1
|
Wang H, Li X, Zhang Q, Fu C, Jiang W, Xue J, Liu S, Meng Q, Ai L, Zhi X, Deng S, Liang W. Autophagy in Disease Onset and Progression. Aging Dis 2024; 15:1646-1671. [PMID: 37962467 PMCID: PMC11272186 DOI: 10.14336/ad.2023.0815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 11/15/2023] Open
Abstract
Autophagy is a biological phenomenon whereby components of cells can self-degrade using autophagosomes. During this process, cells can clear dysfunctional organelles or unwanted elements. Autophagy can recycle unnecessary biomolecules into new components or sometimes, even destroy the cells themselves. This cellular process was first observed in 1962 by Keith R. Porter et al. Since then, autophagy has been studied for over 60 years, and much has been learned on the topic. Nevertheless, the process is still not fully understood. It has been proven, for example, that autophagy can be a positive force for maintaining good health by removing older or damaged cells. By contrast, autophagy is also involved in the onset and progression of various conditions caused by pathogenic infections. These diseases generally involve several important organs in the human body, including the liver, kidney, heart, and central nervous system. The regulation of the defects of autophagy defects may potentially be used to treat some diseases. This review comprehensively discusses recent research frontiers and topics of interest regarding autophagy-related diseases.
Collapse
Affiliation(s)
- Hao Wang
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong, China.
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Chengtao Fu
- School of Medicine, Huzhou University, Zhejiang, China.
| | - Wenjie Jiang
- Department of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin, China.
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Shan Liu
- Bioimaging Core of Shenzhen Bay Laboratory Shenzhen, China.
| | - Qingxue Meng
- Technology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Lisha Ai
- Department of Teaching and Research, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Shoulong Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
2
|
Ni R, Fan L, Wang H, Zhang Q, Zhang L, Wang A, Liu B. Immune suppressive drugs negatively regulate the CD8 +T cells function by acetyltransferase p300 induced canonical and non-canonical autophagy. Heliyon 2024; 10:e33755. [PMID: 39071589 PMCID: PMC11283165 DOI: 10.1016/j.heliyon.2024.e33755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Macroautophagy, the mainly regulated form of autophagy, maintains the cellular homeostasis and degrades the transported cargoes. It is initiated by the protein kinase complex regulating by two signals pathway Mammalian target of rapamycin complex 1 (mTORC1)-Adenosine 5' monophosphate activated protein kinase (AMPK)-Unc 51 like kinase 1(ULK1) and ULK1-PI3K- phosphatidylinositol 3-phosphate (PI3P). Currently, autolysosomes are accumulated during the aging process of CD8+T cells in vitro and may participate in inducing death sensitization of senescent cells. The main mechanism of aplastic anemia, a hyperimmune disease, is the T cells subsets imbalance such as CD8+T cells abnormal activation and hyperfunction. Therefore, the role of autophagy in the CD8+T cells and supposed whether some immunosuppress drugs induced the cells autophagic death to treat the hyperimmune diseases were focused. It was decided found that the acetyltransferase p300 obviously increased in the aplastic anemia patients and was related with the severity of disease. Previous studies have reported that canonical autophagy is regulated by the mTORC1-p300 axis. p300 is a critical bridge in the p300-VPS34 axis mediated non-canonical autophagy. There is the deficiency of autophagy and acetylation in the CD8+T cells. The expression of p300 also decreased notably after the immunosuppressive drugs therapy. Our findings provide a framework for understanding how immunosuppressive drugs effect on the AA autophagy deficiency mechanism and proved that immunosuppressive drugs negatively regulated the function of CD8+T cells by p300-mediated canonical autophagy pathway and non-canonical autophagy pathway.
Collapse
Affiliation(s)
- Runfeng Ni
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Liwei Fan
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Xiasha Street Community Healthcare Center, Hangzhou, 310018, China
| | - Haijin Wang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Quan Zhang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Le Zhang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Aidi Wang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Baoshan Liu
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
3
|
Jang J, Kim H, Park SS, Kim M, Min YK, Jeong HO, Kim S, Hwang T, Choi DWY, Kim HJ, Song S, Kim DO, Lee S, Lee CH, Lee JW. Single-cell RNA Sequencing Reveals Novel Cellular Factors for Response to Immunosuppressive Therapy in Aplastic Anemia. Hemasphere 2023; 7:e977. [PMID: 37908861 PMCID: PMC10615405 DOI: 10.1097/hs9.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Aplastic anemia (AA) is a lethal hematological disorder; however, its pathogenesis is not fully understood. Although immunosuppressive therapy (IST) is a major treatment option for AA, one-third of patients do not respond to IST and its resistance mechanism remains elusive. To understand AA pathogenesis and IST resistance, we performed single-cell RNA sequencing (scRNA-seq) of bone marrow (BM) from healthy controls and patients with AA at diagnosis. We found that CD34+ early-stage erythroid precursor cells and PROM1+ hematopoietic stem cells were significantly depleted in AA, which suggests that the depletion of CD34+ early-stage erythroid precursor cells and PROM1+ hematopoietic stem cells might be one of the major mechanisms for AA pathogenesis related with BM-cell hypoplasia. More importantly, we observed the significant enrichment of CD8+ T cells and T cell-activating intercellular interactions in IST responders, indicating the association between the expansion and activation of T cells and the positive response of IST in AA. Taken together, our findings represent a valuable resource offering novel insights into the cellular heterogeneity in the BM of AA and reveal potential biomarkers for IST, building the foundation for future precision therapies in AA.
Collapse
Affiliation(s)
- Jinho Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Hongtae Kim
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea
| | - Sung-Soo Park
- Department of Hematology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Miok Kim
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Yong Ki Min
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Hyoung-oh Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Seunghoon Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Taejoo Hwang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - David Whee-Young Choi
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sukgil Song
- Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | | | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Chang Hoon Lee
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Korea SCBIO Inc, Daejeon, Republic of Korea
| | - Jong Wook Lee
- Department of Hematology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Liu SY, Zhang XM, Sun RJ, Zhu JJ, Yuan D, Shan NN. Abnormal expression of autophagy-related proteins in immune thrombocytopenia. Scand J Immunol 2020; 93:e12992. [PMID: 33140452 DOI: 10.1111/sji.12992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is a highly conserved protein degradation pathway that is essential for affecting some autoimmune diseases. Immune thrombocytopenia (ITP) is a common autoimmune disorder, and the complex dysregulation of cellular immunity has been observed; however, the relationship between autophagy-related proteins and immune responses in ITP remains unclear. Using real-time quantitative polymerase chain reaction (RT-PCR), the mRNA expression levels of Beclin-1, SQSTM1/p62 and LC3 were measured in the peripheral blood mononuclear cells (PBMCs) of 20 newly diagnosed patients with active ITP, 16 ITP patients in remission and 21 healthy volunteers. The stained Beclin-1 and SQSTM1/p62 proteins were also observed in the bone marrow of active ITP patients and normal controls by immunofluorescence. SQSTM1/p62 mRNA expression in PBMCs in newly diagnosed patients was significantly decreased. At the same time, Beclin-1 mRNA was increased significantly. During the remission stages, the levels of these autophagy-related proteins were comparable with those observed in healthy controls. Taken together, these results suggest that the aberrant expression of autophagy-related proteins might be involved in the pathogenesis of ITP. Further study of the autophagy pathway may provide a new strategy and direction for the treatment of ITP.
Collapse
Affiliation(s)
- Shu-Yan Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Mei Zhang
- Department of Hematology, People's Hospital of Rizhao City, Rizhao, China
| | - Rui-Jie Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing-Jing Zhu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dai Yuan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Brzeźniakiewicz-Janus K, Rupa-Matysek J, Gil L. Acquired Aplastic Anemia as a Clonal Disorder of Hematopoietic Stem Cells. Stem Cell Rev Rep 2020; 16:472-481. [PMID: 32270433 PMCID: PMC7253510 DOI: 10.1007/s12015-020-09971-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aplastic anemia is rare disorder presenting with bone marrow failure syndrome due to autoimmune destruction of early hematopoietic stem cells (HSCs) and stem cell progenitors. Recent advances in newer genomic sequencing and other molecular techniques have contributed to a better understanding of the pathogenesis of aplastic anemia with respect to the inflammaging, somatic mutations, cytogenetic abnormalities and defective telomerase functions of HSCs. These have been summarized in this review and may be helpful in differentiating aplastic anemia from hypocellular myelodysplastic syndrome. Furthermore, responses to immunosuppressive therapy and outcomes may be determined by molecular pathogenesis of HSCs autoimmune destruction, as well as treatment personalization in the future.
Collapse
Affiliation(s)
- Katarzyna Brzeźniakiewicz-Janus
- Department of Hematology, Multi-Specialist Hospital Gorzów Wielkopolski, Faculty of Medicine and Health Science, University of Zielona Góra, Gorzów Wielkopolski, Poland.
| | - Joanna Rupa-Matysek
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
6
|
Machado-Neto JA, Coelho-Silva JL, Santos FPDS, Scheucher PS, Campregher PV, Hamerschlak N, Rego EM, Traina F. Autophagy inhibition potentiates ruxolitinib-induced apoptosis in JAK2 V617F cells. Invest New Drugs 2019; 38:733-745. [PMID: 31286322 DOI: 10.1007/s10637-019-00812-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
JAK2V617F can mimic growth factor signaling, leading to PI3K/AKT/mTOR activation and inhibition of autophagy. We hypothesized that selective inhibition of JAK1/2 by ruxolitinib could induce autophagy and limit drug efficacy in myeloproliferative neoplasms (MPN). Therefore, we investigated the effects of ruxolitinib treatment on autophagy-related genes and cellular processes, to determine the potential benefit of autophagy inhibitors plus ruxolitinib in JAK2V617F cells, and to verify the frequency and clinical impact of autophagy-related gene mutations in patients with MPNs. In SET2 JAK2V617F cells, ruxolitinib treatment induced autophagy and modulated 26 out of 79 autophagy-related genes. Ruxolitinib treatment reduced the expressions of important autophagy regulators, including mTOR/p70S6K/4EBP1 and the STAT/BCL2 axis, in a dose- and time-dependent manner. Pharmacological inhibition of autophagy was able to significantly suppress ruxolitinib-induced autophagy and increased ruxolitinib-induced apoptosis. Mutations in autophagy-related genes were found in 15.5% of MPN patients and were associated with increased age and a trend towards worse survival. In conclusion, ruxolitinib induces autophagy in JAK2V617F cells, potentially by modulation of mTOR-, STAT- and BCL2-mediated signaling. This may lead to inhibition of apoptosis. Our results suggest that the combination of ruxolitinib with pharmacological inhibitors of autophagy, such as chloroquine, may be a promising strategy to treat patients with JAK2V617F-mutated MPNs.
Collapse
Affiliation(s)
- João Agostinho Machado-Neto
- Department of Medical Images, Hematology and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Av. Bandeirante, Ribeirão Preto, SP, 3900, Brazil.,Department of Pharmacology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Juan Luiz Coelho-Silva
- Department of Medical Images, Hematology and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Av. Bandeirante, Ribeirão Preto, SP, 3900, Brazil
| | - Fábio Pires de Souza Santos
- Centro de Oncologia e Hematologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein São Paulo, São Paulo, Brazil.,Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein São Paulo, São Paulo, Brazil
| | - Priscila Santos Scheucher
- Department of Medical Images, Hematology and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Av. Bandeirante, Ribeirão Preto, SP, 3900, Brazil
| | - Paulo Vidal Campregher
- Centro de Oncologia e Hematologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein São Paulo, São Paulo, Brazil.,Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein São Paulo, São Paulo, Brazil
| | - Nelson Hamerschlak
- Centro de Oncologia e Hematologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein São Paulo, São Paulo, Brazil
| | - Eduardo Magalhães Rego
- Department of Medical Images, Hematology and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Av. Bandeirante, Ribeirão Preto, SP, 3900, Brazil
| | - Fabiola Traina
- Department of Medical Images, Hematology and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Av. Bandeirante, Ribeirão Preto, SP, 3900, Brazil.
| |
Collapse
|
7
|
You Y, Huo J, Huang J, Wang M, Shao Y, Ge M, Li X, Huang Z, Zhang J, Nie N, Zheng Y. Contribution of autophagy-related gene 5 variants to acquired aplastic anemia in Han-Chinese population. J Cell Biochem 2019; 120:11409-11417. [PMID: 30767262 DOI: 10.1002/jcb.28418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023]
Abstract
Immune-mediated quantitative and qualitative defects of hematopoietic stem/progenitor cells (HSPCs) play a vital role in the pathophysiology of acquired aplastic anemia (AA). Autophagy is closely related to T cell pathophysiology and the destiny of HSPCs, in which autophagy-related gene 5 (ATG5) is indispensably involved. We hypothesized that genetic variants of ATG5 might contribute to AA. We studied six ATG5 polymorphisms in a Chinese cohort of 176 patients with AA to compare with 157 healthy controls. A markedly decreased risk of AA in the recessive models of rs510432 and rs803360 polymorphisms (adjusted odds ratio [OR], 95% confidence interval [CI] = 0.467 [0.236-0.924], P = 0.029 for ATG5 rs510432; adjusted OR [95% CI] = 0.499 [0.255-0.975], P = 0.042 for ATG5 rs803360) was observed. Furthermore, the decreased risk was even more pronounced among nonsevere AA compared with healthy controls under recessive models (adjusted OR [95% CI] = 0.356 [0.141-0.901], P = 0.029 for ATG5 rs510432; adjusted OR [95% CI] = 0.348 [0.138-0.878], P = 0.025 for ATG5 rs803360; adjusted OR [95% CI] = 0.352 [0.139-0.891], P = 0.027 for ATG5 rs473543). Above all, rs573775 can strongly predict the occurrence of newly onset hematological event in patients with AA. Our results indicate that genetic ATG5 variants contributed to AA, which may facilitate further clarifying the underlying mechanisms of AA and making a patient-tailored medical decision.
Collapse
Affiliation(s)
- Yahong You
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P. R. China
| | - Jiali Huo
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P. R. China
| | - Jinbo Huang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P. R. China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P. R. China
| | - Yingqi Shao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P. R. China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P. R. China
| | - Xingxin Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P. R. China
| | - Zhendong Huang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P. R. China
| | - Jing Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P. R. China
| | - Neng Nie
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P. R. China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P. R. China
| |
Collapse
|
8
|
Sun RJ, Shan NN. Megakaryocytic dysfunction in immune thrombocytopenia is linked to autophagy. Cancer Cell Int 2019; 19:59. [PMID: 30923461 PMCID: PMC6419848 DOI: 10.1186/s12935-019-0779-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023] Open
Abstract
Immune thrombocytopenic purpura (ITP) is a multifactorial autoimmune disease characterized by both increased platelet destruction and/or reduced platelet production. Even though they are detected in ≤ 50% of ITP patients, auto-antibodies play a pivotal role in the pathogenesis of ITP. Recent experimental and clinical observations have revealed abnormal autophagy in ITP patients. Autophagy is a catabolic process responsible for the elimination and recycling of cytoplasmic constituents, such as organelles and macromolecules, in eukaryotic cells. Additionally, it triggers cell death or promotes cell survival following various forms of stress, and maintains the microenvironment and stemness of haematopoietic stem cells. The role of autophagy in megakaryopoiesis, thrombopoiesis, and platelet function is slowly being uncovered. The abnormal autophagy in ITP patients may be caused by deletion of autophagy-related genes such as ATG7 and abnormal signalling due to overexpression of mTOR. These changes are thought to affect markers of haematopoietic stem cells, such as CD41 and CD61, and differentiation of megakaryocytes, ultimately decreasing the function and quantity of platelets and leading to the onset of ITP. This review highlights recent evidence on the essential role played by autophagy in megakaryopoiesis, megakaryocyte differentiation, thrombopoiesis, and platelet production. It also discusses the potential of targeting the autophagy pathway as a novel therapeutic approach against ITP.
Collapse
Affiliation(s)
- Rui-Jie Sun
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, 325 Jing Wu Rd, Jinan, 250021 Shandong People's Republic of China
| | - Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, 325 Jing Wu Rd, Jinan, 250021 Shandong People's Republic of China
| |
Collapse
|
9
|
Grosso R, Fader CM, Colombo MI. Autophagy: A necessary event during erythropoiesis. Blood Rev 2017; 31:300-305. [DOI: 10.1016/j.blre.2017.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
|
10
|
Smith JNP, Kanwar VS, MacNamara KC. Hematopoietic Stem Cell Regulation by Type I and II Interferons in the Pathogenesis of Acquired Aplastic Anemia. Front Immunol 2016; 7:330. [PMID: 27621733 PMCID: PMC5002897 DOI: 10.3389/fimmu.2016.00330] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 12/02/2022] Open
Abstract
Aplastic anemia (AA) occurs when the bone marrow fails to support production of all three lineages of blood cells, which are necessary for tissue oxygenation, infection control, and hemostasis. The etiology of acquired AA is elusive in the vast majority of cases but involves exhaustion of hematopoietic stem cells (HSC), which are usually present in the bone marrow in a dormant state, and are responsible for lifelong production of all cells within the hematopoietic system. This destruction is immune mediated and the role of interferons remains incompletely characterized. Interferon gamma (IFNγ) has been associated with AA and type I IFNs (alpha and beta) are well documented to cause bone marrow aplasia during viral infection. In models of infection and inflammation, IFNγ activates HSCs to differentiate and impairs their ability to self-renew, ultimately leading to HSC exhaustion. Recent evidence demonstrating that IFNγ also impacts the HSC microenvironment or niche, raises new questions regarding how IFNγ impairs HSC function in AA. Immune activation can also elicit type I interferons, which may exert effects both distinct from and overlapping with IFNγ on HSCs. IFNα/β increase HSC proliferation in models of sterile inflammation induced by polyinosinic:polycytidylic acid and lead to BM aplasia during viral infection. Moreover, patients being treated with IFNα exhibit cytopenias, in part due to BM suppression. Herein, we review the current understanding of how interferons contribute to the pathogenesis of acquired AA, and we explore additional potential mechanisms by which interferons directly and indirectly impair HSCs. A comprehensive understanding of how interferons impact hematopoiesis is necessary in order to identify novel therapeutic approaches for treating AA patients.
Collapse
Affiliation(s)
- Julianne N P Smith
- Department of Immunology and Microbial Disease, Albany Medical College , Albany, NY , USA
| | - Vikramjit S Kanwar
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Albany Medical Center , Albany, NY , USA
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College , Albany, NY , USA
| |
Collapse
|