1
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Zemet R, Hope KD, Edmondson AC, Shah R, Patino M, Yesso AM, Berger JH, Sarafoglou K, Larson A, Lam C, Morava E, Scaglia F. Cardiomyopathy, an uncommon phenotype of congenital disorders of glycosylation: Recommendations for baseline screening and follow-up evaluation. Mol Genet Metab 2024; 142:108513. [PMID: 38917675 PMCID: PMC11296892 DOI: 10.1016/j.ymgme.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Congenital disorders of glycosylation (CDG) are a continuously expanding group of monogenic disorders that disrupt glycoprotein and glycolipid biosynthesis, leading to multi-systemic manifestations. These disorders are categorized into various groups depending on which part of the glycosylation process is impaired. The cardiac manifestations in CDG can significantly differ, not only across different types but also among individuals with the same genetic cause of CDG. Cardiomyopathy is an important phenotype in CDG. The clinical manifestations and progression of cardiomyopathy in CDG patients have not been well characterized. This study aims to delineate common patterns of cardiomyopathy across a range of genetic causes of CDG and to propose baseline screening and follow-up evaluation for this patient population. METHODS Patients with molecular confirmation of CDG who were enrolled in the prospective or memorial arms of the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study were ascertained for the presence of cardiomyopathy based on a retrospective review of their medical records. All patients were evaluated by clinical geneticists who are members of FCDGC at their respective academic centers. Patients were screened for cardiomyopathy, and detailed data were retrospectively collected. We analyzed their clinical and molecular history, imaging characteristics of cardiac involvement, type of cardiomyopathy, age at initial presentation of cardiomyopathy, additional cardiac features, the treatments administered, and their clinical outcomes. RESULTS Of the 305 patients with molecularly confirmed CDG participating in the FCDGC natural history study as of June 2023, 17 individuals, nine females and eight males, were identified with concurrent diagnoses of cardiomyopathy. Most of these patients were diagnosed with PMM2-CDG (n = 10). However, cardiomyopathy was also observed in other diagnoses, including PGM1-CDG (n = 3), ALG3-CDG (n = 1), DPM1-CDG (n = 1), DPAGT1-CDG (n = 1), and SSR4-CDG (n = 1). All PMM2-CDG patients were reported to have hypertrophic cardiomyopathy. Dilated cardiomyopathy was observed in three patients, two with PGM1-CDG and one with ALG3-CDG; left ventricular non-compaction cardiomyopathy was diagnosed in two patients, one with PGM1-CDG and one with DPAGT1-CDG; two patients, one with DPM1-CDG and one with SSR4-CDG, were diagnosed with non-ischemic cardiomyopathy. The estimated median age of diagnosis for cardiomyopathy was 5 months (range: prenatal-27 years). Cardiac improvement was observed in three patients with PMM2-CDG. Five patients showed a progressive course of cardiomyopathy, while the condition remained unchanged in eight individuals. Six patients demonstrated pericardial effusion, with three patients exhibiting cardiac tamponade. One patient with SSR4-CDG has been recently diagnosed with cardiomyopathy; thus, the progression of the disease is yet to be determined. One patient with PGM1-CDG underwent cardiac transplantation. Seven patients were deceased, including five with PMM2-CDG, one with DPAGT1-CDG, and one with ALG3-CDG. Two patients died of cardiac tamponade from pericardial effusion; for the remaining patients, cardiomyopathy was not necessarily the primary cause of death. CONCLUSIONS In this retrospective study, cardiomyopathy was identified in ∼6% of patients with CDG. Notably, the majority, including all those with PMM2-CDG, exhibited hypertrophic cardiomyopathy. Some cases did not show progression, yet pericardial effusions were commonly observed, especially in PMM2-CDG patients, occasionally escalating to life-threatening cardiac tamponade. It is recommended that clinicians managing CDG patients, particularly those with PMM2-CDG and PGM1-CDG, be vigilant of the cardiomyopathy risk and risk for potentially life-threatening pericardial effusions. Cardiac surveillance, including an echocardiogram and EKG, should be conducted at the time of diagnosis, annually throughout the first 5 years, followed by check-ups every 2-3 years if no concerns arise until adulthood. Subsequently, routine cardiac examinations every five years are advisable. Additionally, patients with diagnosed cardiomyopathy should receive ongoing cardiac care to ensure the effective management and monitoring of their condition. A prospective study will be required to determine the true prevalence of cardiomyopathy in CDG.
Collapse
Affiliation(s)
- Roni Zemet
- Dept of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Kyle D Hope
- Texas Children's Hospital, Houston, TX, USA; Lillie Frank Abercrombie Division of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rameen Shah
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Maria Patino
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Abigail M Yesso
- Dept of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Lillie Frank Abercrombie Division of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Justin H Berger
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyriakie Sarafoglou
- Divisions of Endocrinology, and Genetics and Metabolism, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Austin Larson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christina Lam
- Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA; Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Fernando Scaglia
- Dept of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong SAR, China.
| |
Collapse
|
3
|
Karpov OA, Stotland A, Raedschelders K, Chazarin B, Ai L, Murray CI, Van Eyk JE. Proteomics of the heart. Physiol Rev 2024; 104:931-982. [PMID: 38300522 PMCID: PMC11381016 DOI: 10.1152/physrev.00026.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.
Collapse
Affiliation(s)
- Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Aleksandr Stotland
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Blandine Chazarin
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Lizhuo Ai
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
4
|
Seal S, Spjuth O, Hosseini-Gerami L, García-Ortegón M, Singh S, Bender A, Carpenter AE. Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA Drug-Induced Cardiotoxicity Rank. J Chem Inf Model 2024; 64:1172-1186. [PMID: 38300851 PMCID: PMC10900289 DOI: 10.1021/acs.jcim.3c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Drug-induced cardiotoxicity (DICT) is a major concern in drug development, accounting for 10-14% of postmarket withdrawals. In this study, we explored the capabilities of chemical and biological data to predict cardiotoxicity, using the recently released DICTrank data set from the United States FDA. We found that such data, including protein targets, especially those related to ion channels (e.g., hERG), physicochemical properties (e.g., electrotopological state), and peak concentration in plasma offer strong predictive ability for DICT. Compounds annotated with mechanisms of action such as cyclooxygenase inhibition could distinguish between most-concern and no-concern DICT. Cell Painting features for ER stress discerned most-concern cardiotoxic from nontoxic compounds. Models based on physicochemical properties provided substantial predictive accuracy (AUCPR = 0.93). With the availability of omics data in the future, using biological data promises enhanced predictability and deeper mechanistic insights, paving the way for safer drug development. All models from this study are available at https://broad.io/DICTrank_Predictor.
Collapse
Affiliation(s)
- Srijit Seal
- Imaging
Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Ola Spjuth
- Department
of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box
591, SE-75124 Uppsala, Sweden
| | - Layla Hosseini-Gerami
- Ignota
Labs, The Bradfield Centre, Cambridge Science Park, County Hall, Westminster Bridge Road, Cambridge CB4 0GA, U.K.
| | - Miguel García-Ortegón
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Shantanu Singh
- Imaging
Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Andreas Bender
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Anne E. Carpenter
- Imaging
Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
5
|
Seal S, Spjuth O, Hosseini-Gerami L, García-Ortegón M, Singh S, Bender A, Carpenter AE. Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA DICTrank. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562398. [PMID: 37905146 PMCID: PMC10614794 DOI: 10.1101/2023.10.15.562398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Drug-induced cardiotoxicity (DICT) is a major concern in drug development, accounting for 10-14% of postmarket withdrawals. In this study, we explored the capabilities of various chemical and biological data to predict cardiotoxicity, using the recently released Drug-Induced Cardiotoxicity Rank (DICTrank) dataset from the United States FDA. We analyzed a diverse set of data sources, including physicochemical properties, annotated mechanisms of action (MOA), Cell Painting, Gene Expression, and more, to identify indications of cardiotoxicity. We found that such data, including protein targets, especially those related to ion channels (such as hERG), physicochemical properties (such as electrotopological state) as well as peak concentration in plasma offer strong predictive ability as well as valuable insights into DICT. We also found compounds annotated with particular mechanisms of action, such as cyclooxygenase inhibition, could distinguish between most-concern and no-concern DICT compounds. Cell Painting features related to ER stress discern the most-concern cardiotoxic compounds from non-toxic compounds. While models based on physicochemical properties currently provide substantial predictive accuracy (AUCPR = 0.93), this study also underscores the potential benefits of incorporating more comprehensive biological data in future DICT predictive models. With the availability of - omics data in the future, using biological data promises enhanced predictability and delivers deeper mechanistic insights, paving the way for safer therapeutic drug development. All models and data used in this study are publicly released at https://broad.io/DICTrank_Predictor.
Collapse
Affiliation(s)
- Srijit Seal
- Imaging Platform, Broad Institute of MIT and Harvard, US
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, US
| | | | | |
Collapse
|
6
|
Chauhan PK, Sowdhamini R. Computational analysis of the flexibility in the disordered linker region connecting LIM domains in cysteine–glycine-rich protein. Front Genet 2023; 14:1134509. [PMID: 37065494 PMCID: PMC10090389 DOI: 10.3389/fgene.2023.1134509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
One of the key proteins that are present in the Z-disc of cardiac tissues, CSRP3, has been implicated in dilated and hypertrophic cardiomyopathy leading to heart failure. Although multiple cardiomyopathy-related mutations have been reported to reside on the two LIM domains and the disordered regions connecting the domains in this protein, the exact role of the disordered linker region is not clear. The linker harbors a few post-translational modification sites and is expected to be a regulatory site. We have carried out evolutionary studies on 5614 homologs spanning across taxa. We also performed molecular dynamics simulations of full-length CSRP3 to show that the length variations and conformational flexibility of the disordered linker could provide additional levels of functional modulation. Finally, we show that the CSRP3 homologs with widely different lengths of the linker regions could display diversity in their functional specifications. The present study provides a useful perspective to our understanding of the evolution of the disordered region between CSRP3 LIM domains.
Collapse
Affiliation(s)
- Pankaj Kumar Chauhan
- National Centre for Biological Sciences Tata Institute of Fundamental Research, Bangalore Karnataka, India
| | - R. Sowdhamini
- National Centre for Biological Sciences Tata Institute of Fundamental Research, Bangalore Karnataka, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- *Correspondence: R. Sowdhamini,
| |
Collapse
|
7
|
Peng W, Reyes CDG, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. MASS SPECTROMETRY REVIEWS 2023; 42:577-616. [PMID: 34159615 PMCID: PMC8692493 DOI: 10.1002/mas.21713] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
8
|
Itakura Y, Hasegawa Y, Kikkawa Y, Murakami Y, Sugiura K, Nagai-Okatani C, Sasaki N, Umemura M, Takahashi Y, Kimura T, Kuno A, Ishiwata T, Toyoda M. Spatiotemporal changes of tissue glycans depending on localization in cardiac aging. Regen Ther 2023; 22:68-78. [PMID: 36712959 PMCID: PMC9841240 DOI: 10.1016/j.reth.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Heart failure is caused by various factors, making the underlying pathogenic mechanisms difficult to identify. Since cardiovascular disease tends to worsen over time, early diagnosis is key for treatment. In addition, understanding the qualitative changes in the heart associated with aging, where information on the direct influences of aging on cardiovascular disease is limited, would also be useful for treatment and diagnosis. To fill these research gaps, the focus of our study was to detect the structural and functional molecular changes associated with the heart over time, with a focus on glycans, which reflect the type and state of cells. METHODS We investigated glycan localization in the cardiac tissue of normal mice and their alterations during aging, using evanescent-field fluorescence-assisted lectin microarray, a technique based on lectin-glycan interaction, and lectin staining. RESULTS The glycan profiles in the left ventricle showed differences between the luminal side (medial) and wall side (lateral) regions. The medial region was characterized by the presence of sialic acid residues. Moreover, age-related changes in glycan profiles were observed at a younger age in the medial region. The difference in the age-related decrease in the level of α-galactose stained with Griffonia simplicifolia lectin-IB4 in different regions of the left ventricle suggests spatiotemporal changes in the number of microvessels. CONCLUSIONS The glycan profile, which retains diverse glycan structures, is supported by many cell populations, and maintains cardiac function. With further research, glycan localization and changes have the potential to be developed as a marker of the signs of heart failure.
Collapse
Key Words
- ACG, Agrocybe cylindracea galectin
- Aging
- BPL, Bauhinia purpurea alba lectin
- Calsepa, Calystegia sepium agglutinin
- Cardiac tissue
- ConA, Canavalia ensiformis lectin
- DAPI, 4′,6-diamidino-2-phenylindole
- DBA, Dolichos biflorus agglutinin
- ECA, Erythrina cristagalli agglutinin
- ECM, extracellular matrices
- EMT, endothelial-to-mesenchymal transition
- FITC, fluorescein isothiocyanate
- GSL-I, Griffonia simplicifolia lectin I
- Gal, galactose
- GalNAc, N-acetylgalactosamine
- GlcNAc, N-acetylglucosamine
- Glycan profile
- HE, hematoxylin-eosin
- LEL, Lycopersicon esculentum lectin
- LTL, Lotus tetragonolobus lectin
- Lectin microarray
- MAH, Maackia amurensis hemagglutinin
- MAL-I, Maackia amurensis lectin I
- Man, mannose
- Microvessels
- NPA, Narcissus pseudonarcissus agglutinin
- PBS, phosphate-buffered saline
- PCA, principal component analysis
- PHA-L, Phaseolus vulgaris leucoagglutinin
- PNA, Arachis hypogaea agglutinin
- RCA120, Ricinus communis agglutinin I
- SBA, Glycine max agglutinin
- SNA, Sambucus nigra agglutinin
- SSA, Sambucus sieboldiana agglutinin
- STL, Solanum tuberosum lectin
- TJA-I, Trichosanthes japonica agglutinin I
- UDA, Urtica dioica
- VVA, Vicia villosa agglutinin
- WFA, Wisteria floribunda agglutinin
- WGA, Triticum vulgaris agglutinin (wheat germ agglutinin)
- α-SMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Yoko Itakura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yasuko Hasegawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yurika Kikkawa
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan,Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yuina Murakami
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan,Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kosuke Sugiura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan,Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Chiaki Nagai-Okatani
- Cellular and Molecular Biotechnology Research Institute, National Institutes of Advanced Industrial Science and Technology, 5 Central, Tsukuba, 1-1-1 Higashi, Tsukuba-city, Ibaraki 305-8565, Japan
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Mariko Umemura
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yuji Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Atsushi Kuno
- Cellular and Molecular Biotechnology Research Institute, National Institutes of Advanced Industrial Science and Technology, 5 Central, Tsukuba, 1-1-1 Higashi, Tsukuba-city, Ibaraki 305-8565, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan,Corresponding author.
| |
Collapse
|
9
|
Chen SY, Lih TSM, Li QK, Zhang H. Comparing Urinary Glycoproteins among Three Urogenital Cancers and Identifying Prostate Cancer-Specific Glycoproteins. ACS OMEGA 2022; 7:9172-9180. [PMID: 35350332 PMCID: PMC8945184 DOI: 10.1021/acsomega.1c05223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Prostate cancer, bladder cancer, and renal cancers are major urogenital cancers. Of which, prostate cancer is the most commonly diagnosed and second leading cause of cancer death for men in the United States. For urogenital cancers, urine is considered as proximate body fluid to the tumor site for developing non-invasiveness tests. However, the specific molecular signatures from different urogenital cancers are needed to relate changes in urine to various cancer detections. Herein, we utilized a previously published C4-Tip and C18/MAX-Tip workflow for enrichment of glycopeptides from urine samples and evaluated urinary glycopeptides for its cancer specificity. We analyzed 66 urine samples from bladder cancer (n = 27), prostate cancer (n = 4), clear cell renal cell carcinoma (ccRCC, n = 3), and benign plastic hyperplasia (BPH, n = 32) and then compared them with a previous publication that reported glycopeptides associated with aggressive prostate cancer (Gleason score ≥ 8). We further demonstrated the cancer specificity of the glycopeptides associated with aggressive prostate cancer. In this study, a total of 33 glycopeptides were identified to be specifically differentially expressed in prostate cancer compared to other urogenital cancer types as well as BPH urines. By cross-comparison with our previous urinary glycoproteomic dataset for aggressive prostate cancer, we reported a total of four glycopeptides from glycoproteins DSC2, MGAM, PIK3IP1, and CD55, commonly identified to be prostate cancer-specific. Together, these results deepen our understanding of the urinary glycoproteins associated with urogenital cancer types and expand our knowledge of the cancer specificity of urinary glycoproteins among urogenital cancer progression.
Collapse
Affiliation(s)
- Shao-Yung Chen
- Department
of Pathology, Johns Hopkins University School
of Medicine, Baltimore 21287-0010, Maryland, United States
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore 21218-2625, Maryland, United States
| | - Tung-Shing Mamie Lih
- Department
of Pathology, Johns Hopkins University School
of Medicine, Baltimore 21287-0010, Maryland, United States
| | - Qing Kay Li
- Department
of Pathology, Johns Hopkins University School
of Medicine, Baltimore 21287-0010, Maryland, United States
| | - Hui Zhang
- Department
of Pathology, Johns Hopkins University School
of Medicine, Baltimore 21287-0010, Maryland, United States
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore 21218-2625, Maryland, United States
- Department
of Urology, Johns Hopkins University, Baltimore 21287, Maryland, United States
- Department
of Oncology, Johns Hopkins University Baltimore 21205, Maryland, United States
| |
Collapse
|
10
|
Kim H, Yang H, Ednie AR, Bennett ES. Simulation Modeling of Reduced Glycosylation Effects on Potassium Channels of Mouse Cardiomyocytes. Front Physiol 2022; 13:816651. [PMID: 35309072 PMCID: PMC8931503 DOI: 10.3389/fphys.2022.816651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the third most common cause of heart failure and the primary reason for heart transplantation; upward of 70% of DCM cases are considered idiopathic. Our in-vitro experiments showed that reduced hybrid/complex N-glycosylation in mouse cardiomyocytes is linked with DCM. Further, we observed direct effects of reduced N-glycosylation on Kv gating. However, it is difficult to rigorously determine the effects of glycosylation on Kv activity, because there are multiple Kv isoforms in cardiomyocytes contributing to the cardiac excitation. Due to complex functions of Kv isoforms, only the sum of K+ currents (IKsum) can be recorded experimentally and decomposed later using exponential fitting to estimate component currents, such as IKto, IKslow, and IKss. However, such estimation cannot adequately describe glycosylation effects and Kv mechanisms. Here, we propose a framework of simulation modeling of Kv kinetics in mouse ventricular myocytes and model calibration using the in-vitro data under normal and reduced glycosylation conditions through ablation of the Mgat1 gene (i.e., Mgat1KO). Calibrated models facilitate the prediction of Kv characteristics at different voltages that are not directly observed in the in-vitro experiments. A model calibration procedure is developed based on the genetic algorithm. Experimental results show that, in the Mgat1KO group, both IKto and IKslow densities are shown to be significantly reduced and the rate of IKslow inactivation is much slower. The proposed approach has strong potential to couple simulation models with experimental data for gaining a better understanding of glycosylation effects on Kv kinetics.
Collapse
Affiliation(s)
- Haedong Kim
- Complex Systems Monitoring, Modeling, and Control Laboratory, The Pennsylvania State University, University Park, PA, United States
| | - Hui Yang
- Complex Systems Monitoring, Modeling, and Control Laboratory, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Hui Yang
| | - Andrew R. Ednie
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH, United States
| | - Eric S. Bennett
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH, United States
| |
Collapse
|
11
|
Park SH, Lu Y, Shao Y, Prophete C, Horton L, Sisco M, Lee HW, Kluz T, Sun H, Costa M, Zelikoff J, Chen LC, Gorr MW, Wold LE, Cohen MD. Longitudinal Impact of WTC Dust Inhalation on Rat Cardiac Tissue Transcriptomic Profiles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020919. [PMID: 35055737 PMCID: PMC8776213 DOI: 10.3390/ijerph19020919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
First responders (FR) exposed to the World Trade Center (WTC) Ground Zero air over the first week after the 9/11 disaster have an increased heart disease incidence compared to unexposed FR and the general population. To test if WTC dusts were causative agents, rats were exposed to WTC dusts (under isoflurane [ISO] anesthesia) 2 h/day on 2 consecutive days; controls received air/ISO or air only. Hearts were collected 1, 30, 240, and 360 d post-exposure, left ventricle total RNA was extracted, and transcription profiles were obtained. The data showed that differentially expressed genes (DEG) for WTC vs. ISO rats did not reach any significance with a false discovery rate (FDR) < 0.05 at days 1, 30, and 240, indicating that the dusts did not impart effects beyond any from ISO. However, at day 360, 14 DEG with a low FDR were identified, reflecting potential long-term effects from WTC dust alone, and the majority of these DEG have been implicated as having an impact on heart functions. Furthermore, the functional gene set enrichment analysis (GSEA) data at day 360 showed that WTC dust could potentially impact the myocardial energy metabolism via PPAR signaling and heart valve development. This is the first study showing that WTC dust could significantly affect some genes that are associated with the heart/CV system, in the long term. Even > 20 years after the 9/11 disaster, this has potentially important implications for those FR exposed repeatedly at Ground Zero over the first week after the buildings collapsed.
Collapse
Affiliation(s)
- Sung-Hyun Park
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
- Correspondence:
| | - Yuting Lu
- Departments of Population Health & Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (Y.L.); (Y.S.)
| | - Yongzhao Shao
- Departments of Population Health & Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (Y.L.); (Y.S.)
| | - Colette Prophete
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Lori Horton
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Maureen Sisco
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Hyun-Wook Lee
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Thomas Kluz
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Hong Sun
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Judith Zelikoff
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Matthew W. Gorr
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 13210, USA; (M.W.G.); (L.E.W.)
- College of Nursing, The Ohio State University, Columbus, OH 13210, USA
| | - Loren E. Wold
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 13210, USA; (M.W.G.); (L.E.W.)
- College of Nursing, The Ohio State University, Columbus, OH 13210, USA
| | - Mitchell D. Cohen
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| |
Collapse
|
12
|
Loaeza-Reyes KJ, Zenteno E, Moreno-Rodríguez A, Torres-Rosas R, Argueta-Figueroa L, Salinas-Marín R, Castillo-Real LM, Pina-Canseco S, Cervera YP. An Overview of Glycosylation and its Impact on Cardiovascular Health and Disease. Front Mol Biosci 2021; 8:751637. [PMID: 34869586 PMCID: PMC8635159 DOI: 10.3389/fmolb.2021.751637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiovascular system is a complex and well-organized system in which glycosylation plays a vital role. The heart and vascular wall cells are constituted by an array of specific receptors; most of them are N- glycosylated and mucin-type O-glycosylated. There are also intracellular signaling pathways regulated by different post-translational modifications, including O-GlcNAcylation, which promote adequate responses to extracellular stimuli and signaling transduction. Herein, we provide an overview of N-glycosylation and O-glycosylation, including O-GlcNAcylation, and their role at different levels such as reception of signal, signal transduction, and exogenous molecules or agonists, which stimulate the heart and vascular wall cells with effects in different conditions, like the physiological status, ischemia/reperfusion, exercise, or during low-grade inflammation in diabetes and aging. Furthermore, mutations of glycosyltransferases and receptors are associated with development of cardiovascular diseases. The knowledge on glycosylation and its effects could be considered biochemical markers and might be useful as a therapeutic tool to control cardiovascular diseases.
Collapse
Affiliation(s)
- Karen Julissa Loaeza-Reyes
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rafael Torres-Rosas
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Liliana Argueta-Figueroa
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Conacyt - Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lizet Monserrat Castillo-Real
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Yobana Pérez Cervera
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
13
|
Glycosylation and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:307-319. [PMID: 34495542 DOI: 10.1007/978-3-030-70115-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, accounting for approximately 18 million deaths in 2017. Coronary artery disease is the predominant cause of death from CVD, followed by stroke. Owing to recent technological advancements, glycans and glycosylation patterns of proteins have been investigated in association with CVD risk factors and clinical events. These studies have found significant associations of glycans as biomarkers of systemic inflammation and major CVD risk factors and events. While more limited, studies have also shown that glycans may be useful for monitoring response to anti-inflammatory therapies and may be responsive to changes in lifestyle, particularly in patients with chronic inflammatory diseases. Glycans capture summative risk information related to inflammatory, immune, and signaling pathways and are promising biomarkers for CVD risk prediction and therapeutic monitoring.
Collapse
|
14
|
Chen SY, Clark DJ, Zhang H. High-Throughput Analyses of Glycans, Glycosites, and Intact Glycopeptides Using C4-and C18/MAX-Tips and Liquid Handling System. Curr Protoc 2021; 1:e186. [PMID: 34232571 PMCID: PMC8485138 DOI: 10.1002/cpz1.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Protein glycosylation is one of the most common and diverse modifications. Aberrant protein glycosylation has been reported to associate with various diseases. High‐throughput and comprehensive characterization of glycoproteins is crucial for structural and functional studies of altered glycosylation in biological, physiological, and pathological processes. In this protocol, we detail a workflow for comprehensive analyses of intact glycopeptides (IGPs), glycosylation sites, and glycans from N‐linked glycoproteins. By utilizing liquid handling systems, our workflow could enrich IGPs in a high‐throughput manner while reducing sample processing time and human error involved in traditional proteomics sample processing techniques. Together, our workflow enables a high‐throughput enrichment of glycans, glycosites, and intact glycopeptides from complex biological or clinical samples. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Enzymatic digestion of glycoproteins using C4‐tips Basic Protocol 2: Intact glycopeptide analysis using C18/MAX‐tips Basic Protocol 3: Glycan and glycosite analysis
Collapse
Affiliation(s)
- Shao-Yung Chen
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - David J Clark
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland.,Department of Urology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
15
|
Franzka P, Krüger L, Schurig MK, Olecka M, Hoffmann S, Blanchard V, Hübner CA. Altered Glycosylation in the Aging Heart. Front Mol Biosci 2021; 8:673044. [PMID: 34124155 PMCID: PMC8194361 DOI: 10.3389/fmolb.2021.673044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of death in developed countries. Because the incidence increases exponentially in the aging population, aging is a major risk factor for cardiovascular disease. Cardiac hypertrophy, fibrosis and inflammation are typical hallmarks of the aged heart. The molecular mechanisms, however, are poorly understood. Because glycosylation is one of the most common post-translational protein modifications and can affect biological properties and functions of proteins, we here provide the first analysis of the cardiac glycoproteome of mice at different ages. Western blot as well as MALDI-TOF based glycome analysis suggest that high-mannose N-glycans increase with age. In agreement, we found an age-related regulation of GMPPB, the enzyme, which facilitates the supply of the sugar-donor GDP-mannose. Glycoprotein pull-downs from heart lysates of young, middle-aged and old mice in combination with quantitative mass spectrometry bolster widespread alterations of the cardiac glycoproteome. Major hits are glycoproteins related to the extracellular matrix and Ca2+-binding proteins of the endoplasmic reticulum. We propose that changes in the heart glycoproteome likely contribute to the age-related functional decline of the cardiovascular system.
Collapse
Affiliation(s)
- Patricia Franzka
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Lynn Krüger
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Mona K Schurig
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Maja Olecka
- Hoffmann Research Group, Leibniz-Institute on Aging-Fritz-Lipmann-Institute, Jena, Germany
| | - Steve Hoffmann
- Hoffmann Research Group, Leibniz-Institute on Aging-Fritz-Lipmann-Institute, Jena, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
16
|
Langlo KAR, Silva GJJ, Overrein TS, Adams V, Wisløff U, Dalen H, Rolim N, Hallan SI. Circulating microRNAs May Serve as Biomarkers for Hypertensive Emergency End-Organ Injuries and Address Underlying Pathways in an Animal Model. Front Cardiovasc Med 2021; 7:626699. [PMID: 33644125 PMCID: PMC7906971 DOI: 10.3389/fcvm.2020.626699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 11/20/2022] Open
Abstract
There is an incomplete understanding of the underlying pathophysiology in hypertensive emergencies, where severely elevated blood pressure causes acute end-organ injuries, as opposed to the long-term manifestations of chronic hypertension. Furthermore, current biomarkers are unable to detect early end-organ injuries like hypertensive encephalopathy and renal thrombotic microangiopathy. We hypothesized that circulating microRNAs (c-miRs) could identify acute and chronic complications of severe hypertension, and that combinations of c-miRs could elucidate important pathways involved. We studied the diagnostic accuracy of 145 c-miRs in Dahl salt-sensitive rats fed either a low-salt (N = 20: 0.3% NaCl) or a high-salt (N = 60: 8% NaCl) diet. Subclinical hypertensive encephalopathy and thrombotic microangiopathy were diagnosed by histopathology. In addition, heart failure with preserved ejection fraction was evaluated with echocardiography and N-terminal pro-brain natriuretic peptide; and endothelial dysfunction was studied using acetylcholine-induced aorta ring relaxation. Systolic blood pressure increased severely in animals on a high-salt diet (high-salt 205 ± 20 mm Hg vs. low-salt 152 ± 18 mm Hg, p < 0.001). Partial least squares discriminant analysis revealed 68 c-miRs discriminating between animals with and without hypertensive emergency complications. Twenty-nine c-miRs were strongly associated with hypertensive encephalopathy, 24 c-miRs with thrombotic microangiopathy, 30 c-miRs with heart failure with preserved ejection fraction, and 28 c-miRs with endothelial dysfunction. Hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction were associated with deviations in many of the same c-miRs, whereas endothelial dysfunction was associated with a different set of c-miRs. Several of these c-miRs demonstrated fair to good diagnostic accuracy for a composite outcome of hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction in receiver-operating-curve analyses (area-under-curve 0.75–0.88). Target prediction revealed an enrichment of genes related to several pathways relevant for cardiovascular disease (e.g., mucin type O-glycan biosynthesis, MAPK, Wnt, Hippo, and TGF-beta signaling). C-miRs could potentially serve as biomarkers of severe hypertensive end-organ injuries and elucidate important pathways involved.
Collapse
Affiliation(s)
- Knut Asbjørn Rise Langlo
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gustavo Jose Justo Silva
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tina Syvertsen Overrein
- Division of Pathology and Medical Genetics, Department of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Volker Adams
- Department of Cardiology, Heart Center Dresden, TU Dresden, Dresden, Germany
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement & Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Håvard Dalen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Natale Rolim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stein Ivar Hallan
- Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
17
|
Bagwan N, El Ali HH, Lundby A. Proteome-wide profiling and mapping of post translational modifications in human hearts. Sci Rep 2021; 11:2184. [PMID: 33500497 PMCID: PMC7838296 DOI: 10.1038/s41598-021-81986-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022] Open
Abstract
Post translational modifications (PTMs) are covalent modifications of proteins that can range from small chemical modifications to addition of entire proteins. PTMs contribute to regulation of protein function and thereby greatly increase the functional diversity of the proteome. In the heart, a few well-studied PTMs, such as phosphorylation and glycosylation, are known to play essential roles for cardiac function. Yet, only a fraction of the ~ 300 known PTMs have been studied in a cardiac context. Here we investigated the proteome-wide map of PTMs present in human hearts by utilizing high-resolution mass spectrometry measurements and a suite of PTM identification algorithms. Our approach led to identification of more than 150 different PTMs across three of the chambers in human hearts. This finding underscores that decoration of cardiac proteins by PTMs is much more diverse than hitherto appreciated and provides insights in cardiac protein PTMs not yet studied. The results presented serve as a catalogue of which PTMs are present in human hearts and outlines the particular protein and the specific amino acid modified, and thereby provides a detail-rich resource for exploring protein modifications in human hearts beyond the most studied PTMs.
Collapse
Affiliation(s)
- Navratan Bagwan
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Henrik H El Ali
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark. .,The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenahagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.
| |
Collapse
|
18
|
Ghantous CM, Kamareddine L, Farhat R, Zouein FA, Mondello S, Kobeissy F, Zeidan A. Advances in Cardiovascular Biomarker Discovery. Biomedicines 2020; 8:biomedicines8120552. [PMID: 33265898 PMCID: PMC7759775 DOI: 10.3390/biomedicines8120552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the leading causes of mortality worldwide. Among them, hypertension and its pathological complications pose a major risk for the development of other cardiovascular diseases, including heart failure and stroke. Identifying novel and early stage biomarkers of hypertension and other cardiovascular diseases is of paramount importance in predicting and preventing the major morbidity and mortality associated with these diseases. Biomarkers of such diseases or predisposition to their development are identified by changes in a specific indicator’s expression between healthy individuals and patients. These include changes in protein and microRNA (miRNA) levels. Protein profiling using mass spectrometry and miRNA screening utilizing microarray and sequencing have facilitated the discovery of proteins and miRNA as biomarker candidates. In this review, we summarized some of the different, promising early stage protein and miRNA biomarker candidates as well as the currently used biomarkers for hypertension and other cardiovascular diseases. Although a number of promising markers have been identified, it is unlikely that a single biomarker will unambiguously aid in the classification of these diseases. A multi-marker panel-strategy appears useful and promising for classifying and refining risk stratification among patients with cardiovascular disease.
Collapse
Affiliation(s)
- Crystal M. Ghantous
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Keserwan 72, Lebanon;
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Rima Farhat
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Stefania Mondello
- Oasi Research Institute-IRCCS, 94018 Troina, Italy;
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Asad Zeidan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Basic Medical Science, Faculty of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: ; Tel.: +97-431-309-19
| |
Collapse
|
19
|
Chen SY, Dong M, Yang G, Zhou Y, Clark DJ, Lih TM, Schnaubelt M, Liu Z, Zhang H. Glycans, Glycosite, and Intact Glycopeptide Analysis of N-Linked Glycoproteins Using Liquid Handling Systems. Anal Chem 2020; 92:1680-1686. [PMID: 31859482 PMCID: PMC7331092 DOI: 10.1021/acs.analchem.9b03761] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aberrant glycosylation has been shown to associate with disease progression, and with glycoproteins representing the major protein component of biological fluids this makes them attractive targets for disease monitoring. Leveraging glycoproteomic analysis via mass spectrometry (MS) could provide the insight into the altered glycosylation patterns that relate to disease progression. However, investigation of large sample cohorts requires rapid, efficient, and highly reproducible sample preparation. To address the limitation, we developed a high-throughput method for characterizing glycans, glycosites, and intact glycopeptides (IGPs) derived from N-linked glycoproteins. We combined disparate peptide enrichment strategies (i.e., hydrophilic and hydrophobic) and a liquid handling platform allowing for a high throughput and rapid enrichment of IGP in a 96-well plate format. The C18/MAX-Tip workflow reduced sample processing time and facilitated the selective enrichment of IGPs from complex samples. Furthermore, our approach enabled the analysis of deglycosylated peptides and glycans from enriched IGPs following PNGase F digest. Following development and optimization of the C18/MAX-Tip methodology using the standard glycoprotein, fetuin, we investigated normal urine samples to obtain N-linked glycoprotein information. Together, our method enables a high-throughput enrichment of glycan, glycosites, and IGPs from biological samples.
Collapse
Affiliation(s)
- Shao-Yung Chen
- Department of Pathology, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering,
Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mingming Dong
- Department of Pathology, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21218, United States
| | - Ganglong Yang
- Department of Pathology, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21218, United States
| | - Yangying Zhou
- Department of Pathology, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21218, United States
| | - David J. Clark
- Department of Pathology, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21218, United States
| | - T. Mamie Lih
- Department of Pathology, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21218, United States
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21218, United States
| | - Zichen Liu
- Department of Pathology, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering,
Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering,
Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
20
|
Nagai-Okatani C, Nishigori M, Sato T, Minamino N, Kaji H, Kuno A. Wisteria floribunda agglutinin staining for the quantitative assessment of cardiac fibrogenic activity in a mouse model of dilated cardiomyopathy. J Transl Med 2019; 99:1749-1765. [PMID: 31253865 DOI: 10.1038/s41374-019-0279-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/24/2019] [Accepted: 05/10/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis is a typical phenomenon in failing hearts for most cardiac diseases, including dilated cardiomyopathy (DCM), and its specific detection and quantification are crucial for the analysis of cardiac remodeling. Since cardiac fibrosis is characterized by extensive remodeling of the myocardial extracellular matrix (ECM), in which glycoproteins are the major components, we assumed that fibrosis-related alterations in the cardiac glycome and glycoproteome would be suitable targets for the detection of cardiac fibrosis. Here, we compared protein glycosylation between heart tissues of normal and DCM model mice by laser microdissection-assisted lectin microarray. Among 45 lectins, Wisteria floribunda agglutinin (WFA) was selected as the most suitable lectin for staining cardiac fibrotic tissues. Although the extent of WFA staining was highly correlated (r > 0.98) with that of picrosirius red staining, a common collagen staining method, WFA did not bind to collagen fibers. Further histochemical analysis with N-glycosidase revealed that WFA staining of fibrotic tissues was attributable to the binding of WFA to N-glycoproteins. Using a mass spectrometry-based approach, we identified WFA-binding N-glycoproteins expressed in DCM hearts, many of which were fibrogenesis-related ECM proteins, as expected. In addition, the identified glycoproteins carrying WFA-binding N-glycans were detected only in DCM hearts, suggesting their cooperative glycosylation alterations with disease progression. Among these WFA-binding ECM N-glycoproteins, co-localization of the collagen α6(VI) chain protein and WFA staining in cardiac tissue sections was confirmed with a double-staining analysis. Collectively, these results indicate that WFA staining is more suitable for the quantitative assessment of cardiac fibrogenic activity than current collagen staining methods. Furthermore, given that plasma WFA-binding glycoprotein levels were significantly correlated with the echocardiographic parameters for left ventricular remodeling, cardiac WFA-binding glycoproteins are candidate circulating glyco-biomarkers for the quantification and monitoring of cardiac fibrogenesis.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | - Mitsuhiro Nishigori
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takashi Sato
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hiroyuki Kaji
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
21
|
Nagai-Okatani C, Aoki-Kinoshita KF, Kakuda S, Nagai M, Hagiwara K, Kiyohara K, Fujita N, Suzuki Y, Sato T, Angata K, Kuno A. LM-GlycomeAtlas Ver. 1.0: A Novel Visualization Tool for Lectin Microarray-Based Glycomic Profiles of Mouse Tissue Sections. Molecules 2019; 24:molecules24162962. [PMID: 31443278 PMCID: PMC6719194 DOI: 10.3390/molecules24162962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
For the effective discovery of the biological roles and disease-specific alterations concerning protein glycosylation in tissue samples, it is important to know beforehand the quantitative and qualitative variations of glycan structures expressed in various types of cells, sites, and tissues. To this end, we used laser microdissection-assisted lectin microarray (LMA) to establish a simple and reproducible method for high-throughput and in-depth glycomic profiling of formalin-fixed paraffin-embedded tissue sections. Using this “tissue glycome mapping” approach, we present 234 glycomic profiling data obtained from nine tissue sections (pancreas, heart, lung, thymus, gallbladder, stomach, small intestine, colon, and skin) of two 8-week-old male C57BL/6J mice. We provided this LMA-based dataset in the similar interface as that of GlycomeAtlas, a previously developed tool for mass spectrometry-based tissue glycomic profiling, allowing easy comparison of the two types of data. This online tool, called “LM-GlycomeAtlas”, allows users to visualize the LMA-based tissue glycomic profiling data associated with the sample information as an atlas. Since the present dataset allows the comparison of glycomic profiles, it will facilitate the evaluation of site- and tissue-specific glycosylation patterns. Taking advantage of its extensibility, this tool will continue to be updated with the expansion of deposited data.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
| | - Kiyoko F Aoki-Kinoshita
- Glycan & Life Science Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Shuichi Kakuda
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Misugi Nagai
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Kozue Hagiwara
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Katsue Kiyohara
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Noriaki Fujita
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Yoshinori Suzuki
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Takashi Sato
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Kiyohiko Angata
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
22
|
Hansen LH, Madsen TD, Goth CK, Clausen H, Chen Y, Dzhoyashvili N, Iyer SR, Sangaralingham SJ, Burnett JC, Rehfeld JF, Vakhrushev SY, Schjoldager KT, Goetze JP. Discovery of O-glycans on atrial natriuretic peptide (ANP) that affect both its proteolytic degradation and potency at its cognate receptor. J Biol Chem 2019; 294:12567-12578. [PMID: 31186350 DOI: 10.1074/jbc.ra119.008102] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is a peptide hormone that in response to atrial stretch is secreted from atrial myocytes into the circulation, where it stimulates vasodilatation and natriuresis. ANP is an important biomarker of heart failure where low plasma concentrations exclude cardiac dysfunction. ANP is a member of the natriuretic peptide (NP) family, which also includes the B-type natriuretic peptide (BNP) and the C-type natriuretic peptide. The proforms of these hormones undergo processing to mature peptides, and for proBNP, this process has previously been demonstrated to be regulated by O-glycosylation. It has been suggested that proANP also may undergo post-translational modifications. Here, we conducted a targeted O-glycoproteomics approach to characterize O-glycans on NPs and demonstrate that all NP members can carry O-glycans. We identified four O-glycosites in proANP in the porcine heart, and surprisingly, two of these were located on the mature bioactive ANP itself. We found that one of these glycans is located within a conserved sequence motif of the receptor-binding region, suggesting that O-glycans may serve a function beyond intracellular processing and maturation. We also identified an O-glycoform of proANP naturally occurring in human circulation. We demonstrated that site-specific O-glycosylation shields bioactive ANP from proteolytic degradation and modifies potency at its cognate receptor in vitro Furthermore, we showed that ANP O-glycosylation attenuates acute renal and cardiovascular ANP actions in vivo The discovery of novel glycosylated ANP proteoforms reported here significantly improves our understanding of cardiac endocrinology and provides important insight into the etiology of heart failure.
Collapse
Affiliation(s)
- Lasse H Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Daugbjerg Madsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Nina Dzhoyashvili
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark .,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, 2200 Copenhagen, Denmark
| |
Collapse
|
23
|
Reduced hybrid/complex N-glycosylation disrupts cardiac electrical signaling and calcium handling in a model of dilated cardiomyopathy. J Mol Cell Cardiol 2019; 132:13-23. [PMID: 31071333 DOI: 10.1016/j.yjmcc.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
Abstract
Dilated cardiomyopathy (DCM) is the third most common cause of heart failure, with ~70% of DCM cases considered idiopathic. We showed recently, through genetic ablation of the MGAT1 gene, which encodes an essential glycosyltransferase (GlcNAcT1), that prevention of cardiomyocyte hybrid/complex N-glycosylation was sufficient to cause DCM that led to heart failure and early death. Our findings are consistent with increasing evidence suggesting a link between aberrant glycosylation and heart diseases of acquired and congenital etiologies. However, the mechanisms by which changes in glycosylation contribute to disease onset and progression remain largely unknown. Activity and gating of voltage-gated Na+ and K+ channels (Nav and Kv respectively) play pivotal roles in the initiation, shaping and conduction of cardiomyocyte action potentials (APs) and aberrant channel activity was shown to contribute to cardiac disease. We and others showed that glycosylation can impact Nav and Kv function; therefore, here, we investigated the effects of reduced cardiomyocyte hybrid/complex N-glycosylation on channel activity to investigate whether chronic aberrant channel function can contribute to DCM. Ventricular cardiomyocytes from MGAT1 deficient (MGAT1KO) mice display prolonged APs and pacing-induced aberrant early re-activation that can be attributed to, at least in part, a significant reduction in Kv expression and activity that worsens over time suggesting heart disease-related remodeling. MGAT1KO Nav demonstrate no change in expression or maximal conductance but show depolarizing shifts in voltage-dependent gating. Together, the changes in MGAT1KO Nav and Kv function likely contribute to observed anomalous electrocardiograms and Ca2+ handling. These findings provide insight into mechanisms by which altered glycosylation contributes to DCM through changes in Nav and Kv activity that impact conduction, Ca2+ handling and contraction. The MGAT1KO can also serve as a useful model to study the effects of aberrant electrical signaling on cardiac function and the remodeling events that can occur with heart disease progression.
Collapse
|
24
|
Debus JD, Milting H, Brodehl A, Kassner A, Anselmetti D, Gummert J, Gaertner-Rommel A. In vitro analysis of arrhythmogenic cardiomyopathy associated desmoglein-2 (DSG2) mutations reveals diverse glycosylation patterns. J Mol Cell Cardiol 2019; 129:303-313. [DOI: 10.1016/j.yjmcc.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/06/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
|
25
|
Matsuo A, Nagai-Okatani C, Nishigori M, Kangawa K, Minamino N. Natriuretic peptides in human heart: Novel insight into their molecular forms, functions, and diagnostic use. Peptides 2019; 111:3-17. [PMID: 30120963 DOI: 10.1016/j.peptides.2018.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 01/16/2023]
Abstract
Among the three natriuretic peptides, atrial/A-type natriuretic peptide (ANP) and brain/B-type natriuretic peptide (BNP) are primarily produced by, and secreted from, heart tissue. They maintain cardiovascular homeostasis by binding to natriuretic peptide receptor-A. Since plasma ANP and BNP concentrations, as well as expression, are elevated in response to increased body fluid volume and pressure load on the heart wall, these peptides are widely utilized as diagnostic biomarkers for evaluating heart failure. Regardless of their high utility, differences in their molecular forms between healthy and diseased subjects and how these relate to pathophysiology have not well been examined. Recent studies have shown that the circulating molecular forms of ANP and BNP are not uniform; bioactive α-ANP is the major ANP form, whereas the weakly active proBNP is the major BNP form. The relative ratios of the different molecular forms are altered under different pathophysiological conditions. These facts indicate that detailed measurements of each form may provide useful information on the pathophysiological state of heart tissue. Here, we revisit the relationship between the molecular forms of, and pathophysiological alterations in, human ANP and BNP and discuss the possible utility of the measurement of each of the molecular forms. The third peptide, C-type natriuretic peptide, activates natriuretic peptide receptor-B, but little is known about its production and function in the heart because of its extremely low levels. However, through recent studies, its role in the heart is gradually becoming clear. Here, we summarize its molecular forms, assay systems, and functions in the heart.
Collapse
Affiliation(s)
- Ayaka Matsuo
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Chiaki Nagai-Okatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Mitsuhiro Nishigori
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Kenji Kangawa
- Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan.
| |
Collapse
|
26
|
Circulating miR-1254 predicts ventricular remodeling in patients with ST-Segment-Elevation Myocardial Infarction: A cardiovascular magnetic resonance study. Sci Rep 2018; 8:15115. [PMID: 30310086 PMCID: PMC6181905 DOI: 10.1038/s41598-018-33491-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/25/2018] [Indexed: 01/26/2023] Open
Abstract
Reliable noninvasive prognostic biomarkers for left ventricular (LV) remodeling in ST-segment elevation myocardial infarction (STEMI) are needed. This study aimed to evaluate a panel of circulating microRNAs (miRNAs) as biomarkers of LV remodeling using cardiovascular magnetic resonance (CMR). We prospectively evaluated patients with a first STEMI treated with primary percutaneous coronary intervention who underwent CMR imaging at 1 week and 6 months after STEMI (n = 70). miRNAs were measured using PCR-based technologies in plasma samples collected at admission. The associations between miRNAs and LV diastolic and systolic volumes, and ejection fraction at 6-months were estimated in adjusted models. Median age was 60 years, 71.4% were male. miR-1254 was significantly associated in univariate analyses. Patients in the highest tertile of miR-1254 exhibited lower values of LVEDVI and LVESVI and higher values of LVEF at 1 week. After comprehensive multivariate adjustment including clinical, CMR variables, hs-troponin-T and NT-proBNP, miRNA-1254 was associated with decreasing LVESVI (P = 0.006), and borderline negative associated with LVEDVI (P = 0.063) at 6-months. miR-1254 also exhibited a significant positive association with increasing LVEF during follow-up (P < 0.001). Plasma miRNA-1254 predicted changes in LV volumes and LVEF at 6 months after STEMI. The value of miR-1254 to inform tailored treatment selection and monitor ongoing efficacy deserves further investigation.
Collapse
|
27
|
Ednie AR, Deng W, Yip KP, Bennett ES. Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy. FASEB J 2018; 33:1248-1261. [PMID: 30138037 DOI: 10.1096/fj.201801057r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein glycosylation is an essential posttranslational modification that affects a myriad of physiologic processes. Humans with genetic defects in glycosylation, which result in truncated glycans, often present with significant cardiac deficits. Acquired heart diseases and their associated risk factors were also linked to aberrant glycosylation, highlighting its importance in human cardiac disease. In both cases, the link between causation and corollary remains enigmatic. The glycosyltransferase gene, mannosyl (α-1,3-)-glycoprotein β-1,2- N-acetylglucosaminyltransferase (Mgat1), whose product, N-acetylglucosaminyltransferase 1 (GlcNAcT1) is necessary for the formation of hybrid and complex N-glycan structures in the medial Golgi, was shown to be at reduced levels in human end-stage cardiomyopathy, thus making Mgat1 an attractive target for investigating the role of hybrid/complex N-glycosylation in cardiac pathogenesis. Here, we created a cardiomyocyte-specific Mgat1 knockout (KO) mouse to establish a model useful in exploring the relationship between hybrid/complex N-glycosylation and cardiac function and disease. Biochemical and glycomic analyses showed that Mgat1KO cardiomyocytes produce predominately truncated N-glycan structures. All Mgat1KO mice died significantly younger than control mice and demonstrated chamber dilation and systolic dysfunction resembling human dilated cardiomyopathy (DCM). Data also indicate that a cardiomyocyte L-type voltage-gated Ca2+ channel (Cav) subunit (α2δ1) is a GlcNAcT1 target, and Mgat1KO Cav activity is shifted to more-depolarized membrane potentials. Consistently, Mgat1KO cardiomyocyte Ca2+ handling is altered and contraction is dyssynchronous compared with controls. The data demonstrate that reduced hybrid/complex N-glycosylation contributes to aberrant cardiac function at whole-heart and myocyte levels drawing a direct link between altered glycosylation and heart disease. Thus, the Mgat1KO provides a model for investigating the relationship between systemic reductions in glycosylation and cardiac disease, showing that clinically relevant changes in cardiomyocyte hybrid/complex N-glycosylation are sufficient to cause DCM and early death.-Ednie, A. R., Deng, W., Yip, K.-P., Bennett, E. S. Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy.
Collapse
Affiliation(s)
- Andrew R Ednie
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.,College of Science and Mathematics, Wright State University, Dayton, Ohio, USA; and
| | - Wei Deng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.,College of Science and Mathematics, Wright State University, Dayton, Ohio, USA; and
| |
Collapse
|
28
|
Protein N-Glycosylation in Cardiovascular Diseases and Related Risk Factors. CURRENT CARDIOVASCULAR RISK REPORTS 2018. [DOI: 10.1007/s12170-018-0579-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Soboleva A, Schmidt R, Vikhnina M, Grishina T, Frolov A. Maillard Proteomics: Opening New Pages. Int J Mol Sci 2017; 18:E2677. [PMID: 29231845 PMCID: PMC5751279 DOI: 10.3390/ijms18122677] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Protein glycation is a ubiquitous non-enzymatic post-translational modification, formed by reaction of protein amino and guanidino groups with carbonyl compounds, presumably reducing sugars and α-dicarbonyls. Resulting advanced glycation end products (AGEs) represent a highly heterogeneous group of compounds, deleterious in mammals due to their pro-inflammatory effect, and impact in pathogenesis of diabetes mellitus, Alzheimer's disease and ageing. The body of information on the mechanisms and pathways of AGE formation, acquired during the last decades, clearly indicates a certain site-specificity of glycation. It makes characterization of individual glycation sites a critical pre-requisite for understanding in vivo mechanisms of AGE formation and developing adequate nutritional and therapeutic approaches to reduce it in humans. In this context, proteomics is the methodology of choice to address site-specific molecular changes related to protein glycation. Therefore, here we summarize the methods of Maillard proteomics, specifically focusing on the techniques providing comprehensive structural and quantitative characterization of glycated proteome. Further, we address the novel break-through areas, recently established in the field of Maillard research, i.e., in vitro models based on synthetic peptides, site-based diagnostics of metabolism-related diseases (e.g., diabetes mellitus), proteomics of anti-glycative defense, and dynamics of plant glycated proteome during ageing and response to environmental stress.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Rico Schmidt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, 06108 Halle, Germany.
| | - Maria Vikhnina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| |
Collapse
|
30
|
Zhou W, Ma H, Deng G, Tang L, Lu J, Chen X. Clinical significance and biological function of fucosyltransferase 2 in lung adenocarcinoma. Oncotarget 2017; 8:97246-97259. [PMID: 29228607 PMCID: PMC5722559 DOI: 10.18632/oncotarget.21896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022] Open
Abstract
Fucosylation, which is catalyzed by fucosyltransferases (FUTs), is one of the most important glycosylation events involved in cancer. Studies have shown that fucosyltransferase 8 (FUT8) is overexpressed in NSCLC and promotes lung cancer progression. However, there are no reports about the pathological role of fucosyltransferase 2 (FUT2) in lung cancer. To identify FUT2 associated with lung cancer, the expression and clinical significance of FUT2 in lung cancer was investigated by Real-Time PCR, Immunohistochemistry and Western Blot. In addition, we investigated the effect of knockdown FUT2 in lung adenocarcinoma cells. The results showed that the expression of FUT2 in lung adenocarcinoma is higher than that in adjacent noncancerous tissues. Knocking down FUT2 in A549 and H1299 cells decreased cell proliferation, migration and invasion, and increased cell apoptosis compared to corresponding control cells. Furthermore, Western Blot showed that knockdown FUT2 can impact the expression of migration-associated and apoptosis-associated proteins in A549 cells. Our results suggest that FUT2 may be associated with lung adenocarcinoma development and thus is a potential biomarker or/and therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Wenyuan Zhou
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huijun Ma
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Laboratory, Women and Children's Hospital of Qingdao, Qingdao, China
| | - Guoqing Deng
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lili Tang
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianxin Lu
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoming Chen
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Marques-da-Silva D, Francisco R, Webster D, Dos Reis Ferreira V, Jaeken J, Pulinilkunnil T. Cardiac complications of congenital disorders of glycosylation (CDG): a systematic review of the literature. J Inherit Metab Dis 2017; 40:657-672. [PMID: 28726068 DOI: 10.1007/s10545-017-0066-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 01/03/2023]
Abstract
Congenital disorders of glycosylation (CDG) are inborn errors of metabolism due to protein and lipid hypoglycosylation. This rapidly growing family of genetic diseases comprises 103 CDG types, with a broad phenotypic diversity ranging from mild to severe poly-organ -system dysfunction. This literature review summarizes cardiac involvement, reported in 20% of CDG. CDG with cardiac involvement were divided according to the associated type of glycosylation: N-glycosylation, O-glycosylation, dolichol synthesis, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, COG complex, V-ATPase complex, and other glycosylation pathways. The aim of this review was to document and interpret the incidence of heart disease in CDG patients. Heart disorders were grouped into cardiomyopathies, structural defects, and arrhythmogenic disorders. This work may contribute to improved early management of cardiac complications in CDG.
Collapse
Affiliation(s)
- D Marques-da-Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - R Francisco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - D Webster
- Division of Infectious Diseases, Department of Medicine, Saint John Regional Hospital, Dalhousie University, Saint John, NB, Canada
| | - V Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - J Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium
| | - T Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John, NB, E2L 4L5, Canada.
| |
Collapse
|
32
|
Nagai-Okatani C, Kangawa K, Minamino N. Three molecular forms of atrial natriuretic peptides: quantitative analysis and biological characterization. J Pept Sci 2017; 23:486-495. [PMID: 28120499 DOI: 10.1002/psc.2969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/09/2022]
Abstract
Atrial natriuretic peptide (ANP) is primarily produced in the heart tissue and plays a pivotal role in maintaining cardiovascular homeostasis in endocrine and autocrine/paracrine systems and has clinical applications as a biomarker and a therapeutic agent for cardiac diseases. ANP is synthesized by atrial cardiomyocytes as a preprohormone that is processed by a signal peptidase and stored in secretory granules as a prohormone. Subsequent proteolytic processing of ANP by corin during the secretion process results in a bioactive form consisting of 28 amino acid residues. Mechanical stretch of the atrial wall and multiple humoral factors directly stimulates the transcription and secretion of ANP. Secreted ANP elicits natriuretic and diuretic effects via cyclic guanosine monophosphate produced through binding to the guanylyl cyclase-A/natriuretic peptide receptor-A. Circulating ANP is subjected to rapid clearance by a natriuretic peptide receptor-C-mediated mechanism and proteolytic degradation by neutral endopeptidase. In humans, ANP is present as three endogenous molecular forms: bioactive α-ANP, a homodimer of α-ANP designated as β-ANP, and an ANP precursor designated as proANP (also referred to as γ-ANP). The proANP and especially β-ANP, as minor forms in circulation, are notably increased in patients with cardiac diseases, suggesting the utility of monitoring the pathophysiological conditions that result in abnormal proANP processing that cannot be monitored by inactive N-terminal proANP-related fragments. Emerging plate-based sandwich immunoassays for individual quantitation of the three ANP forms enables evaluation of diagnostic implications and net ANP bioactivity. This new tool may provide further understanding in the pathophysiology of cardiac diseases. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
33
|
Halfinger B, Hammerer-Lercher A, Amplatz B, Sarg B, Kremser L, Lindner HH. Unraveling the Molecular Complexity of O-Glycosylated Endogenous (N-Terminal) pro-B-Type Natriuretic Peptide Forms in Blood Plasma of Patients with Severe Heart Failure. Clin Chem 2016; 63:359-368. [PMID: 28062629 DOI: 10.1373/clinchem.2016.265397] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/14/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Currently, N-terminal pro-B-type natriuretic peptide (NT-proBNP) and its physiologically active counterpart, BNP, are most frequently used as biomarkers for diagnosis, prognosis, and disease monitoring of heart failure (HF). Commercial NT-proBNP and BNP immunoassays cross-react to varying degrees with unprocessed proBNP, which is also found in the circulation. ProBNP processing and immunoassay response are related to O-linked glycosylation of NT-proBNP and proBNP. There is a clear and urgent need to identify the glycosylation sites in the endogenously circulating peptides requested by the community to gain further insights into the different naturally occurring forms. METHODS The glycosylation sites of (NT-) proBNP (NT-proBNP and/or proBNP) were characterized in leftovers of heparinized plasma samples of severe HF patients (NT-proBNP: >10000 ng/L) by using tandem immunoaffinity purification, sequential exoglycosidase treatment for glycan trimming, β-elimination and Michael addition chemistry, as well as high-resolution nano-flow liquid chromatography electrospray multistage mass spectrometry. RESULTS We describe 9 distinct glycosylation sites on circulating (NT-) proBNP in HF patients. Differentially glycosylated variants were detected based on highly accurate mass determination and multistage mass spectrometry. Remarkably, for each of the identified proteolytic glycopeptides, a nonglycosylated form also was detectable. CONCLUSIONS Our results directly demonstrate for the first time a rather complex distribution of the endogenously circulating glycoforms by mass spectrometric analysis in HF patients, and show 9 glycosites in human (NT-) proBNP. This information may also have an impact on commercial immunoassays applying antibodies specific for the central region of (NT-) proBNP, which detect mostly nonglycosylated forms.
Collapse
Affiliation(s)
- Bernhard Halfinger
- Division of Clinical Biochemistry and Protein Micro-Analysis Facility, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | - Benno Amplatz
- Division of Clinical Biochemistry and Protein Micro-Analysis Facility, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Bettina Sarg
- Division of Clinical Biochemistry and Protein Micro-Analysis Facility, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry and Protein Micro-Analysis Facility, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert H Lindner
- Division of Clinical Biochemistry and Protein Micro-Analysis Facility, Biocenter, Innsbruck Medical University, Innsbruck, Austria;
| |
Collapse
|