time to aseptic loosening after THA. 320 patients suffering from aseptic loosening after primary total hip arthroplasty were genotyped for CALCA-P1 polymorphism and 161 patients for CALCA-P2 and CALCA-P3 polymorphisms and 160 patients for CALCA-P4 polymorphism. CALCA genotypes were determined by polymerase chain reaction and restriction-fragment length polymorphism. The genotype distribution of CALCA-P1 was CC 10%, CT 43%, and 46% TT. CALCA-P2 showed a distribution of 90.7%II, 8.7% ID, and 0.6% DD. The CALCA-P3 genotype distribution was 97.5% TT and 2.5% TC. The CALCA-P4 genotype distribution was 48.1% AA, 40% AT, and 11.9% TT. Significant differences between the CALCA genotypes were not found concerning age at implantation and replantation, BMI, gender, and cementation technique. No associations of the time for aseptic loosening were found. In conclusion, we did not find a significant association of CALCA polymorphisms and the time to aseptic loosening after primary THA in a Western European group.
Collapse
|
6
|
Bardakos NV. CORR Insights®: Frank Stinchfield Award: Identification of the At-risk Genotype for Development of Pseudotumors Around Metal-on-metal THAs. Clin Orthop Relat Res 2018; 476. [PMID: 29529652 PMCID: PMC6259710 DOI: 10.1007/s11999.0000000000000111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Nikolaos V Bardakos
- N. V. Bardakos Consultant Orthopaedic Surgeon, Asklepieion Hospital, Athens, Greece
| |
Collapse
|
7
|
Stelmach P, Kauther MD, Fuest L, Kurscheid G, Gehrke T, Klenke S, Jäger M, Wedemeyer C, Bachmann HS. Relationship between GNAS1 T393C polymorphism and aseptic loosening after total hip arthroplasty. Eur J Med Res 2017; 22:29. [PMID: 28830502 PMCID: PMC5568317 DOI: 10.1186/s40001-017-0271-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/18/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Aseptic loosening is a main cause for revision surgery after total hip arthroplasty (THA) and there is no reliable marker for the early detection of patients at high risk. This study has been performed to validate association of the T393C polymorphism (rs7121) in the GNAS1 gene, encoding for the alpha-subunit of heterotrimeric G-protein Gs, with risk for and time to aseptic loosening after THA, which has been demonstrated in our previous study. METHODS 231 patients with primary THA and 234 patients suffering from aseptic loosening were genotyped for dependency on GNAS1 genotypes and analyzed. RESULTS Genotyping revealed almost similar minor allele frequencies of 0.49 and 0.46, respectively. Consistently, genotype distributions of both groups were not significantly different (p = 0.572). Neither gender nor GNAS1 genotype showed a statistically significant association with time to loosening (p = 0.501 and p = 0.840). Stratification by gender, as performed in our previous study, was not able to show a significant genotype-dependent difference in time (female p = 0.313; male p = 0.584) as well as median time to aseptic loosening (female p = 0.353; male p = 0.868). CONCLUSION This study was not able to confirm the results of our preliminary study. An association of the GNAS1 T393C polymorphisms with risk for and time to aseptic loosening after THA is unlikely.
Collapse
Affiliation(s)
- Patrick Stelmach
- Institute of Pharmacogenetics, University Hospital Essen, 45147, Essen, Germany
| | - Max D Kauther
- Department of Orthopaedics and Trauma Surgery, University Hospital Essen, Essen, Germany
| | - Lena Fuest
- Institute of Pharmacogenetics, University Hospital Essen, 45147, Essen, Germany.,Department of Orthopaedics and Trauma Surgery, University Hospital Essen, Essen, Germany
| | - Gina Kurscheid
- Institute of Pharmacogenetics, University Hospital Essen, 45147, Essen, Germany.,Department of Orthopaedics and Trauma Surgery, University Hospital Essen, Essen, Germany
| | - Thorsten Gehrke
- Department of Joint Surgery, Helios ENDO-Klinik, Hamburg, Germany
| | - Stefanie Klenke
- Institute of Pharmacogenetics, University Hospital Essen, 45147, Essen, Germany.,Department of Anaesthesiology and Intensive Care, University Hospital Essen, Essen, Germany
| | - Marcus Jäger
- Department of Orthopaedics and Trauma Surgery, University Hospital Essen, Essen, Germany
| | - Christian Wedemeyer
- Department of Orthopaedics and Trauma Surgery, University Hospital Essen, Essen, Germany
| | - Hagen S Bachmann
- Institute of Pharmacogenetics, University Hospital Essen, 45147, Essen, Germany. .,Department of Health, School of Medicine, Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.
| |
Collapse
|