1
|
Sreekumar A, Kumar A, Biswas R, Biswas L. Emerging and alternative strategies for the treatment of nontuberculous mycobacterial infections. Expert Rev Anti Infect Ther 2024:1-19. [PMID: 39161153 DOI: 10.1080/14787210.2024.2395003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/18/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Nontuberculous mycobacteria (NTM) infections have emerged as a significant clinical challenge due to their intrinsic multidrug resistance and the limited efficacy of existing treatments. These infections are becoming increasingly prevalent, with a need for new and effective therapeutic strategies. AREAS COVERED This review addresses several key aspects of NTM infections: i) pathogenesis and epidemiology; ii) the limitations and challenges of current treatment options; iii) emerging and alternative therapeutic strategies; iv) advanced drug delivery systems such as nanoparticles and efflux pump inhibitors; v) innovative antibacterial alternatives like antimicrobial peptides, bacteriophage therapy, and phytochemicals; and vi) other potential treatment modalities such as inhaled nitric oxide, small molecules, surgical debridement, phototherapy, and immunomodulatory therapy. EXPERT OPINION Personalized medicine, advanced drug delivery systems, and alternative therapies hold promise for the future of NTM treatment. Early and accurate identification of NTM species, enabled by improved diagnostic methods, is critical for tailoring treatment regimens. Emerging therapies show promise against drug-resistant NTM strains, but overcoming barriers like clinical trials, regulatory hurdles, and high production costs is crucial. Continued research and innovation are essential to improve treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
| | - Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Raja Biswas
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lalitha Biswas
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
2
|
Jorge JS, Duarte AFV, Santos RL, Freire EMX, Caliman A. Semi-arid's Unsung Heroes: Hymenoptera and the Vital Ecosystem Services Enabled by Encholirium spectabile, a Rupicolous Bromeliad in the Brazilian Semi-arid Region. NEOTROPICAL ENTOMOLOGY 2024; 53:514-530. [PMID: 38687425 DOI: 10.1007/s13744-024-01152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
The concept of Ecosystem Services (ES) recognizes the importance of natural ecosystems in supporting human well-being. Hymenoptera, a diverse group of insects including ants, bees, and wasps, play crucial roles in providing ESs. Despite their significance, the provision of ESs by Hymenoptera is often undervalued, leading to ecosystem degradation and loss of important services. This study focuses on the association between Hymenoptera and a rupicolous bromeliad species (Encholirium spectabile) and explores the ESs promoted directly and indirectly by these insects. The study area is located in the Caatinga region of Brazil, characterized by irregular rainfall and a dry season. The results show that Hymenoptera, particularly bees, ants, and wasps, provide a range of ESs including pollination, honey production, pest control, cultural symbolism, and educational value. These services are vital for plant reproduction, food production, and ecosystem functioning in both seasons; there are no differences in species richness between seasons, but rather in species composition. Understanding the importance of Hymenoptera for ESs is crucial for informing conservation and management practices to ensure the sustainability of natural ecosystems. The study highlights the need for conservation actions to protect the intricate ecological relationships between Hymenoptera and bromeliads, which indirectly support ESs by providing habitat and resources, especially during droughts when resources are scarce in the region. By recognizing the importance of bromeliads in supporting Hymenopteran communities, conservation efforts can focus on preserving these critical ecological interactions and maintaining ES provision.
Collapse
Affiliation(s)
- Jaqueiuto S Jorge
- Departament of Ecology, Federal University of Rio Grande Do Norte, Natal, Brazil.
- Postgraduate Program in Ecology, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil.
| | - André Felipe V Duarte
- Departament of Botanic and Zoology, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil
| | - Roberto Lima Santos
- Departament of Botanic and Zoology, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil
| | - Eliza Maria X Freire
- Departament of Botanic and Zoology, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil
| | - Adriano Caliman
- Departament of Ecology, Federal University of Rio Grande Do Norte, Natal, Brazil
- Postgraduate Program in Ecology, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil
| |
Collapse
|
3
|
Duque HM, Dos Santos C, Brango-Vanegas J, Díaz-Martín RD, Dias SC, Franco OL. Unwrapping the structural and functional features of antimicrobial peptides from wasp venoms. Pharmacol Res 2024; 200:107069. [PMID: 38218356 DOI: 10.1016/j.phrs.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The study of wasp venoms has captured attention due to the presence of a wide variety of active compounds, revealing a diverse array of biological effects. Among these compounds, certain antimicrobial peptides (AMPs) such as mastoparans and chemotactic peptides have emerged as significant players, characterized by their unique amphipathic short linear alpha-helical structure. These peptides exhibit not only antibiotic properties but also a range of other biological activities, which are related to their ability to interact with biological membranes to varying degrees. This review article aims to provide updated insights into the structure/function relationships of AMPs derived from wasp venoms, linking this knowledge to the potential development of innovative treatments against infections.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil.
| | - Cristiane Dos Santos
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - Ruben Dario Díaz-Martín
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; Program in Animal Biology, Universidade de Brasília, Brasília, DF70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| |
Collapse
|
4
|
Adhikrao PA, Motiram GM, Kumar G. Tackling Nontuberculous Mycobacteria by Repurposable Drugs and Potential Leads from Natural Products. Curr Top Med Chem 2024; 24:1291-1326. [PMID: 38288807 DOI: 10.2174/0115680266276938240108060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 07/25/2024]
Abstract
Nontuberculous Mycobacteria (NTM) refer to bacteria other than all Mycobacterium species that do not cause tuberculosis or leprosy, excluding the species of the Mycobacterium tuberculosis complex, M. leprae and M. lepromatosis. NTM are ubiquitous and present in soils and natural waters. NTM can survive in a wide range of environmental conditions. The direct inoculum of the NTM from water or other materials is most likely a source of infections. NTMs are responsible for several illnesses, including pulmonary alveolar proteinosis, cystic fibrosis, bronchiectasis, chronic obstructive pneumoconiosis, and pulmonary disease. Recent reports suggest that NTM species have become insensitive to sterilizing agents, antiseptics, and disinfectants. The efficacy of existing anti-NTM regimens is diminishing and has been compromised due to drug resistance. New and recurring cases of multidrug-resistant NTM strains are increasing. Thus, there is an urgent need for ant-NTM regimens with novel modes of action. This review sheds light on the mode of antimicrobial resistance in the NTM species. Then, we discussed the repurposable drugs (antibiotics) that have shown new indications (activity against NTM strains) that could be developed for treating NTM infections. Also, we have summarised recently identified natural leads acting against NTM, which have the potential for treating NTM-associated infections.
Collapse
Affiliation(s)
- Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gudle Mayuri Motiram
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
5
|
Touré H, Durand N, Guénal I, Herrmann JL, Girard-Misguich F, Szuplewski S. Mycobacterium abscessus Opsonization Allows an Escape from the Defensin Bactericidal Action in Drosophila. Microbiol Spectr 2023; 11:e0077723. [PMID: 37260399 PMCID: PMC10434004 DOI: 10.1128/spectrum.00777-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Mycobacterium abscessus, an intracellular nontuberculous mycobacterium, is considered the most pathogenic species among the group of rapidly growing mycobacteria. The resistance of M. abscessus to the host innate response contributes to its pathogenicity in addition to several virulence factors. We have recently shown in Drosophila that antimicrobial peptides (AMPs), whose production is induced by M. abscessus, are unable to control mycobacterial infection. This could be due to their inability to kill mycobacteria and/or the hidden location of the pathogen in phagocytic cells. Here, we demonstrate that the rapid internalization of M. abscessus by Drosophila macrophages allows it to escape the AMP-mediated humoral response. By depleting phagocytes in AMP-deficient flies, we found that several AMPs were required for the control of extracellular M. abscessus. This was confirmed in the Tep4 opsonin-deficient flies, which we show can better control M. abscessus growth and have increased survival through overproduction of some AMPs, including Defensin. Furthermore, Defensin alone was sufficient to kill extracellular M. abscessus both in vitro and in vivo and control its infection. Collectively, our data support that Tep4-mediated opsonization of M. abscessus allows its escape and resistance toward the Defensin bactericidal action in Drosophila. IMPORTANCE Mycobacterium abscessus, an opportunistic pathogen in cystic fibrosis patients, is the most pathogenic species among the fast-growing mycobacteria. How M. abscessus resists the host innate response before establishing an infection remains unclear. Using Drosophila, we have recently demonstrated that M. abscessus resists the host innate response by surviving the cytotoxic lysis of the infected phagocytes and the induced antimicrobial peptides (AMPs), including Defensin. In this work, we demonstrate that M. abscessus resists the latter response by being rapidly internalized by Drosophila phagocytes. Indeed, by combining in vivo and in vitro approaches, we show that Defensin is able to control extracellular M. abscessus infection through a direct bactericidal action. In conclusion, we report that M. abscessus escapes the host AMP-mediated humoral response by taking advantage of its internalization by the phagocytes.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Nicolas Durand
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | | | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | | |
Collapse
|
6
|
Turillazzi S, Meriggi N, Cavalieri D. Mutualistic Relationships between Microorganisms and Eusocial Wasps (Hymenoptera, Vespidae). Microorganisms 2023; 11:1340. [PMID: 37317314 DOI: 10.3390/microorganisms11051340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Eusocial wasps are represented in the Vespidae by the subfamilies Stenogastrinae, Vespinae and Polistinae. These wasps present colonies that are sometimes composed of thousands of individuals which live in nests built with paper materials. The high density of the adult and larval population, as well as the stable micro environment of the nests, make very favourable conditions for the flourishing of various types of microorganisms. These microorganisms, which may be pathogens, are beneficial and certainly contribute to model the sociality of these insects. The mutualistic relationships that we observe in some species, especially in Actinomycete bacteria and yeasts, could have important fallouts for the development of new medicines and for the use of these insects in agricultural environments.
Collapse
Affiliation(s)
- Stefano Turillazzi
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Insect Pharma Entomotherapy s.r.l., Via M. del Piano 6, 50019 Firenze, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
| |
Collapse
|
7
|
Siddiqui SA, Li C, Aidoo OF, Fernando I, Haddad MA, Pereira JA, Blinov A, Golik A, Câmara JS. Unravelling the potential of insects for medicinal purposes - A comprehensive review. Heliyon 2023; 9:e15938. [PMID: 37206028 PMCID: PMC10189416 DOI: 10.1016/j.heliyon.2023.e15938] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
Entomotherapy, the use of insects for medicinal purposes, has been practised for centuries in many countries around the world. More than 2100 edible insect species are eaten by humans, but little is known about the possibility of using these insects as a promising alternative to traditional pharmaceuticals for treating diseases. This review offers a fundamental understanding of the therapeutic applications of insects and how they might be used in medicine. In this review, 235 insect species from 15 orders are reported to be used as medicine. Hymenoptera contains the largest medicinal insect species, followed by Coleoptera, Orthoptera, Lepidoptera, and Blattodea. Scientists have examined and validated the potential uses of insects along with their products and by-products in treating various diseases, and records show that they are primarily used to treat digestive and skin disorders. Insects are known to be rich sources of bioactive compounds, explaining their therapeutic features such as anti-inflammatory, antimicrobial, antiviral, and so on. Challenges associated with the consumption of insects (entomophagy) and their therapeutic uses include regulation barriers and consumer acceptance. Moreover, the overexploitation of medicinal insects in their natural habitat has led to a population crisis, thus necessitating the investigation and development of their mass-rearing procedure. Lastly, this review suggests potential directions for developing insects used in medicine and offers advice for scientists interested in entomotherapy. In future, entomotherapy may become a sustainable and cost-effective solution for treating various ailments and has the potential to revolutionize modern medicine.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany
- Corresponding author. Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany.
| | - Chujun Li
- Guangzhou Unique Biotechnology Co., Ltd, 510663, Guangzhou, China
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Owusu Fordjour Aidoo
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, 00233, Somanya, Ghana
| | - Ito Fernando
- Department of Plant Pest and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang, 65145, East Java, Indonesia
| | - Moawiya A. Haddad
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa Applied University, 19117, Al-Salt, Jordan
| | - Jorge A.M. Pereira
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Andrey Blinov
- North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - Andrey Golik
- North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - José S. Câmara
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Corresponding author. CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
8
|
Recchia D, Stelitano G, Stamilla A, Gutierrez DL, Degiacomi G, Chiarelli LR, Pasca MR. Mycobacterium abscessus Infections in Cystic Fibrosis Individuals: A Review on Therapeutic Options. Int J Mol Sci 2023; 24:ijms24054635. [PMID: 36902066 PMCID: PMC10002592 DOI: 10.3390/ijms24054635] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/02/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Mycobacterium abscessus is an opportunistic pathogen that mainly colonizes and infects cystic fibrosis patients' lungs. M. abscessus is naturally resistant to many antibiotics such as rifamycin, tetracyclines and β-lactams. The current therapeutic regimens are not very effective and are mostly based on repurposed drugs used against Mycobacterium tuberculosis infections. Thus, new approaches and novel strategies are urgently needed. This review aims to provide an overview of the latest ongoing findings to fight M. abscessus infections by analyzing emerging and alternative treatments, novel drug delivery strategies, and innovative molecules.
Collapse
|
9
|
Alternatives to Antibiotics against Mycobacterium abscessus. Antibiotics (Basel) 2022; 11:antibiotics11101322. [PMID: 36289979 PMCID: PMC9598287 DOI: 10.3390/antibiotics11101322] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium abscessus complex is extremely difficult to treat. Intrinsic and acquired bacterial resistance makes this species one of the most challenging pathogens and treatments last from months to years, associated with potential risky antibiotic toxicity and a high number of failures. Nonantibiotic antimicrobial agents against this microorganism have recently been studied so as to offer an alternative to current drugs. This review summarizes recent research on different strategies such as host modulation using stem cells, photodynamic therapy, antibiofilm therapy, phage therapy, nanoparticles, vaccines and antimicrobial peptides against M. abscessus both in vitro and in vivo.
Collapse
|
10
|
Sudadech P, Roytrakul S, Kaewprasert O, Sirichoat A, Chetchotisakd P, Kanthawong S, Faksri K. Assessment of in vitro activities of novel modified antimicrobial peptides against clarithromycin resistant Mycobacterium abscessus. PLoS One 2021; 16:e0260003. [PMID: 34780520 PMCID: PMC8592419 DOI: 10.1371/journal.pone.0260003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/01/2021] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium abscessus (Mab) is one of the most drug resistant bacteria with a high treatment failure rate. Antimicrobial peptides (AMPs) are alternative therapeutic agents against this infection. This study was aimed to assess the in vitro activities of thirteen AMPs (S5, S52, S6, S61, S62, S63, KLK, KLK1, KLK2, Pug-1, Pug-2, Pug-3 and Pug-4) that have never been investigated against drug resistant Mab isolates. Only four novel modified AMPs (S61, S62, S63 and KLK1) provided the lowest minimum inhibitory concentration (MIC) values ranging from 200–400 μg/ml against the Mab ATCC19977 strain. These four potential AMPs were further tested with 16 clinical isolates of clarithromycin resistant Mab. The majority of the tested strains (10/16 isolates, 62.5%) showed ~99% kill by all four AMPs within 24 hours with an MIC <50 μg/ml. Only two isolates (12.5%) with acquired clarithromycin resistance, however, exhibited values <50 μg/ml of four potential AMPs, S61, S62, S63 and KLK1 after 3-days-incubation. At the MICs level, S63 showed the lowest toxicity with 1.50% hemolysis and 100% PBMC viability whereas KLK1 showed the highest hemolysis (10.21%) and lowest PBMC viability (93.52%). S61, S62 and S63 were further tested with clarithromycin-AMP interaction assays and found that 5/10 (50%) of selected isolates exhibited a synergistic interaction with 0.02–0.41 FICI values. This present study demonstrated the potential application of novel AMPs as an adjunctive treatment with clarithromycin against drug resistant Mab infection.
Collapse
Affiliation(s)
- Phantitra Sudadech
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Orawee Kaewprasert
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Auttawit Sirichoat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Ploenchan Chetchotisakd
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sakawrat Kanthawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
11
|
Pratap Verma D, Ansari MM, Verma NK, Saroj J, Akhtar S, Pant G, Mitra K, Singh BN, Ghosh JK. Tandem Repeat of a Short Human Chemerin-Derived Peptide and Its Nontoxic d-Lysine-Containing Enantiomer Display Broad-Spectrum Antimicrobial and Antitubercular Activities. J Med Chem 2021; 64:15349-15366. [PMID: 34662112 DOI: 10.1021/acs.jmedchem.1c01352] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To design novel antimicrobial peptides by utilizing the sequence of the human host defense protein, chemerin, a seven-residue amphipathic stretch located in the amino acid region, 109-115, was identified, which possesses the highest density of hydrophobic and positively charged residues. Although this 7-mer peptide was inactive toward microorganisms, its 14-mer tandem repeat (Chem-KVL) was highly active against different bacteria including methicillin-resistant Staphylococcus aureus, a multidrug-resistant Staphylococcus aureus strain, and slow- and fast-growing mycobacterial species. The selective enantiomeric substitutions of its two l-lysine residues were attempted to confer cell selectivity and proteolytic stability to Chem-KVL. Chem-8dK with a d-lysine replacement in its middle (eighth position) showed the lowest hemolytic activity against human red blood cells among Chem-KVL analogues and maintained high antimicrobial properties. Chem-8dK showed in vivo efficacy against Pseudomonas aeruginosa infection in BALB/c mice and inhibited the development of resistance in this microorganism up to 30 serial passages and growth of intracellular mycobacteria in THP-1 cells.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohd Mustkim Ansari
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Garima Pant
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Bhupendra Narain Singh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| |
Collapse
|
12
|
Brock RE, Cini A, Sumner S. Ecosystem services provided by aculeate wasps. Biol Rev Camb Philos Soc 2021; 96:1645-1675. [PMID: 33913243 DOI: 10.1111/brv.12719] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023]
Abstract
The aculeate wasps are one of the most diverse and speciose insect taxa; they are omnipresent across ecosystems and exhibit diverse co-evolutionary and exploitative associations with other organisms. There is widespread conjecture that aculeate wasps are likely to perform essential ecological and economic services of importance to the health, well-being and nutritional needs of our planet. However, the scope and nature of the ecosystem services they provide are not well understood relative to other insect groups (e.g. bees, butterflies, beetles); an appreciation of their value is further tarnished by their public reputation as pointless pests. Here, we conduct the first comprehensive review of how aculeate wasps contribute to the four main areas of ecosystem services: regulatory, provisioning, supporting and cultural services. Uniting data from a large but previously disconnected literature on solitary and social aculeate wasps, we provide a synthesis on how these insects perform important ecosystem services as parasites, predators, biological indicators, pollinators, decomposers and seed dispersers; and their additional services as a sustainable alternative to meat for human consumption, and medicinal potential as sources of research leads for anti-microbials and cancer treatments. We highlight how aculeate wasps offer substantial, but largely overlooked, economic benefits through their roles in natural pest management and biological control programs. Accordingly, we provide data-driven arguments for reasons to consider the ecosystem service value of aculeate wasps on a par with other 'useful' insects (e.g. bees). Finally, we provide a research roadmap identifying the key areas of research required to capitalise better on the services provided by these important insects.
Collapse
Affiliation(s)
- Ryan E Brock
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, U.K
| | - Alessandro Cini
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy.,Centre for Biodiversity & Environment Research, University College London, Medawar Building, Gower Street, London, WC1E 6BT, U.K
| | - Seirian Sumner
- Centre for Biodiversity & Environment Research, University College London, Medawar Building, Gower Street, London, WC1E 6BT, U.K
| |
Collapse
|
13
|
Wasp Venom Biochemical Components and Their Potential in Biological Applications and Nanotechnological Interventions. Toxins (Basel) 2021; 13:toxins13030206. [PMID: 33809401 PMCID: PMC8000949 DOI: 10.3390/toxins13030206] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Wasps, members of the order Hymenoptera, are distributed in different parts of the world, including Brazil, Thailand, Japan, Korea, and Argentina. The lifestyles of the wasps are solitary and social. Social wasps use venom as a defensive measure to protect their colonies, whereas solitary wasps use their venom to capture prey. Chemically, wasp venom possesses a wide variety of enzymes, proteins, peptides, volatile compounds, and bioactive constituents, which include phospholipase A2, antigen 5, mastoparan, and decoralin. The bioactive constituents have anticancer, antimicrobial, and anti-inflammatory effects. However, the limited quantities of wasp venom and the scarcity of advanced strategies for the synthesis of wasp venom’s bioactive compounds remain a challenge facing the effective usage of wasp venom. Solid-phase peptide synthesis is currently used to prepare wasp venom peptides and their analogs such as mastoparan, anoplin, decoralin, polybia-CP, and polydim-I. The goal of the current review is to highlight the medicinal value of the wasp venom compounds, as well as limitations and possibilities. Wasp venom could be a potential and novel natural source to develop innovative pharmaceuticals and new agents for drug discovery.
Collapse
|
14
|
Bento CM, Gomes MS, Silva T. Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics (Basel) 2020; 9:antibiotics9010018. [PMID: 31947883 PMCID: PMC7168257 DOI: 10.3390/antibiotics9010018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
The genus Mycobacterium comprises not only the deadliest of bacterial pathogens, Mycobacterium tuberculosis, but several other pathogenic species, including M. avium and M. abscessus. The incidence of infections caused by atypical or nontuberculous mycobacteria (NTM) has been steadily increasing, and is associated with a panoply of diseases, including pulmonary, soft-tissue, or disseminated infections. The treatment for NTM disease is particularly challenging, due to its long duration, to variability in bacterial susceptibility profiles, and to the lack of evidence-based guidelines. Treatment usually consists of a combination of at least three drugs taken from months to years, often leading to severe secondary effects and a high chance of relapse. Therefore, new treatment approaches are clearly needed. In this review, we identify the main limitations of current treatments and discuss different alternatives that have been put forward in recent years, with an emphasis on less conventional therapeutics, such as antimicrobial peptides, bacteriophages, iron chelators, or host-directed therapies. We also review new forms of the use of old drugs, including the repurposing of non-antibacterial molecules and the incorporation of antimicrobials into ionic liquids. We aim to stimulate advancements in testing these therapies in relevant models, in order to provide clinicians and patients with useful new tools with which to treat these devastating diseases.
Collapse
Affiliation(s)
- Clara M. Bento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Tânia Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
15
|
Freire DO, da Cunha NB, Leite ML, Kostopoulos AGC, da Silva SNB, Souza ACB, Nolasco DO, Franco OL, Mortari MR, Dias SC. Wasp venom peptide, synoeca‐MP, fromSynoeca surinamashows antimicrobial activity against human and animal pathogenic microorganisms. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel O. Freire
- Neuropharmacology Laboratory, Department of Physiological SciencesInstitute of Biological Sciences, University of Brasilia Brasilia Brazil
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de Brasília Brasília Brazil
| | - Michel L. Leite
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de Brasília Brasília Brazil
| | - Alessandra G. C. Kostopoulos
- Neuropharmacology Laboratory, Department of Physiological SciencesInstitute of Biological Sciences, University of Brasilia Brasilia Brazil
| | - Sheila N. B. da Silva
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de Brasília Brasília Brazil
| | - Adolfo C. B. Souza
- Neuropharmacology Laboratory, Department of Physiological SciencesInstitute of Biological Sciences, University of Brasilia Brasilia Brazil
| | - Diego O. Nolasco
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de Brasília Brasília Brazil
| | - Octávio L. Franco
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de Brasília Brasília Brazil
- S‐Inova Biotech, Pós‐graduação em BiotecnologiaUniversidade Católica Dom Bosco Campo Grande Brazil
| | - Márcia R. Mortari
- Neuropharmacology Laboratory, Department of Physiological SciencesInstitute of Biological Sciences, University of Brasilia Brasilia Brazil
- Universidade de Brasília, Pós‐Graduação em Biologia Animal, Campus Universitário Darcy Ribeiro Brasília Brazil
| | - Simoni C. Dias
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de Brasília Brasília Brazil
| |
Collapse
|
16
|
das Neves RC, Mortari MR, Schwartz EF, Kipnis A, Junqueira-Kipnis AP. Antimicrobial and Antibiofilm Effects of Peptides from Venom of Social Wasp and Scorpion on Multidrug-Resistant Acinetobacter baumannii. Toxins (Basel) 2019; 11:E216. [PMID: 30974767 PMCID: PMC6520840 DOI: 10.3390/toxins11040216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
Intravascular stent infection is a rare complication with a high morbidity and high mortality; bacteria from the hospital environment form biofilms and are often multidrug-resistant (MDR). Antimicrobial peptides (AMPs) have been considered as alternatives to bacterial infection treatment. We analyzed the formation of the bacterial biofilm on the vascular stents and also tested the inhibition of this biofilm by AMPs to be used as treatment or coating. Antimicrobial activity and antibiofilm were tested with wasp (Agelaia-MPI, Polybia-MPII, Polydim-I) and scorpion (Con10 and NDBP5.8) AMPs against Acinetobacter baumannii clinical strains. A. baumannii formed a biofilm on the vascular stent. Agelaia-MPI and Polybia-MPII inhibited biofilm formation with bacterial cell wall degradation. Coating biofilms with polyethylene glycol (PEG 400) and Agelaia-MPI reduced 90% of A. baumannii adhesion on stents. The wasp AMPs Agelaia-MPI and Polybia-MPII had better action against MDR A. baumannii adherence and biofilm formation on vascular stents, preventing its formation and treating mature biofilm when compared to the other tested peptides.
Collapse
Affiliation(s)
- Rogério Coutinho das Neves
- Laboratory of Immunopathology of infectious diseases, Department of Immunology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Goiania, 74605-050 Goiás, Brazil.
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, 70910-900 Brasilia, Brazil.
| | - Elisabeth Ferroni Schwartz
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, 70910-900 Brasilia, Brazil.
| | - André Kipnis
- Laboratory of Immunopathology of infectious diseases, Department of Immunology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Goiania, 74605-050 Goiás, Brazil.
| | - Ana Paula Junqueira-Kipnis
- Laboratory of Immunopathology of infectious diseases, Department of Immunology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Goiania, 74605-050 Goiás, Brazil.
| |
Collapse
|
17
|
Usmani SS, Kumar R, Kumar V, Singh S, Raghava GPS. AntiTbPdb: a knowledgebase of anti-tubercular peptides. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4915494. [PMID: 29688365 PMCID: PMC5829563 DOI: 10.1093/database/bay025] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/09/2018] [Indexed: 12/28/2022]
Abstract
Tuberculosis is a global menace, caused by Mycobacterium tuberculosis, responsible for millions of premature deaths every year. In the era of drug-resistant tuberculosis, peptide-based therapeutics may provide alternate to small molecule based drugs. In order to create knowledgebase, AntiTbPdb (http://webs.iiitd.edu.in/raghava/antitbpdb/), experimentally validated anti-tubercular and anti-mycobacterial peptides were compiled from literature. We curate 10 652 research articles and 35 patents to extract anti-tubercular peptides and annotate these peptides manually. This knowledgebase has 1010 entries, each entry provides extensive information about an anti-tubercular peptide such as sequence, chemical modification, chirality, nature and source of origin. The tertiary structure of these anti-tubercular peptides containing natural as well as chemically modified residues was predicted using PEPstrMOD and I-TASSER. In addition to structural information, database maintains other properties of peptides like physiochemical properties. Numerous web-based tools have been integrated for data retrieval, browsing, sequence similarity search and peptide mapping. In order to assist wide range of user, we developed a responsive website suitable for smartphone, tablet and desktop. Database URL: http://webs.iiitd.edu.in/raghava/antitbpdb/
Collapse
Affiliation(s)
- Salman Sadullah Usmani
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh - 160036, India
| | - Rajesh Kumar
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh - 160036, India
| | - Vinod Kumar
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh - 160036, India
| | - Sandeep Singh
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh - 160036, India
| | - Gajendra P S Raghava
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh - 160036, India.,Centre for Computational Biology, Indraprastha Institute of Information Technology, Okhla, New Delhi - 110020, India
| |
Collapse
|
18
|
Antimicrobial and Chemotactic Activity of Scorpion-Derived Peptide, ToAP2, against Mycobacterium massiliensis. Toxins (Basel) 2018; 10:toxins10060219. [PMID: 29848960 PMCID: PMC6024781 DOI: 10.3390/toxins10060219] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium massiliense is a rapid growing, multidrug-resistant, non-tuberculous mycobacteria that is responsible for a wide spectrum of skin and soft tissue infections, as well as other organs, such as the lungs. Antimicrobial peptides had been described as broad-spectrum antimicrobial, chemotactic, and immunomodulator molecules. In this study we evaluated an antimicrobial peptide derived from scorpion Tityus obscurus as an anti-mycobacterial agent in vitro and in vivo. Bioinformatics analyses demonstrated that the peptide ToAP2 have a conserved region similar to several membrane proteins, as well as mouse cathelicidin. ToAP2 inhibited the growth of four M. massiliense strains (GO01, GO06, GO08, and CRM0020) at a minimal bactericidal concentration (MBC) of 200 µM. MBC concentration used to treat infected macrophages was able to inhibit 50% of the bacterial growth of all strains. ToAP2 treatment of infected mice with bacilli reduced the bacterial load in the liver, lung, and spleen, similarly to clarithromycin levels (90%). ToAP2 alone recruited monocytes (F4/80low Gr1), neutrophils (F4/80- Gr1), and eosinophils (F4/80+ Gr1+). ToAP2, together with M. massiliense infection, was able to increase F4/80low and reduce the percentage of F4/80high macrophages when compared with infected and untreated mice. ToAP2 has in vitro anti-microbial activity that is improved in vivo due to chemotactic activity.
Collapse
|
19
|
Rangel M, Castro FFDS, Mota-Lima LD, Clissa PB, Martins DB, Cabrera MPDS, Mortari MR. Polydim-I antimicrobial activity against MDR bacteria and its model membrane interaction. PLoS One 2017; 12:e0178785. [PMID: 28570651 PMCID: PMC5453574 DOI: 10.1371/journal.pone.0178785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/18/2017] [Indexed: 01/26/2023] Open
Abstract
The rapid spread of multi-drug resistant pathogens represents a serious threat to public health, considering factors such as high mortality rates, treatment restrictions and high prevalence of multi-drug resistant bacteria in the hospital environment. Antimicrobial peptides (AMPs) may exhibit powerful antimicrobial activity against different and diverse microorganisms, also presenting the advantage of absence or low toxicity towards animal cells. In this study, the evaluation of the antimicrobial activity against multi-drug resistant bacteria of a recently described AMP from wasp, Polydim-I, was performed. Polydim-I presented activity against standard strains (non-carriers of multi-resistant genes) that are susceptible to commercial antimicrobials, and also against multi-drug resistant strains at concentrations bellow 1μg/ml (0.41 μM). This is a rather low concentration among those reported for AMPs. At this concentration we found out that Polydim-I inhibits almost 100% of the tested pathogens growth, while with the ATCC strains the minimum inhibitory concentration (MIC100) is 400 times higher. Also, in relation to in vitro activity of conventional drugs against multi-drug resistant bacteria strains, Polydim-I is almost 10 times more efficient and with broader spectrum. Cationic AMPs are known as multi-target compounds and specially for targeting the phospholipid matrix of bacterial membranes. Exploring the interactions of Polydim-I with lipid bilayers, we have confirmed that this interaction is involved in the mechanism of action. Circular dichroism experiments showed that Polydim-I undergoes a conformational transition from random coil to a mostly helical conformation in the presence of membrane mimetic environments. Zeta potential measurements confirmed the binding and partial charge neutralization of anionic asolectin vesicles, and also suggested a possible aggregation of peptide molecules. FTIR experiments confirmed that some peptide aggregation occurs, which is minimized in the presence of strongly anionic micelles of sodium dodecyl sulfate. Also, Polydim-I induced channel-like structures formation to asolectin lipid bilayers, as demonstrated in the electrophysiology experiments. We suggest that cationic Polydim-I targets the membrane lipids due to electrostatic attraction, partially accumulates, neutralizing the opposite charges and induces pore formation. Similar mechanism of action has already been suggested for other peptides from wasp venoms, especially mastoparans.
Collapse
Affiliation(s)
- Marisa Rangel
- Immunopathology Laboratory, Butantan Institute, Sao Paulo-SP, Brazil
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
- * E-mail:
| | - Fabíola Fernandes dos Santos Castro
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| | | | | | - Danubia Batista Martins
- Departamento de Física, Universidade Estadual Paulista, UNESP, São José do Rio Preto, SP, Brazil
| | - Marcia Perez dos Santos Cabrera
- Departamento de Física, Universidade Estadual Paulista, UNESP, São José do Rio Preto, SP, Brazil
- Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista, UNESP, São José do Rio Preto, SP, Brazil
| | - Marcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| |
Collapse
|
20
|
Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017; 130:91-103. [PMID: 28242227 DOI: 10.1016/j.toxicon.2017.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Currently, new antimicrobial molecules extracted or obtained by natural sources, could be a valide alternative to traditional antibiotics. Most of these molecules are represented by antimicrobial peptides (AMPs), which are essential compounds of insect, arachnids and centipedes venom. AMPs, due to their strong effectiveness, low resistance rates and peculiar mode of action, seem to have all the suitable features to be a powerful weapon against several bacteria, especially considering the increasing antibiotic-resistance phenomena. The present literature review focuses on the antibacterial activity of bee, wasp, ant, scorpion, spider and scolopendra crude venom and of their main biological active compounds. After a brief overview of each animal and venom use in folkloristic medicine, this review reports, in a comprehensive table, the results obtained by the most relevant and recent researches carried out on the antibacterial activity of different venom and their AMPs. For each considered study, the table summarizes data concerning minimal inhibitory concentration values, minimal bactericidal concentration values, the methods employed, scientific name and common names and provenience of animal species from which the crude venom and its respective compounds were obtained.
Collapse
|
21
|
Trentini MM, das Neves RC, Santos BDPO, DaSilva RA, de Souza ACB, Mortari MR, Schwartz EF, Kipnis A, Junqueira-Kipnis AP. Non-disulfide-Bridge Peptide 5.5 from the Scorpion Hadrurus gertschi Inhibits the Growth of Mycobacterium abscessus subsp. massiliense. Front Microbiol 2017; 8:273. [PMID: 28275372 PMCID: PMC5319999 DOI: 10.3389/fmicb.2017.00273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/09/2017] [Indexed: 01/02/2023] Open
Abstract
Multi-drug resistant microorganisms have been a growing concern during the last decades due to their contribution in mortality rates worldwide. Antimicrobial peptides (AMPs) are broad spectrum antimicrobial agents that display potent microbicidal activity against a wide range of microorganisms. AMPs generally have a rapid mode of action that reduces the risk of resistance developing among pathogens. In this study, an AMP derived from scorpion venom, NDBP-5.5, was evaluated against Mycobacterium abscessus subsp. massiliense, a rapidly growing and emerging pathogen associated with healthcare infections. The minimal bactericidal concentration of NDBP-5.5, AMP quantity necessary to stop bacteria visible growth, against M. abscessus subsp. massiliense was 200 μM, a concentration that did not induce hemolysis of human red blood cells. The therapeutic index was 3.05 indicating a drug with low toxicity and therefore good clinical potential. Treatment of infected macrophages with NDBP-5.5 or clarithromycin presented similar results, reducing the bacterial load. M. abscessus subsp. massiliense-infected animals showed a decrease in the bacterial load of up to 70% when treated with NDBP-5.5. These results revealed the effective microbicidal activity of NDBP-5.5 against Mycobacterium, indicating its potential as an antimycobacterial agent.
Collapse
Affiliation(s)
- Monalisa M Trentini
- Laboratory of Immunopathology of Infectious Disease, Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás Goiânia, Brazil
| | - Rogério C das Neves
- Laboratory of Immunopathology of Infectious Disease, Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás Goiânia, Brazil
| | - Bruno de Paula Oliveira Santos
- Laboratory of Immunopathology of Infectious Disease, Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás Goiânia, Brazil
| | - Roosevelt A DaSilva
- Collaborative Center of Biosystems, Regional Jataí, Federal University of Goiás Goiânia, Brazil
| | - Adolfo C Barros de Souza
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Elisabeth F Schwartz
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - André Kipnis
- Laboratory of Immunopathology of Infectious Disease, Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás Goiânia, Brazil
| | - Ana P Junqueira-Kipnis
- Laboratory of Immunopathology of Infectious Disease, Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás Goiânia, Brazil
| |
Collapse
|