1
|
Yadav SA, Khatri D, Soni A, Khetan N, Athale CA. Wave-like oscillations of clamped microtubules driven by collective dynein transport. Biophys J 2024; 123:509-524. [PMID: 38258292 PMCID: PMC10912927 DOI: 10.1016/j.bpj.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Microtubules (MTs) are observed to move and buckle driven by ATP-dependent molecular motors in both mitotic and interphasic eukaryotic cells as well as in specialized structures such as flagella and cilia with a stereotypical geometry. In previous work, clamped MTs driven by a few kinesin motors were seen to buckle and occasionally flap in what was referred to as flagella-like motion. Theoretical models of active-filament dynamics and a following force have predicted that, with sufficient force and binding-unbinding, such clamped filaments should spontaneously undergo periodic buckling oscillations. However, a systematic experimental test of the theory and reconciliation to a model was lacking. Here, we have engineered a minimal system of MTs clamped at their plus ends and transported by a sheet of dynein motors that demonstrate the emergence of spontaneous traveling-wave oscillations along single filaments. The frequencies of tip oscillations are in the millihertz range and are statistically indistinguishable in the onset and recovery phases. We develop a 2D computational model of clamped MTs binding and unbinding stochastically to motors in a "gliding-assay" geometry. The simulated MTs oscillate with a frequency comparable to experiment. The model predicts the effect of MT length and motor density on qualitative transitions between distinct phases of flapping, regular oscillations, and looping. We develop an effective "order parameter" based on the relative deflection along the filament and orthogonal to it. The transitions predicted in simulations are validated by experimental data. These results demonstrate a role for geometry, MT buckling, and collective molecular motor activity in the emergence of oscillatory dynamics.
Collapse
Affiliation(s)
| | | | - Aman Soni
- Division of Biology, IISER Pune, Pune, India
| | - Neha Khetan
- Division of Biology, IISER Pune, Pune, India
| | | |
Collapse
|
2
|
Wenger J, Brigante A, Fernández Casafuz AB, Bruno L, Monastra A. Inference of the force pattern acting on a semiflexible filament from shape analysis. Phys Rev E 2023; 108:064402. [PMID: 38243502 DOI: 10.1103/physreve.108.064402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/06/2023] [Indexed: 01/21/2024]
Abstract
The study of the active forces acting on semiflexible filaments networks such as the cytoskeleton requires noninvasive tools able to explore the deformation of single filaments in their natural environment. We propose here a practical method based on the solution of the hydrodynamic beam equation in the presence of transverse forces. We found that the derivative of the local curvature presents discontinuities that match the location of the applied forces, in contrast to the smooth curvature function obtained for the case of compressing longitudinal forces. These patterns can be easily appreciated in a kymograph of the curvature, which also reflects the temporal behavior of the forces. We assessed the method performance with numerical simulations describing the deformation of single microtubules provoked by the action of intracellular active forces.
Collapse
Affiliation(s)
- Julieta Wenger
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, C1428EGA Buenos Aires, Argentina
| | - Azul Brigante
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, C1428EGA Buenos Aires, Argentina
| | - Agustina B Fernández Casafuz
- Universidad de Buenos Aires, Instituto de Cálculo (IC), C1428EGA Buenos Aires, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD Buenos Aires, Argentina
| | - Luciana Bruno
- Universidad de Buenos Aires, Instituto de Cálculo (IC), C1428EGA Buenos Aires, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD Buenos Aires, Argentina
| | - Alejandro Monastra
- Universidad Nacional de General Sarmiento, Instituto de Ciencias, B1613 Los Polvorines, Buenos Aires, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD Buenos Aires, Argentina
| |
Collapse
|
3
|
Hoshino A, Clemente V, Shetty M, Castle B, Odde D, Bazzaro M. The microtubule-severing protein UNC-45A preferentially binds to curved microtubules and counteracts the microtubule-straightening effects of Taxol. J Biol Chem 2023; 299:105355. [PMID: 37858676 PMCID: PMC10654038 DOI: 10.1016/j.jbc.2023.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Uncoordinated protein 45A (UNC-45A) is the only known ATP-independent microtubule (MT)-severing protein. Thus, it severs MTs via a novel mechanism. In vitro and in cells, UNC-45A-mediated MT severing is preceded by the appearance of MT bends. While MTs are stiff biological polymers, in cells, they often curve, and the result of this curving can be breaking off. The contribution of MT-severing proteins on MT lattice curvature is largely undefined. Here, we show that UNC-45A curves MTs. Using in vitro biophysical reconstitution and total internal fluorescence microscopy analysis, we show that UNC-45A is enriched in the areas where MTs are curved versus the areas where MTs are straight. In cells, we show that UNC-45A overexpression increases MT curvature and its depletion has the opposite effect. We also show that this effect occurs is independent of actomyosin contractility. Lastly, we show for the first time that in cells, Paclitaxel straightens MTs, and that UNC-45A can counteracts the MT-straightening effects of the drug.
Collapse
Affiliation(s)
- Asumi Hoshino
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Valentino Clemente
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Castle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
4
|
Tagay Y, Kheirabadi S, Ataie Z, Singh RK, Prince O, Nguyen A, Zhovmer AS, Ma X, Sheikhi A, Tsygankov D, Tabdanov ED. Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302229. [PMID: 37726225 PMCID: PMC10625109 DOI: 10.1002/advs.202302229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/20/2023] [Indexed: 09/21/2023]
Abstract
The principal cause of death in cancer patients is metastasis, which remains an unresolved problem. Conventionally, metastatic dissemination is linked to actomyosin-driven cell locomotion. However, the locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, a complementary mechanism of metastatic locomotion powered by dynein-generated forces is identified. These forces arise within a non-stretchable microtubule network and drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. It is also shown that the dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network formed by spatially confining granular hydrogel scaffolds (GHS) made up of microscale hydrogel particles (microgels). These results indicate that the complementary motricity mediated by dynein is always necessary and, in certain instances, sufficient for disseminating metastatic breast cancer cells. These findings advance the fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.
Collapse
Affiliation(s)
- Yerbol Tagay
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Sina Kheirabadi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Zaman Ataie
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Rakesh K. Singh
- Department of Obstetrics & GynecologyGynecology OncologyUniversity of Rochester Medical CenterRochesterNY14642USA
| | - Olivia Prince
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Xuefei Ma
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Amir Sheikhi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Erdem D. Tabdanov
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
- Penn State Cancer InstitutePenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| |
Collapse
|
5
|
Hoshino A, Clemente V, Shetty M, Castle B, Odde D, Bazzaro M. The Microtubule Severing Protein UNC-45A Counteracts the Microtubule Straightening Effects of Taxol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557417. [PMID: 37745537 PMCID: PMC10515786 DOI: 10.1101/2023.09.12.557417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
UNC-45A is the only known ATP-independent microtubule (MT) severing protein. Thus, it severs MTs via a novel mechanism. In vitro and in cells UNC-45A-mediated MT severing is preceded by the appearance of MT bends. While MTs are stiff biological polymers, in cells, they often curve, and the result of this curving can be breaking off. The contribution of MT severing proteins on MT lattice curvature is largely undefined. Here we show that UNC-45A curves MTs. Using in vitro biophysical reconstitution and TIRF microscopy analysis, we show that UNC-45A is enriched in the areas where MTs are curved versus the areas where MTs are straight. In cells, we show that UNC-45A overexpression increases MT curvature and its depletion has the opposite effect. We also show that this effect occurs is independent of actomyosin contractility. Lastly, we show for the first time that in cells, Paclitaxel straightens MTs, and that UNC-45A can counteracts the MT straightening effects of the drug. Significance: Our findings reveal for the first time that UNC-45A increases MT curvature. This hints that UNC-45A-mediated MT severing could be due to the worsening of MT curvature and provide a mechanistic understanding of how this MT-severing protein may act. UNC-45A is the only MT severing protein expressed in human cancers, including paclitaxel-resistant ovarian cancer. Our finding that UNC-45A counteracts the paclitaxel-straightening effects of MTs in cells suggests an additional mechanism through which cancer cells escape drug treatment.
Collapse
|
6
|
Soppina P, Patel N, Shewale DJ, Rai A, Sivaramakrishnan S, Naik PK, Soppina V. Kinesin-3 motors are fine-tuned at the molecular level to endow distinct mechanical outputs. BMC Biol 2022; 20:177. [PMID: 35948971 PMCID: PMC9364601 DOI: 10.1186/s12915-022-01370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kinesin-3 family motors drive diverse cellular processes and have significant clinical importance. The ATPase cycle is integral to the processive motility of kinesin motors to drive long-distance intracellular transport. Our previous work has demonstrated that kinesin-3 motors are fast and superprocessive with high microtubule affinity. However, chemomechanics of these motors remain poorly understood. RESULTS We purified kinesin-3 motors using the Sf9-baculovirus expression system and demonstrated that their motility properties are on par with the motors expressed in mammalian cells. Using biochemical analysis, we show for the first time that kinesin-3 motors exhibited high ATP turnover rates, which is 1.3- to threefold higher compared to the well-studied kinesin-1 motor. Remarkably, these ATPase rates correlate to their stepping rate, suggesting a tight coupling between chemical and mechanical cycles. Intriguingly, kinesin-3 velocities (KIF1A > KIF13A > KIF13B > KIF16B) show an inverse correlation with their microtubule-binding affinities (KIF1A < KIF13A < KIF13B < KIF16B). We demonstrate that this differential microtubule-binding affinity is largely contributed by the positively charged residues in loop8 of the kinesin-3 motor domain. Furthermore, microtubule gliding and cellular expression studies displayed significant microtubule bending that is influenced by the positively charged insert in the motor domain, K-loop, a hallmark of kinesin-3 family. CONCLUSIONS Together, we propose that a fine balance between the rate of ATP hydrolysis and microtubule affinity endows kinesin-3 motors with distinct mechanical outputs. The K-loop, a positively charged insert in the loop12 of the kinesin-3 motor domain promotes microtubule bending, an interesting phenomenon often observed in cells, which requires further investigation to understand its cellular and physiological significance.
Collapse
Affiliation(s)
- Pushpanjali Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.,Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa, 768019, India
| | - Nishaben Patel
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, 55455, USA
| | - Dipeshwari J Shewale
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Ashim Rai
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, 55455, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, 55455, USA
| | - Pradeep K Naik
- Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa, 768019, India
| | - Virupakshi Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
7
|
Budaitis BG, Badieyan S, Yue Y, Blasius TL, Reinemann DN, Lang MJ, Cianfrocco MA, Verhey KJ. A kinesin-1 variant reveals motor-induced microtubule damage in cells. Curr Biol 2022; 32:2416-2429.e6. [PMID: 35504282 PMCID: PMC9993403 DOI: 10.1016/j.cub.2022.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Kinesins drive the transport of cellular cargoes as they walk along microtubule tracks; however, recent work has suggested that the physical act of kinesins walking along microtubules can stress the microtubule lattice. Here, we describe a kinesin-1 KIF5C mutant with an increased ability to generate damage sites in the microtubule lattice as compared with the wild-type motor. The expression of the mutant motor in cultured cells resulted in microtubule breakage and fragmentation, suggesting that kinesin-1 variants with increased damage activity would have been selected against during evolution. The increased ability to damage microtubules is not due to the enhanced motility properties of the mutant motor, as the expression of the kinesin-3 motor KIF1A, which has similar single-motor motility properties, also caused increased microtubule pausing, bending, and buckling but not breakage. In cells, motor-induced microtubule breakage could not be prevented by increased α-tubulin K40 acetylation, a post-translational modification known to increase microtubule flexibility. In vitro, lattice damage induced by wild-type KIF5C was repaired by soluble tubulin and resulted in increased rescues and overall microtubule growth, whereas lattice damage induced by the KIF5C mutant resulted in larger repair sites that made the microtubule vulnerable to breakage and fragmentation when under mechanical stress. These results demonstrate that kinesin-1 motility causes defects in and damage to the microtubule lattice in cells. While cells have the capacity to repair lattice damage, conditions that exceed this capacity result in microtubule breakage and fragmentation and may contribute to human disease.
Collapse
Affiliation(s)
- Breane G Budaitis
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Somayesadat Badieyan
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Yue
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - T Lynne Blasius
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana N Reinemann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - Michael A Cianfrocco
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Birnbaum A, Sodders M, Bouska M, Chang K, Kang P, McNeill E, Bai H. FOXO Regulates Neuromuscular Junction Homeostasis During Drosophila Aging. Front Aging Neurosci 2021; 12:567861. [PMID: 33584240 PMCID: PMC7874159 DOI: 10.3389/fnagi.2020.567861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
The transcription factor foxo is a known regulator of lifespan extension and tissue homeostasis. It has been linked to the maintenance of neuronal processes across many species and has been shown to promote youthful characteristics by regulating cytoskeletal flexibility and synaptic plasticity at the neuromuscular junction (NMJ). However, the role of foxo in aging neuromuscular junction function has yet to be determined. We profiled adult Drosophila foxo- null mutant abdominal ventral longitudinal muscles and found that young mutants exhibited morphological profiles similar to those of aged wild-type flies, such as larger bouton areas and shorter terminal branches. We also observed changes to the axonal cytoskeleton and an accumulation of late endosomes in foxo null mutants and motor neuron-specific foxo knockdown flies, similar to those of aged wild-types. Motor neuron-specific overexpression of foxo can delay age-dependent changes to NMJ morphology, suggesting foxo is responsible for maintaining NMJ integrity during aging. Through genetic screening, we identify several downstream factors mediated through foxo-regulated NMJ homeostasis, including genes involved in the MAPK pathway. Interestingly, the phosphorylation of p38 was increased in the motor neuron-specific foxo knockdown flies, suggesting foxo acts as a suppressor of p38/MAPK activation. Our work reveals that foxo is a key regulator for NMJ homeostasis, and it may maintain NMJ integrity by repressing MAPK signaling.
Collapse
Affiliation(s)
- Allison Birnbaum
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States.,Department of Cell, Developmental and Integrative Biology, University of Alabama Birmingham, Birmingham, AL, United States
| | - Maggie Sodders
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Mark Bouska
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kai Chang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Ping Kang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Elizabeth McNeill
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Apparent stiffness of vimentin intermediate filaments in living cells and its relation with other cytoskeletal polymers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118726. [PMID: 32320724 DOI: 10.1016/j.bbamcr.2020.118726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
The cytoskeleton is a complex network of interconnected biopolymers intimately involved in the generation and transmission of forces. Several mechanical properties of microtubules and actin filaments have been extensively explored in cells. In contrast, intermediate filaments (IFs) received comparatively less attention despite their central role in defining cell shape, motility and adhesion during physiological processes as well as in tumor progression. Here, we explored relevant biophysical properties of vimentin IFs in living cells combining confocal microscopy and a filament tracking routine that allows localizing filaments with ~20 nm precision. A Fourier-based analysis showed that IFs curvatures followed a thermal-like behavior characterized by an apparent persistence length (lp*) similar to that measured in aqueous solution. Additionally, we determined that certain perturbations of the cytoskeleton affect lp* and the lateral mobility of IFs as assessed in cells in which either the microtubule dynamic instability was reduced or actin filaments were partially depolymerized. Our results provide relevant clues on how vimentin IFs mechanically couple with microtubules and actin filaments in cells and support a role of this network in the response to mechanical stress.
Collapse
|
10
|
Drechsler M, Lang LF, Al-Khatib L, Dirks H, Burger M, Schönlieb CB, Palacios IM. Optical flow analysis reveals that Kinesin-mediated advection impacts the orientation of microtubules in the Drosophila oocyte. Mol Biol Cell 2020; 31:1246-1258. [PMID: 32267197 PMCID: PMC7353148 DOI: 10.1091/mbc.e19-08-0440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The orientation of microtubule (MT) networks is exploited by motors to deliver cargoes to specific intracellular destinations and is thus essential for cell polarity and function. Reconstituted in vitro systems have largely contributed to understanding the molecular framework regulating the behavior of MT filaments. In cells, however, MTs are exposed to various biomechanical forces that might impact on their orientation, but little is known about it. Oocytes, which display forceful cytoplasmic streaming, are excellent model systems to study the impact of motion forces on cytoskeletons in vivo. Here we implement variational optical flow analysis as a new approach to analyze the polarity of MTs in the Drosophila oocyte, a cell that displays distinct Kinesin-dependent streaming. After validating the method as robust for describing MT orientation from confocal movies, we find that increasing the speed of flows results in aberrant plus end growth direction. Furthermore, we find that in oocytes where Kinesin is unable to induce cytoplasmic streaming, the growth direction of MT plus ends is also altered. These findings lead us to propose that cytoplasmic streaming - and thus motion by advection – contributes to the correct orientation of MTs in vivo. Finally, we propose a possible mechanism for a specialized cytoplasmic actin network (the actin mesh) to act as a regulator of flow speeds to counteract the recruitment of Kinesin to MTs.
Collapse
Affiliation(s)
- Maik Drechsler
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.,Department of Zoology and Developmental Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Lukas F Lang
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Layla Al-Khatib
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Hendrik Dirks
- Institute for Computational and Applied Mathematics, University of Münster, 48149 Münster, Germany
| | - Martin Burger
- Department of Mathematics, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Carola-Bibiane Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Isabel M Palacios
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| |
Collapse
|
11
|
Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn-Ng I, Le Bail R, Shilian M, Freeman S, Magiera MM, Jijumon AS, Krusy N, Malgrange B, Brone B, Dietrich P, Dragatsis I, Janke C, Saudou F, Weil M, Nguyen L. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. SCIENCE ADVANCES 2019; 5:eaax2705. [PMID: 31897425 PMCID: PMC6920029 DOI: 10.1126/sciadv.aax2705] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/28/2019] [Indexed: 05/13/2023]
Abstract
Microtubules are polymerized dimers of α- and β-tubulin that underlie a broad range of cellular activities. Acetylation of α-tubulin by the acetyltransferase ATAT1 modulates microtubule dynamics and functions in neurons. However, it remains unclear how this enzyme acetylates microtubules over long distances in axons. Here, we show that loss of ATAT1 impairs axonal transport in neurons in vivo, and cell-free motility assays confirm a requirement of α-tubulin acetylation for proper bidirectional vesicular transport. Moreover, we demonstrate that the main cellular pool of ATAT1 is transported at the cytosolic side of neuronal vesicles that are moving along axons. Together, our data suggest that axonal transport of ATAT1-enriched vesicles is the predominant driver of α-tubulin acetylation in axons.
Collapse
Affiliation(s)
- Aviel Even
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Giovanni Morelli
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
- BIOMED Research Institute, University of Hasselt, Hasselt 3500, Belgium
| | - Loïc Broix
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Chiara Scaramuzzino
- Grenoble Institut des Neurosciences, GIN, Univ. Grenoble Alpes, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Silvia Turchetto
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Ivan Gladwyn-Ng
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Romain Le Bail
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Michal Shilian
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Stephen Freeman
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Maria M. Magiera
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Université Paris-Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - A. S. Jijumon
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Université Paris-Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Nathalie Krusy
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Brigitte Malgrange
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Bert Brone
- BIOMED Research Institute, University of Hasselt, Hasselt 3500, Belgium
| | - Paula Dietrich
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ioannis Dragatsis
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Université Paris-Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Frédéric Saudou
- Grenoble Institut des Neurosciences, GIN, Univ. Grenoble Alpes, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
- CHU Grenoble Alpes, F-38000 Grenoble, France
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Laurent Nguyen
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| |
Collapse
|
12
|
Ilan Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol 2018; 234:7923-7937. [PMID: 30536951 DOI: 10.1002/jcp.27978] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Microtubules (MT) and actin microfilaments are dynamic cytoskeleton components involved in a range of intracellular processes. MTs play a role in cell division, beating of cilia and flagella, and intracellular transport. Over the past decades, much knowledge has been gained regarding MT function and structure, and its role in underlying disease progression. This makes MT potential therapeutic targets for various disorders. Disturbances in MT and their associated proteins are the underlying cause of diseases such as Alzheimer's disease, cancer, and several genetic diseases. Some of the advances in the field of MT research, as well as the potenti G beta gamma, is needed al uses of MT-targeting agents in various conditions have been reviewed here.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
13
|
Barsegov V, Ross JL, Dima RI. Dynamics of microtubules: highlights of recent computational and experimental investigations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:433003. [PMID: 28812545 DOI: 10.1088/1361-648x/aa8670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microtubules are found in most eukaryotic cells, with homologs in eubacteria and archea, and they have functional roles in mitosis, cell motility, intracellular transport, and the maintenance of cell shape. Numerous efforts have been expended over the last two decades to characterize the interactions between microtubules and the wide variety of microtubule associated proteins that control their dynamic behavior in cells resulting in microtubules being assembled and disassembled where and when they are required by the cell. We present the main findings regarding microtubule polymerization and depolymerization and review recent work about the molecular motors that modulate microtubule dynamics by inducing either microtubule depolymerization or severing. We also discuss the main experimental and computational approaches used to quantify the thermodynamics and mechanics of microtubule filaments.
Collapse
Affiliation(s)
- Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States of America
| | | | | |
Collapse
|
14
|
Characterization of microtubule buckling in living cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:581-594. [PMID: 28424847 DOI: 10.1007/s00249-017-1207-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Microtubules are filamentous biopolymers involved in essential biological processes. They form key structures in eukaryotic cells, and thus it is very important to determine the mechanisms involved in the formation and maintenance of the microtubule network. Microtubule bucklings are transient and localized events commonly observed in living cells and characterized by a fast bending and its posterior relaxation. Active forces provided by molecular motors have been indicated as responsible for most of these rapid deformations. However, the factors that control the shape amplitude and the time scales of the rising and release stages remain unexplored. In this work, we study microtubule buckling in living cells using Xenopus laevis melanophores as a model system. We tracked single fluorescent microtubules from high temporal resolution (0.3-2 s) confocal movies. We recovered the center coordinates of the filaments with 10-nm precision and analyzed the amplitude of the deformation as a function of time. Using numerical simulations, we explored different force mechanisms resulting in microtubule bending. The simulated events reproduce many features observed for microtubules, suggesting that a mechanistic model captures the essential processes underlying microtubule buckling. Also, we studied the interplay between actively transported vesicles and the microtubule network using a two-color technique. Our results suggest that microtubules may affect transport indirectly besides serving as tracks of motor-driven organelles. For example, they could obstruct organelles at microtubule intersections or push them during filament mechanical relaxation.
Collapse
|
15
|
Ory EC, Bhandary L, Boggs AE, Chakrabarti KR, Parker J, Losert W, Martin SS. Analysis of microtubule growth dynamics arising from altered actin network structure and contractility in breast tumor cells. Phys Biol 2017; 14:026005. [PMID: 28092269 PMCID: PMC5738915 DOI: 10.1088/1478-3975/aa59a2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The periphery of epithelial cells is shaped by opposing cytoskeletal physical forces generated predominately by two dynamic force generating systems-growing microtubule ends push against the boundary from the cell center, and the actin cortex contracts the attached plasma membrane. Here we investigate how changes to the structure and dynamics of the actin cortex alter the dynamics of microtubules. Current drugs target actin polymerization and contraction to reduce cell division and invasiveness; however, the impacts on microtubule dynamics remain incompletely understood. Using human MCF-7 breast tumor cells expressing GFP-tagged microtubule end-binding-protein-1 (EB1) and coexpression of cytoplasmic fluorescent protein mCherry, we map the trajectories of growing microtubule ends and cytoplasmic boundary respectively. Based on EB1 tracks and cytoplasmic boundary outlines, we calculate the speed, distance from cytoplasmic boundary, and straightness of microtubule growth. Actin depolymerization with Latrunculin-A reduces EB1 growth speed as well as allows the trajectories to extend beyond the cytoplasmic boundary. Blebbistatin, a direct myosin-II inhibitor, reduced EB1 speed and yielded less straight EB1 trajectories. Inhibiting signaling upstream of myosin-II contractility via the Rho-kinase inhibitor, Y-27632, altered EB1 dynamics differently from Blebbistatin. These results indicate that reduced actin cortex integrity can induce distinct alterations in microtubule dynamics. Given recent findings that tumor stem cell characteristics are increased by drugs which reduce actin contractility or stabilize microtubules, it remains important to clearly define how cytoskeletal drugs alter the interactions between these two filament systems in tumor cells.
Collapse
Affiliation(s)
- Eleanor C Ory
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD, United States of America
| | - Lekhana Bhandary
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States of America
| | - Amanda E Boggs
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States of America
| | - Kristi R Chakrabarti
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States of America
| | - Joshua Parker
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD, United States of America
| | - Wolfgang Losert
- Department of Physics, IPST, and IREAP, University of Maryland, College Park, MD, United States of America
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
| | - Stuart S Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Bldg. Rm 10-29, Baltimore, MD 21201, United States of America
| |
Collapse
|
16
|
Probing cytoskeletal modulation of passive and active intracellular dynamics using nanobody-functionalized quantum dots. Nat Commun 2017; 8:14772. [PMID: 28322225 PMCID: PMC5364406 DOI: 10.1038/ncomms14772] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/27/2017] [Indexed: 11/08/2022] Open
Abstract
The cytoplasm is a highly complex and heterogeneous medium that is structured by the cytoskeleton. How local transport depends on the heterogeneous organization and dynamics of F-actin and microtubules is poorly understood. Here we use a novel delivery and functionalization strategy to utilize quantum dots (QDs) as probes for active and passive intracellular transport. Rapid imaging of non-functionalized QDs reveals two populations with a 100-fold difference in diffusion constant, with the faster fraction increasing upon actin depolymerization. When nanobody-functionalized QDs are targeted to different kinesin motor proteins, their trajectories do not display strong actin-induced transverse displacements, as suggested previously. Only kinesin-1 displays subtle directional fluctuations, because the subset of microtubules used by this motor undergoes prominent undulations. Using actin-targeting agents reveals that F-actin suppresses most microtubule shape remodelling, rather than promoting it. These results demonstrate how the spatial heterogeneity of the cytoskeleton imposes large variations in non-equilibrium intracellular dynamics.
Collapse
|
17
|
Kent IA, Lele TP. Microtubule-based force generation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27562344 DOI: 10.1002/wnan.1428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/20/2016] [Accepted: 07/30/2016] [Indexed: 11/11/2022]
Abstract
Microtubules are vital to many important cell processes, such as cell division, transport of cellular cargo, organelle positioning, and cell migration. Owing to their diverse functions, understanding microtubule function is an important part of cell biological research that can help in combating various diseases. For example, microtubules are an important target of chemotherapeutic drugs such as paclitaxel because of their pivotal role in cell division. Many functions of microtubules relate to the generation of mechanical forces. These forces are generally either a direct result of microtubule polymerization/depolymerization or generated by motor proteins that move processively along microtubules. In this review, we summarize recent efforts to quantify and model force generation by microtubules in the context of microtubule function. WIREs Nanomed Nanobiotechnol 2017, 9:e1428. doi: 10.1002/wnan.1428 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ian A Kent
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|