1
|
Visvanathan R, Utsuki T, Beck DE, Clayton WB, Lendy E, Sun KL, Liu Y, Hering KW, Mesecar A, Zhang ZY, Putt KS. A novel micellular fluorogenic substrate for quantitating the activity of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma (PLCγ) enzymes. PLoS One 2024; 19:e0299541. [PMID: 38551930 PMCID: PMC10980208 DOI: 10.1371/journal.pone.0299541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/12/2024] [Indexed: 04/01/2024] Open
Abstract
The activities of the phospholipase C gamma (PLCγ) 1 and 2 enzymes are essential for numerous cellular processes. Unsurprisingly, dysregulation of PLCγ1 or PLCγ2 activity is associated with multiple maladies including immune disorders, cancers, and neurodegenerative diseases. Therefore, the modulation of either of these two enzymes has been suggested as a therapeutic strategy to combat these diseases. To aid in the discovery of PLCγ family enzyme modulators that could be developed into therapeutic agents, we have synthesized a high-throughput screening-amenable micellular fluorogenic substrate called C16CF3-coumarin. Herein, the ability of PLCγ1 and PLCγ2 to enzymatically process C16CF3-coumarin was confirmed, the micellular assay conditions were optimized, and the kinetics of the reaction were determined. A proof-of-principle pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed. This new substrate allows for an additional screening methodology to identify modulators of the PLCγ family of enzymes.
Collapse
Affiliation(s)
- Ramya Visvanathan
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Tadanobu Utsuki
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
| | - Daniel E. Beck
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
| | - W. Brent Clayton
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Emma Lendy
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States of America
| | - Kuai-lin Sun
- Cayman Chemical Company, Ann Arbor, MI, United States of America
| | - Yinghui Liu
- Cayman Chemical Company, Ann Arbor, MI, United States of America
| | - Kirk W. Hering
- Cayman Chemical Company, Ann Arbor, MI, United States of America
| | - Andrew Mesecar
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States of America
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Karson S. Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
- IUSM-Purdue TREAT-AD Center, West Lafayette, IN, United States of America
| |
Collapse
|
2
|
Visvanathan R, Utsuki T, Beck DE, Lendy E, Sun KL, Liu Y, Hering KW, Mesecar A, Zhang ZY, Putt KS. A novel fluorogenic reporter substrate for 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (PLCγ2): Application to high-throughput screening for activators to treat Alzheimer's disease. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:S2472-5552(23)00024-2. [PMID: 36933698 DOI: 10.1016/j.slasd.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
A rare coding variant in PLCγ2 (P522R) expressed in microglia induces a mild activation of enzymatic activity when compared to wild-type. This mutation is reported to be protective against the cognitive decline associated with late-onset Alzheimer's disease (LOAD) and therefore, activation of wild-type PLCγ2 has been suggested as a potential therapeutic target for the prevention and treatment of LOAD. Additionally, PLCγ2 has been associated with other diseases such as cancer and some autoimmune disorders where mutations with much greater increases in PLCγ2 activity have been identified. Here, pharmacological inhibition may provide a therapeutic effect. In order to facilitate our investigation of the activity of PLCγ2, we developed an optimized fluorogenic substrate to monitor enzymatic activity in aqueous solution. This was accomplished by first exploring the spectral properties of various "turn-on" fluorophores. The most promising turn-on fluorophore was incorporated into a water-soluble PLCγ2 reporter substrate, which we named C8CF3-coumarin. The ability of PLCγ2 to enzymatically process C8CF3-coumarin was confirmed, and the kinetics of the reaction were determined. Reaction conditions were optimized to identify small molecule activators, and a pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed with the goal of identifying small molecule activators of PLCγ2. The optimized screening conditions allowed identification of potential PLCγ2 activators and inhibitors, thus demonstrating the feasibility of this approach for high-throughput screening.
Collapse
Affiliation(s)
- Ramya Visvanathan
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Tadanobu Utsuki
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA
| | - Daniel E Beck
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA
| | - Emma Lendy
- IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kuai-Lin Sun
- Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Yinghui Liu
- Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Kirk W Hering
- Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Andrew Mesecar
- IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA.
| |
Collapse
|
3
|
Li K, Ran B, Wang Y, Liu L, Li W. PLCγ2 impacts microglia-related effectors revealing variants and pathways important in Alzheimer’s disease. Front Cell Dev Biol 2022; 10:999061. [PMID: 36147734 PMCID: PMC9485805 DOI: 10.3389/fcell.2022.999061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease mainly characterized by memory loss and cognitive decline. The etiology of AD is complex and remains incompletely understood. In recent years, genome-wide association studies (GWAS) have increasingly highlighted the central role of microglia in AD pathology. As a trans-membrane receptor specifically present on the microglia in the central nervous system, phosphatidylinositol-specific phospholipase C gamma 2 (PLCγ2) plays an important role in neuroinflammation. GWAS data and corresponding pathological research have explored the effects of PLCG2 variants on amyloid burden and tau pathologies that underline AD. The link between PLCγ2 and other AD-related effectors in human and mouse microglia has also been established, placing PLCγ2 downstream of the triggering receptor expressed on myeloid cells 2 (TREM2), toll-like receptor 4 (TLR4), Bruton’s tyrosine kinase (BTK), and colony-stimulating factor 1 receptor (CSF1R). Because the research on PLCγ2’s role in AD is still in its early stages, few articles have been published, therefore in this paper, we integrate the relevant research published to date, review the structural features, expression patterns, and related pathways of PLCγ2, and summarize the recent studies on important PLCG2 variants related to AD. Furthermore, the possibility and challenge of using PLCγ2 to develop therapeutic drugs for AD are also discussed.
Collapse
|
4
|
Jackson JT, Mulazzani E, Nutt SL, Masters SL. The role of PLCγ2 in immunological disorders, cancer, and neurodegeneration. J Biol Chem 2021; 297:100905. [PMID: 34157287 PMCID: PMC8318911 DOI: 10.1016/j.jbc.2021.100905] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Phosphatidylinositol-specific phospholipase Cγ2 (PLCγ2) is a critical signaling molecule activated downstream from a variety of cell surface receptors that contain an intracellular immunoreceptor tyrosine-based activation motif. These receptors recruit kinases such as Syk, BTK, and BLNK to phosphorylate and activate PLCγ2, which then generates 1D-myo-inositol 1,4,5-trisphosphate and diacylglycerol. These well-known second messengers are required for diverse membrane functionality including cellular proliferation, endocytosis, and calcium flux. As a result, PLCγ2 dysfunction is associated with a variety of diseases including cancer, neurodegeneration, and immune disorders. The diverse pathologies associated with PLCγ2 are exemplified by distinct genetic variants. Inherited mutations at this locus cause PLCγ2-associated antibody deficiency and immune dysregulation, in some cases with autoinflammation. Acquired mutations at this locus, which often arise as a result of BTK inhibition to treat chronic lymphocytic leukemia, result in constitutive downstream signaling and lymphocyte proliferation. Finally, a third group of PLCγ2 variants actually has a protective effect in a variety of neurodegenerative disorders, presumably by increased uptake and degradation of deleterious neurological aggregates. Therefore, manipulating PLCγ2 activity either up or down could have therapeutic benefit; however, we require a better understanding of the signaling pathways propagated by these variants before such clinical utility can be realized. Here, we review the signaling roles of PLCγ2 in hematopoietic cells to help understand the effect of mutations driving immune disorders and cancer and extrapolate from this to roles which may relate to protection against neurodegeneration.
Collapse
Affiliation(s)
- Jacob T Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Elisabeth Mulazzani
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen L Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Zhao Y, Lu F, Ye J, Ji M, Pang Y, Wang Y, Wang L, Li G, Sun T, Li J, Ma D, Ji C. Myeloid-Derived Suppressor Cells and γδT17 Cells Contribute to the Development of Gastric MALT Lymphoma in H. felis-Infected Mice. Front Immunol 2020; 10:3104. [PMID: 32063899 PMCID: PMC6998799 DOI: 10.3389/fimmu.2019.03104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/19/2019] [Indexed: 01/15/2023] Open
Abstract
Helicobacter-induced chronic inflammation and immune disorders are closely associated with the development of gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Myeloid-derived suppressor cells (MDSCs) exhibit strong immunosuppressive properties and promote the growth of various solid tumors. However, the role of MDSCs in the development of MALT lymphoma has not been elucidated so far. We detected significant infiltration and enrichment of MDSCs in patients with MALT lymphoma, as well in Helicobacter felis-infected mouse model of gastric MALT lymphoma. In addition, the expression of arginase-1 and inducible nitric oxide synthase was significantly elevated both in gastric MALT lymphoma tissues and H. felis-infected stomach. Persistent H. felis infection closely reproduced the development of gastric MALT lymphoma and was accompanied by increased numbers of γδT17 cells. Accumulation of γδT17 cells was also validated in the human gastric MALT lymphoma tissues. Furthermore, the elevated cytokines interleukin-23 and interleukin-1β, as well as chemokines CCL20/CCR6, may be involved in the accumulation of γδT17 cells and the subsequent immunosuppression. These findings highlight the role of MDSCs and γδT17 cells in immune dysregulation during gastric MALT lymphoma development and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yanan Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Min Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Yihua Pang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Wang
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Lingbo Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, Medicine School of Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
6
|
Kang W, Sun T, Tang D, Zhou J, Feng Q. Time-Course Transcriptome Analysis of Gingiva-Derived Mesenchymal Stem Cells Reveals That Fusobacterium nucleatum Triggers Oncogene Expression in the Process of Cell Differentiation. Front Cell Dev Biol 2020; 7:359. [PMID: 31993418 PMCID: PMC6970952 DOI: 10.3389/fcell.2019.00359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
Fusobacterium nucleatum has pathogenic effects on oral squamous cell carcinoma and colon cancer, while the effects of continuously altered gene expression in normal human cells, as induced by persistent exposure to F. nucleatum, remain unclear. In this study, a microarray Significant Profiles (maSigPro) analysis was used to obtain the transcriptome profile of gingiva-derived mesenchymal stem cells (GMSCs) stimulated by F. nucleatum for 3, 7, 14, and 21 day, and the results revealed 790 (nine clusters) differentially expressed genes (DEGs), which were significantly enriched in cell adherens junctions and cancer-related pathways. On the basis of a short time-series expression miner (STEM) analysis, all the expressed genes in the GMSCs were grouped into 50 clusters according to dynamic gene expression patterns, and the expression levels of three gene clusters in the F. nucleatum-treated GMSCs were significantly different than the predicted values. Among the 790 DEGs, 50 tumor-associated genes (TAGs; such as L3MBTL4, CD163, CCCND2, CADM1, BCL7A, and IGF1) and five core dynamic DEGs (PLCG2, CHI3L2, L3MBTL4, SH2D2A, and NLRP3) were identified during F. nucleatum stimulation. Results from a GeneMANIA database analysis showed that PLCG2, CHI3L2, SH2D2A, and NLRP3 and 20 other proteins formed a complex network of which 12 genes were enriched in cancer-related pathways. Based on the five core dynamic DEGs, the related microRNAs (miRNAs) and transcription factors (TFs) were obtained from public resources, and an integrated network composed of the related TFs, miRNAs, and mRNAs was constructed. The results indicated that these genes were regulated by several miRNAs, such as miR-372-3p, miR-603, and miR-495-3p, and several TFs, including CREB3, GATA2, and SOX4. Our study suggests that long-term stimulation by F. nucleatum may trigger the expression of cancer-related genes in normal gingiva-derived stem cells.
Collapse
Affiliation(s)
- Wenyan Kang
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University, Jinan, China
| | - Tianyong Sun
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Di Tang
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jiannan Zhou
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
7
|
De Witte C, Schulz C, Smet A, Malfertheiner P, Haesebrouck F. Other Helicobacters and gastric microbiota. Helicobacter 2016; 21 Suppl 1:62-8. [PMID: 27531542 DOI: 10.1111/hel.12343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article aimed to review the literature from 2015 dealing with gastric and enterohepatic non-Helicobacter pylori Helicobacter species (NHPH). A summary of the gastric microbiota interactions with H. pylori is also presented. An extensive number of studies were published during the last year and have led to a better understanding of the pathogenesis of infections with NHPH. These infections are increasingly reported in human patients, including infections with H. cinaedi, mainly characterized by severe bacteremia. Whole-genome sequencing appears to be the most reliable technique for identification of NHPH at species level. Presence of NHPH in laboratory animals may influence the outcome of experiments, making screening and eradication desirable. Vaccination based on UreB proteins or bacterial lysate with CCR4 antagonists as well as oral glutathione supplementation may be promising strategies to dampen the pathogenic effects associated with gastric NHPH infections. Several virulent factors such as outer membrane proteins, phospholipase C-gamma 2, Bak protein, and nickel-binding proteins are associated with colonization of the gastric mucosae and development of gastritis. The development of high-throughput sequencing has led to new insights in the gastric microbiota composition and its interaction with H. pylori. Alterations in the gastric microbiota caused by the pH-increasing effect of a H. pylori infection may increase the risk for gastric cancer.
Collapse
Affiliation(s)
- Chloë De Witte
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, otto-von-Guericke University, Magdeburg, Germany
| | - Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, otto-von-Guericke University, Magdeburg, Germany
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
van Krieken JH. New developments in the pathology of malignant lymphoma. A review of the literature published from January-April 2016. J Hematop 2016; 9:73-83. [PMID: 27398102 PMCID: PMC4912577 DOI: 10.1007/s12308-016-0277-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- J Han van Krieken
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|