1
|
Sharma AK, Mal S, Sahu SK, Bagchi S, Majumder D, Chakravorty D, Saha S, Kundu M, Basu J. Mycobacterial peptidyl prolyl isomerase A activates STING-TBK1-IRF3 signaling to promote IFNβ release in macrophages. FEBS J 2024. [PMID: 39288201 DOI: 10.1111/febs.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/23/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Peptidyl prolyl isomerases (PPIases) are well-conserved protein-folding enzymes that moonlight as regulators of bacterial virulence. Peptidyl prolyl isomerase A, PPiA (Rv0009) is a secretory protein of Mycobacterium tuberculosis that possesses sequence and structural similarity to eukaryotic cyclophilins. In this study, we validated the interaction of PPiA with stimulator of interferon genes (STING) using both, Escherichia coli-based and mammalian in vitro expression systems. In vitro pull-down assays confirmed that the cytosolic domain of STING interacts with PPiA, and moreover, we found that PPiA could induce dimerization of STING in macrophages. In silico docking analyses suggested that the PXXP (PDP) motif of PPiA is crucial for interaction with STING, and concordantly, mutations in the PDP domain (PPiA MUT-II) abrogated this interaction, as well as the ability of PPiA to facilitate STING dimerization. In agreement with these observations, fluorescence microscopy demonstrated that STING and wild-type PPiA, but not PPiA MUT-II, could colocalize when expressed in HEK293 cells. Highlighting the importance of the PDP domain further, PPiA, but not PPiA MUT-II could activate Tank binding kinase 1 (TBK1)-interferon regulatory factor 3 (IRF3) signaling to promote the release of interferon-beta (IFNβ). PPiA, but not PPiA MUT-II expressed in Mycobacterium smegmatis induced IFNβ release and facilitated bacterial survival in macrophages in a STING-dependent manner. The PPiA-induced release of IFNβ was c-GAS independent. We conclude that PPiA is a previously undescribed mycobacterial regulator of STING-dependent type I interferon production from macrophages.
Collapse
Affiliation(s)
| | - Soumya Mal
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | - Shreya Bagchi
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | | | | - Sudipto Saha
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | - Joyoti Basu
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Mo S, Shen X, Huang B, Wang Y, Lin L, Chen Q, Weng M, Sugasawa T, Gu W, Tsushima Y, Nakajima T. Single-cell dissection, hdWGCNA and deep learning reveal the role of oxidatively stressed plasma cells in ulcerative colitis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1730-1739. [PMID: 37814814 PMCID: PMC10686794 DOI: 10.3724/abbs.2023237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 10/11/2023] Open
Abstract
Ulcerative colitis (UC) develops as a result of complex interactions between various cell types in the mucosal microenvironment. In this study, we aim to elucidate the pathogenesis of ulcerative colitis at the single-cell level and unveil its clinical significance. Using single-cell RNA sequencing and high-dimensional weighted gene co-expression network analysis, we identify a subpopulation of plasma cells (PCs) with significantly increased infiltration in UC colonic mucosa, characterized by pronounced oxidative stress. Combining 10 machine learning approaches, we find that the PC oxidative stress genes accurately distinguish diseased mucosa from normal mucosa (independent external testing AUC=0.991, sensitivity=0.986, specificity=0.909). Using MCPcounter and non-negative matrix factorization, we identify the association between PC oxidative stress genes and immune cell infiltration as well as patient heterogeneity. Spatial transcriptome data is used to verify the infiltration of oxidatively stressed PCs in colitis. Finally, we develop a gene-immune convolutional neural network deep learning model to diagnose UC mucosa in different cohorts (independent external testing AUC=0.984, sensitivity=95.9%, specificity=100%). Our work sheds light on the key pathogenic cell subpopulations in UC and is essential for the development of future clinical disease diagnostic tools.
Collapse
Affiliation(s)
- Shaocong Mo
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghai200040China
| | - Xin Shen
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghai200040China
| | | | - Yulin Wang
- Department of NephrologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Lingxi Lin
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghai200040China
| | - Qiuming Chen
- Department of Thoracic SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Meilin Weng
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Takehito Sugasawa
- Laboratory of Clinical Examination and Sports MedicineDepartment of Clinical MedicineFaculty of MedicineUniversity of TsukubaIbaraki305-8577Japan
| | - Wenchao Gu
- Department of Diagnostic and Interventional RadiologyUniversity of TsukubaIbaraki305-8577Japan
- Department of Diagnostic Radiology and Nuclear MedicineGunma University Graduate School of MedicineMaebashi371-8511Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear MedicineGunma University Graduate School of MedicineMaebashi371-8511Japan
| | - Takahito Nakajima
- Department of Diagnostic and Interventional RadiologyUniversity of TsukubaIbaraki305-8577Japan
| |
Collapse
|
3
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
4
|
M.tb-Rv2462c of Mycobacterium tuberculosis Shows Chaperone-like Activity and Plays a Role in Stress Adaptation and Immunomodulation. BIOLOGY 2022; 12:biology12010069. [PMID: 36671761 PMCID: PMC9855790 DOI: 10.3390/biology12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mycobacterium tuberculosis (M.tb)-encoded factors protect it against host-generated stresses and support its survival in the hostile host environment. M.tb possesses two peptidyl-prolyl cis-trans isomerases and a probable trigger factor encoded by Rv2462c which has an FKBP-like PPIase domain. PPIases are known to assist the folding of peptidyl-prolyl bonds and are involved in various cellular processes important for bacterial survival in host-generated stresses. In this study, we aim to functionally characterize Rv2462c of M.tb. Our data suggest that the trigger factor of M.tb exhibits chaperone activity both in vitro and in vivo. Heterologous expression of M.tb-Rv2462c locus into Mycobacterium smegmatis enhanced its survival within macrophages, adaptation to oxidative stress and biofilm formation. M.tb-trigger factor has strong immunomodulatory potential and modifies the cytokine profile of the host towards the proinflammatory axis.
Collapse
|
5
|
Muruaga EJ, Briones G, Roset MS. Biochemical and functional characterization of Brucella abortus cyclophilins: So similar, yet so different. Front Microbiol 2022; 13:1046640. [DOI: 10.3389/fmicb.2022.1046640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Brucella spp. are the etiological agent of animal and human brucellosis. We have reported previously that cyclophilins of Brucella (CypA and CypB) are upregulated within the intraphagosomal replicative niche and required for stress adaptation and host intracellular survival and virulence. Here, we characterize B. abortus cyclophilins, CypA, and CypB from a biochemical standpoint by studying their PPIase activity, chaperone activity, and oligomer formation. Even though CypA and CypB are very similar in sequence and share identical chaperone and PPIase activities, we were able to identify outstanding differential features between them. A series of differential peptide loops were predicted when comparing CypA and CypB, differences that might explain why specific antibodies (anti-CypA or anti-CypB) were able to discriminate between both cyclophilins without cross-reactivity. In addition, we identified the presence of critical amino acids in CypB, such as the Trp134 which is responsible for the cyclosporin A inhibition, and the Cys128 that leads to CypB homodimer formation by establishing a disulfide bond. Here, we demonstrated that CypB dimer formation was fully required for stress adaptation, survival within HeLa cells, and mouse infection in B. abortus. The presence of Trp134 and the Cys128 in CypB, which are not present in CypA, suggested that two different kinds of cyclophilins have evolved in Brucella, one with eukaryotic features (CypB), another (CypA) with similar features to Gram-negative cyclophilins.
Collapse
|
6
|
Kumawat M, Chaudhary D, Nabi B, Kumar M, Sarma DK, Shubham S, Karuna I, Ahlawat N, Ahlawat S. Purification and characterization of Cyclophilin: a protein associated with protein folding in Salmonella Typhimurium. Arch Microbiol 2021; 203:5509-5517. [PMID: 34417854 DOI: 10.1007/s00203-021-02519-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Salmonella Typhimurium (ST) is a Gram-negative zoonotic pathogenic bacterium that causes infectious disease in humans as well as in animals. It causes foodborne diarrheal or gastrointestinal illness and fever called salmonellosis, which is a leading cause of millions of deaths worldwide. Salmonellaenterica serovar Typhimurium (S. Typhimurium) during its pathogenesis take away the actin cytoskeleton of their host cells and this is the crucial step of its infection cycle. Cyclophilin A, a type of peptidyl-prolyl isomerase that's encoded by the ppiA gene in ST, plays pleiotropic roles in maintaining bacterial physiology. In this investigation, the proteomic characterization of the peptidyl-prolyl cis-trans isomerase- A (Cyclophilin A) from Salmonella Typhimurium is reported. Cyclophilin A (CypA) protein from Salmonella Typhimurium proved to be highly conserved and homologous protein sequence compared to other organisms. This protein was expressed in Escherichia coli followed by its purification in a recombinant form protein exhibited a characteristic PPIases activity (Vmax = 0.8752 ± 0.13892 µmoles/min, Km = 0.9315 ± 0.5670 µM) in comparison to control. The mass spectrometry analysis of Cyp A protein-peptide showed a highest sequence similarity with the cyclophilin protein of Salmonella. PPIases proteins (enzyme) data suggest that Ppi-A has roles in the protein folding that may be contributing to the virulence of Salmonella by isomerization of protein outline. These results suggest an active and vital role of this protein in protein folding along with regulation in Salmonella Typhimurium.
Collapse
Affiliation(s)
- Manoj Kumawat
- Department of Microbiology, ICMR National Institute for Research in Environmental Health, Bhopal, 462030, India.
- Department of Biochemistry and Biochemical Engineering, SHUATS, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India.
| | - Divya Chaudhary
- Department of Biotechnology and Microbiology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Bilkees Nabi
- Department of Biochemistry and Biochemical Engineering, SHUATS, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Manoj Kumar
- Department of Microbiology, ICMR National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Swasti Shubham
- Department of Microbiology, ICMR National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Irungbam Karuna
- Divisions of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 , India
| | - Neeraj Ahlawat
- Department of Animal Husbandry and Dairying, SHUATS, Prayagraj , 211007, India
| | - Sushma Ahlawat
- Department of Biochemistry and Biochemical Engineering, SHUATS, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India.
| |
Collapse
|
7
|
Dubey N, Khan MZ, Kumar S, Sharma A, Das L, Bhaduri A, Singh Y, Nandicoori VK. Mycobacterium tuberculosis PPiA interacts with host integrin receptor to exacerbate disease progression. J Infect Dis 2021; 224:1383-1393. [PMID: 33580239 DOI: 10.1093/infdis/jiab081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/05/2021] [Indexed: 11/14/2022] Open
Abstract
Attenuated intracellular survival of Mycobacterium tuberculosis (Mtb) secretory gene mutants exemplifies their role as virulence factors. Mtb peptidyl prolyl isomerase A (PPiA) assists in protein folding through cis/trans isomerization of prolyl bonds. Here, we show that PPiA abets Mtb survival and aids in the disease progression by exploiting host-associated factors. While the deletion of PPiA has no discernable effect on the bacillary survival in a murine infection model, it compromises the formation of granuloma-like lesions and promotes host cell death through ferroptosis. Overexpression of PPiA enhances the bacillary load and exacerbates pathology in mice lungs. Importantly, PPiA interacts with the integrin α5β1 receptor through a conserved surface-exposed RGD motif. The secretion of PPiA as well as interaction with integrin contributes to the disease progression by upregulating multiple host matrix metalloproteinases. Collectively, we identified a novel non-chaperone role of PPiA that is critical in facilitating host-pathogen interaction ensuing disease progression.
Collapse
Affiliation(s)
- Neha Dubey
- Department of Zoology, University of Delhi, Mall Road, Delhi, India.,Current Department of Molecular Microbiology, WUSTL, St. Louis, USA
| | - Mehak Zahoor Khan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Suresh Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Aditya Sharma
- Department of Zoology, University of Delhi, Mall Road, Delhi, India.,Current Department of Pharmacological and Pharmaceutical Sciences, University of Houston, College of Pharmacy, Texas, USA
| | - Lahari Das
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India.,Current Department of Pharmacological and Pharmaceutical Sciences, University of Houston, College of Pharmacy, Texas, USA
| | - Asani Bhaduri
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India.,Current Cluster Innovation Center, University of Delhi, Mall Road, Delhi, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Mall Road, Delhi, India
| | | |
Collapse
|
8
|
Yang DH, Liu S, Cao L, Zheng YD, Huang JF, Ge R, He QY, Sun X. Quantitative secretome analysis of polymyxin B resistance in Escherichia coli. Biochem Biophys Res Commun 2020; 530:307-313. [PMID: 32828304 DOI: 10.1016/j.bbrc.2020.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/02/2023]
Abstract
Bacterial resistance has become a serious threat to human health. In particular, the gradual development of resistance to polymyxins, the last line of defense for human infections, is a major issue. Secreted proteins contribute to the interactions between bacteria and the environment. In this study, we compared the secretomes of polymyxin B-sensitive and -resistant Escherichia coli strains by data-independent acquisition mass spectrometry. In total, 87 differentially expressed secreted proteins were identified in polymyxin B-resistant E. coli compared to the sensitive strain. A GO enrichment analysis indicated that the differentially expressed proteins were involved in biological processes, including bacterial-type flagellum-dependent cell motility, ion transport, carbohydrate derivative biosynthetic process, cellular response to stimulus, organelle organization, and cell wall organization or biogenesis. The differentially expressed secreted proteins in polymyxin B-resistant bacteria were enriched for multiple pathways, suggesting that the resistance phenotype depends on complex regulatory mechanisms. A potential biomarker or drug target (YebV) was found in polymyxin B-resistant E. coli. This work clarifies the secretome changes associated with the acquisition of polymyxin resistance and may contribute to drug development.
Collapse
Affiliation(s)
- Dong-Hong Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shiqin Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Linlin Cao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yun-Dan Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jian-Fang Huang
- Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632, China
| | - Ruiguang Ge
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Blundell TL, Gupta MN, Hasnain SE. Intrinsic disorder in proteins: Relevance to protein assemblies, drug design and host-pathogen interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 156:34-42. [PMID: 32628954 DOI: 10.1016/j.pbiomolbio.2020.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Intrinsic disorder in proteins resulting in considerable variation in structure can lead to multiple functions including multi-specificity and diverse pathologies. Protein interfaces can involve disordered regions that assemble through a concerted-fold-and-bind mechanism. The binding involves both enthalpic and entropic gains by exploiting 'hot spots' on the partner and displacing water molecules placed in thermodynamically unfavorable situations. The examples of Rad51-BRCA2 and Artemis-DNA-PKCs/LigIV complexes illustrate this in the context of drug design. This overview tracks the seamless involvement of protein disorder in multi-specificity of biocatalysts, protein assembly formations and host-pathogen interactions, where intrinsic disorder can in Mycobacteria, compensate for genome reduction by carrying out multiple functions and in some RNA viruses facilitate adaption to the host. These present challenging opportunities for designing new drugs and interventions.
Collapse
Affiliation(s)
- Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, CB21GA, UK
| | - Munishwar N Gupta
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Seyed E Hasnain
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Prof C.R. Rao Road, Hyderabad, India.
| |
Collapse
|
10
|
Gupta MN, Pandey S, Ehtesham NZ, Hasnain SE. Medical implications of protein moonlighting. Indian J Med Res 2020; 149:322-325. [PMID: 31249195 PMCID: PMC6607823 DOI: 10.4103/ijmr.ijmr_2192_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- M N Gupta
- Former Professor, Department of Chemistry, Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110 016, India
| | - Saurabh Pandey
- Department of Biochemistry, JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110 062, India
| | | | - Seyed E Hasnain
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110 016; JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110 062; Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500 007, Telangana, India
| |
Collapse
|
11
|
Kaushik V, Prasad S, Goel M. Biophysical and biochemical characterization of a thermostable archaeal cyclophilin from Methanobrevibacter ruminantium. Int J Biol Macromol 2019; 139:139-152. [DOI: 10.1016/j.ijbiomac.2019.07.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023]
|
12
|
Keogh RA, Zapf RL, Trzeciak E, Null GG, Wiemels RE, Carroll RK. Novel Regulation of Alpha-Toxin and the Phenol-Soluble Modulins by Peptidyl-Prolyl cis/trans Isomerase Enzymes in Staphylococcus aureus. Toxins (Basel) 2019; 11:toxins11060343. [PMID: 31208155 PMCID: PMC6628628 DOI: 10.3390/toxins11060343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes that catalyze the cis-to-trans isomerization around proline bonds, allowing proteins to fold into their correct confirmation. Previously, we identified two PPIase enzymes in Staphylococcus aureus (PpiB and PrsA) that are involved in the regulation of virulence determinants and have shown that PpiB contributes to S. aureus virulence in a murine abscess model of infection. Here, we further examine the role of these PPIases in S. aureus virulence and, in particular, their regulation of hemolytic toxins. Using murine abscess and systemic models of infection, we show that a ppiB mutant in a USA300 background is attenuated for virulence but that a prsA mutant is not. Deletion of the ppiB gene leads to decreased bacterial survival in macrophages and nasal epithelial cells, while there is no significant difference when prsA is deleted. Analysis of culture supernatants reveals that a ppiB mutant strain has reduced levels of the phenol-soluble modulins and that both ppiB and prsA mutants have reduced alpha-toxin activity. Finally, we perform immunoprecipitation to identify cellular targets of PpiB and PrsA. Results suggest a novel role for PpiB in S. aureus protein secretion. Collectively, our results demonstrate that PpiB and PrsA influence S. aureus toxins via distinct mechanisms, and that PpiB but not PrsA contributes to disease.
Collapse
Affiliation(s)
- Rebecca A Keogh
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Rachel L Zapf
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Emily Trzeciak
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Gillian G Null
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Richard E Wiemels
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
- The Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
13
|
Joseph A, Nagaraja V, Natesh R. Mycobacterial transcript cleavage factor Gre, exhibits chaperone-like activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:757-764. [PMID: 31125617 DOI: 10.1016/j.bbapap.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 02/05/2023]
Abstract
Gre factors reactivate stalled elongation complexes by enhancing the intrinsic transcript cleavage activity of RNA polymerase. Previous work by us has shown that unlike in Escherichia coli (E.coli), Mycobacterium tuberculosis Gre factor is essential for its survival. Apart from their role in transcription regulation Gre factors have been implicated in stress response. A recent study has shown the role of E.coli GreA as a cellular chaperone, which inhibits aggregation of substrate proteins under heat stress condition. Moreover it was shown that GreA enables E.coli to survive heat shock and oxidative stress. In the current work, we have characterized the moonlighting chaperone activity and its plausible mechanism in Mycobacterium smegmatis Gre (MsGre) factor. We show here that MsGre prevents heat-induced aggregation of the substrate protein and also protects enzymatic activity. Interestingly Gre factor exists as a dimer in solution and does not undergo heat induced oligomerization. From the 8-anilino-1-naphthalene sulfonate (ANS) binding studies MsGre was shown to expose hydrophobic surface upon heat stress that would allow binding to unfolded or partially folded substrate protein. From Circular Dichroism (CD) studies, we also show that MsGre has a stable secondary structure under thermal stress. We propose that the presence of C-terminal FKBP-like fold in MsGre factor that might contribute to its chaperone-like function.
Collapse
Affiliation(s)
- Abyson Joseph
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Trivandrum, Kerala 695551, India
| | - Valakunja Nagaraja
- Microbiology and Cell Biology Unit, Indian Institute of Science, Bangalore, Karnataka, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Trivandrum, Kerala 695551, India.
| |
Collapse
|
14
|
Kumar A, Alam A, Grover S, Pandey S, Tripathi D, Kumari M, Rani M, Singh A, Akhter Y, Ehtesham NZ, Hasnain SE. Peptidyl-prolyl isomerase-B is involved in Mycobacterium tuberculosis biofilm formation and a generic target for drug repurposing-based intervention. NPJ Biofilms Microbiomes 2019; 5:3. [PMID: 30675370 PMCID: PMC6333787 DOI: 10.1038/s41522-018-0075-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/15/2018] [Indexed: 01/03/2023] Open
Abstract
Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (M.tb), takes one human life every 15 s globally. Disease relapse occurs due to incomplete clearance of the pathogen and reactivation of the antibiotic tolerant bacilli. M.tb, like other bacterial pathogens, creates an ecosystem of biofilm formed by several proteins including the cyclophilins. We show that the M.tb cyclophilin peptidyl-prolyl isomerase (PpiB), an essential gene, is involved in biofilm formation and tolerance to anti-mycobacterial drugs. We predicted interaction between PpiB and US FDA approved drugs (cyclosporine-A and acarbose) by in-silico docking studies and this was confirmed by surface plasmon resonance (SPR) spectroscopy. While all these drugs inhibited growth of Mycobacterium smegmatis (M.smegmatis) when cultured in vitro, acarbose and cyclosporine-A showed bacteriostatic effect while gallium nanoparticle (GaNP) exhibited bactericidal effect. Cyclosporine-A and GaNP additionally disrupted M.tb H37Rv biofilm formation. Co-culturing M.tb in their presence resulted in significant (2–4 fold) decrease in dosage of anti-tubercular drugs- isoniazid and ethambutol. Comparison of the cyclosporine-A and acarbose binding sites in PpiB homologues of other biofilm forming infectious pathogens revealed that these have largely remained unaltered across bacterial species. Targeting bacterial biofilms could be a generic strategy for intervention against bacterial pathogens. Tuberculosis, caused by Mycobacterium tuberculosis, is the leading cause of death due to a single infectious agent. New therapeutic options are needed, and repurposing clinically approved drugs to destroy biofilms is an attractive approach, as these microbial communities are often less susceptible to antibiotics. A team lead by Seyed Hasnain at the Indian Institute of Technology Delhi identified an enzyme, PpiB, from M. tuberculosis that promoted biofilm formation and showed that PpiB interacts with several drugs that are currently used to treat diabetes, immunological diseases and cancer. These drugs destabilise M. tuberculosis biofilms in culture and enhanced the potency of two current anti-tuberculosis antibiotics. Future work is needed to test these medications against tuberculosis in humans, but given PpiB is found in different bacteria, there may be broader promise of using these repurposed drugs to combat other infections.
Collapse
Affiliation(s)
- Ashutosh Kumar
- 1JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Present Address: Department of Microbiology, Tripura Central University, Suryamaninagar, Agartala, Tripura India
| | - Anwar Alam
- 1JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,2Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Sonam Grover
- 1JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Saurabh Pandey
- 3National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India.,11Present Address: Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Deeksha Tripathi
- 2Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India.,4Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan India
| | - Monika Kumari
- 5Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Himachal Pradesh, India
| | - Mamta Rani
- 6Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India
| | - Aditi Singh
- 7School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Yusuf Akhter
- 8Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Nasreen Z Ehtesham
- 3National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- 1JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,2Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India.,9Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Prof CR Rao Road, Hyderabad, India
| |
Collapse
|
15
|
Agarwal S, Ghosh S, Sharma S, Kaur K, Verma I. Mycobacterium tuberculosis H37Rv expresses differential proteome during intracellular survival within alveolar epithelial cells compared with macrophages. Pathog Dis 2018; 76:5052203. [DOI: 10.1093/femspd/fty058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- S Agarwal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - S Ghosh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - S Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - K Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - I Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
16
|
Kumar A, Alam A, Tripathi D, Rani M, Khatoon H, Pandey S, Ehtesham NZ, Hasnain SE. Protein adaptations in extremophiles: An insight into extremophilic connection of mycobacterial proteome. Semin Cell Dev Biol 2018; 84:147-157. [PMID: 29331642 DOI: 10.1016/j.semcdb.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 02/02/2023]
Abstract
The biological paradox about how extremophiles persist at extreme ecological conditions throws a fascinating picture of the enormous potential of a single cell to adapt to homeostatic conditions in order to propagate. Unicellular organisms face challenges from both environmental factors and the ecological niche provided by the host tissue. Although the existence of extremophiles and their physiological properties were known for a long time, availability of whole genome sequence has catapulted the study on mechanisms of adaptation and the underlying principles that have enabled these unique organisms to withstand evolutionary and environmental pressures. Comparative genomics has shown that extremophiles possess the unique set of genes and proteins that empower them with biochemical machinery necessary to thrive in extreme environments. The presence of these proteins safeguards the cell against a wide array of extreme conditions such as temperature, pressure, radiations, chemicals, drugs etc. An insight into these adaptive mechanisms in extremophiles may help us to devise strategies to alter the genes and proteins that may have therapeutic potential and commercial value. Here we present an overview of the various adaptations in extremophiles. We also try to explain how mycobacterium channelizes its proteome to survive in stress conditions posed by host immune system.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Anwar Alam
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Deeksha Tripathi
- Department of Microbiology, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan, India
| | - Mamta Rani
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India
| | - Hafeeza Khatoon
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Saurabh Pandey
- National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India; JH-Institute of Molecular Medicine, Hamdard Nagar, New Delhi, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.
| |
Collapse
|
17
|
Biofilms: Survival and defense strategy for pathogens. Int J Med Microbiol 2017; 307:481-489. [PMID: 28950999 DOI: 10.1016/j.ijmm.2017.09.016] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 01/20/2023] Open
Abstract
Studies on biofilm related infections are gaining prominence owing to their involvement in majority of clinical infections. Biofilm, considered as a generic mechanism for survival used by pathogenic as well as non-pathogenic microorganisms, involves surface attachment and growth of heterogeneous cells encapsulated within a matrix. The matrix provides ecological niche where partnership of cells endows a community like behaviour that not only enables the cohort to survive local microenvironment stress but also channelizes them to evolve, disseminate and cause resurgence of infections. In this mini-review we highlight the mechanisms used by microbes to develop and sustain biofilms, including the influence of the microbiota. Several strategies to target biofilms have been validated on certain groups of microorganisms and these basically target different stages in the life cycle of biofilm, however comprehensive methods to target microbial biofilms are relatively unknown. In the backdrop of recent reports suggesting that biofilms can harbour multiple species of organisms, we need to relook and devise newer strategies against biofilms. Effective anti-biofilm strategies cannot be confined to a single methodology that can disrupt one pathway but should simultaneously target the various routes adopted by the microorganisms for survival within their ecosystem. An overview of the currently available drugs, their mode of action, genomic targets and translational therapies against biofilm related infection are discussed.
Collapse
|
18
|
Microbial cyclophilins: specialized functions in virulence and beyond. World J Microbiol Biotechnol 2017; 33:164. [PMID: 28791545 DOI: 10.1007/s11274-017-2330-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/05/2017] [Indexed: 01/18/2023]
Abstract
Cyclophilins belong to the superfamily of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8), the enzymes that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Cyclophilins have been extensively studied, since they are involved in multiple cellular processes related to human pathologies, such as neurodegenerative disorders, infectious diseases, and cancer. However, the presence of cyclophilins in all domains of life indicates a broader biological importance. In this mini-review, we summarize current advances in the study of microbial cyclophilins. Apart from their anticipated role in protein folding and chaperoning, cyclophilins are involved in several other biological processes, such as cellular signal transduction, adaptation to stress, control of pathogens virulence, and modulation of host immune response. Since many existing family members do not have well-defined functions and novel ones are being characterized, the requirement for further studies on their biological role and molecular mechanism of action is apparent.
Collapse
|
19
|
Kumar A, Rani M, Ehtesham NZ, Hasnain SE. Commentary: Modification of Host Responses by Mycobacteria. Front Immunol 2017; 8:466. [PMID: 28503174 PMCID: PMC5408012 DOI: 10.3389/fimmu.2017.00466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 01/26/2023] Open
Affiliation(s)
- Ashutosh Kumar
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Mamta Rani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nasreen Z Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India.,Jamia Hamdard, Institute of Molecular Medicine, New Delhi, India.,Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
| |
Collapse
|
20
|
Sharma A, Equbal MJ, Pandey S, Sheikh JA, Ehtesham NZ, Hasnain SE, Chaudhuri TK. Immunodominant protein MIP_05962 from Mycobacterium indicus pranii displays chaperone activity. FEBS J 2017; 284:1338-1354. [PMID: 28296245 DOI: 10.1111/febs.14057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022]
Abstract
Tuberculosis, a contagious disease of infectious origin is currently a major cause of deaths worldwide. Mycobacterium indicus pranii (MIP), a saprophytic nonpathogen and a potent immunomodulator is currently being investigated as an intervention against tuberculosis along with many other diseases with positive outcome. The apparent paradox of multiple chaperones in mycobacterial species and enigma about the cellular functions of the client proteins of these chaperones need to be explored. Chaperones are the known immunomodulators; thus, there is need to exploit the proteome of MIP for identification and characterization of putative chaperones. One of the immunogenic proteins, MIP_05962 is a member of heat shock protein (HSP) 20 family due to the presence of α-crystallin domain, and has amino acid similarity with Mycobacterium lepraeHSP18 protein. The diverse functions of M. lepraeHSP18 in stress conditions implicate MIP_05962 as an important protein that needs to be explored. Biophysical and biochemical characterization of the said protein proved it to be a chaperone. The observations of aggregation prevention and refolding of substrate proteins in the presence of MIP_05962 along with interaction with non-native proteins, surface hydrophobicity, formation of large oligomers, in-vivo thermal rescue of Escherichia coli expressing MIP_05962, enhancing solubility of insoluble protein maltodextrin glucosidase (MalZ) under in-vivo conditions, and thermal stability and reversibility confirmed MIP_05962 as a molecular chaperone.
Collapse
Affiliation(s)
- Ashish Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Md Javed Equbal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Saurabh Pandey
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Javaid A Sheikh
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.,Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
21
|
Pandey S, Tripathi D, Khubaib M, Kumar A, Sheikh JA, Sumanlatha G, Ehtesham NZ, Hasnain SE. Mycobacterium tuberculosis Peptidyl-Prolyl Isomerases Are Immunogenic, Alter Cytokine Profile and Aid in Intracellular Survival. Front Cell Infect Microbiol 2017; 7:38. [PMID: 28261567 PMCID: PMC5310130 DOI: 10.3389/fcimb.2017.00038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/31/2017] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) has two peptidyl-prolyl isomerases (Ppiases) PpiA and PpiB, popularly known as cyclophilin A and cyclophilin B. The role of cyclophilins in processes such as signaling, cell surface recognition, chaperoning, and heat shock response has been well-documented. We present evidence that M. tb Ppiases modulate the host immune response. ELISA results revealed significant presence of antibodies to M. tb Ppiases in patient sera as compared to sera from healthy individuals. Treatment of THP-1 cells with increasing concentrations of rPpiA, induced secretion of pro-inflammatory cytokines TNF-α and IL-6. Alternatively, treatment with rPpiB inhibited secretion of TNF-α and induced secretion of IL-10. Furthermore, heterologous expression of M. tb PpiA and PpiB in Mycobacterium smegmatis increased bacterial survival in THP-1 cells as compared to those transformed with the vector control. Our results demonstrate that M. tb Ppiases are immunogenic proteins that can possibly modulate host immune response and enhance persistence of the pathogen within the host by subverting host cell generated stresses.
Collapse
Affiliation(s)
- Saurabh Pandey
- Inflammation Biology and Cell Signaling Laboratory, National Institute of PathologyNew Delhi, India; Department of Biology, Dr. Reddy's Institute of Life Sciences, University of HyderabadHyderabad, India
| | - Deeksha Tripathi
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology New Delhi, India
| | - Mohd Khubaib
- Inflammation Biology and Cell Signaling Laboratory, National Institute of PathologyNew Delhi, India; Department of Biology, Dr. Reddy's Institute of Life Sciences, University of HyderabadHyderabad, India
| | - Ashutosh Kumar
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology New Delhi, India
| | - Javaid A Sheikh
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology New Delhi, India
| | | | - Nasreen Z Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of TechnologyNew Delhi, India; Bhagwan Mahavir Medical Research CentreHyderabad, India; Jamia Hamdard, Institute of Molecular MedicineNew Delhi, India
| |
Collapse
|