1
|
Fernández-Otal Á, Guío J, Sarasa-Buisan C, Peleato ML, Fillat MF, Lanas Á, Bes MT. Functional characterization of Fur from the strict anaerobe Clostridioides difficile provides insight into its redox-driven regulatory capacity. FEBS J 2024; 291:3604-3627. [PMID: 38775144 DOI: 10.1111/febs.17156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 08/15/2024]
Abstract
Clostridioides (formerly Clostridium) difficile is a leading cause of infectious diarrhea associated with antibiotic therapy. The ability of this anaerobic pathogen to acquire enough iron to proliferate under iron limitation conditions imposed by the host largely determines its pathogenicity. However, since high intracellular iron catalyzes formation of deleterious reactive hydroxyl radicals, iron uptake is tightly regulated at the transcriptional level by the ferric uptake regulator Fur. Several studies relate lacking a functional fur gene in C. difficile cells to higher oxidative stress sensitivity, colonization defect and less toxigenicity, although Fur does not appear to directly regulate either oxidative stress response genes or pathogenesis genes. In this work, we report the functional characterization of C. difficile Fur and describe an additional oxidation sensing Fur-mediated mechanism independent of iron, which affects Fur DNA-binding. Using electrophoretic mobility shift assays, we show that Fur binding to the promoters of fur, feoA and fldX genes, identified as iron and Fur-regulated genes in vivo, is specific and does not require co-regulator metal under reducing conditions. Fur treatment with H2O2 produces dose-dependent soluble high molecular weight species unable to bind to target promoters. Moreover, Fur oligomers are dithiotreitol sensitive, highlighting the importance of some interchain disulfide bond(s) for Fur oligomerization, and hence for activity. Additionally, the physiological electron transport chain NADPH-thioredoxin reductase/thioredoxin from Escherichia coli reduces inactive oligomerized C. difficile Fur that recovers activity. In conjunction with available transcriptomic data, these results suggest a previously underappreciated complexity in the control of some members of the Fur regulon that is based on Fur redox properties and might be fundamental for the adaptive response of C. difficile during infection.
Collapse
Affiliation(s)
- Ángela Fernández-Otal
- Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor (Edif. I+D), Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragón), Zaragoza, Spain
| | - Jorge Guío
- Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor (Edif. I+D), Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor (Edif. I+D), Zaragoza, Spain
| | - M Luisa Peleato
- Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor (Edif. I+D), Zaragoza, Spain
| | - María F Fillat
- Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor (Edif. I+D), Zaragoza, Spain
| | - Ángel Lanas
- Aragon Institute for Health Research (IIS Aragón), Zaragoza, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
- CIBERehd, Madrid, Spain
| | - M Teresa Bes
- Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor (Edif. I+D), Zaragoza, Spain
| |
Collapse
|
2
|
Krynická V, Komenda J. The Role of FtsH Complexes in the Response to Abiotic Stress in Cyanobacteria. PLANT & CELL PHYSIOLOGY 2024; 65:1103-1114. [PMID: 38619128 PMCID: PMC11287208 DOI: 10.1093/pcp/pcae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
FtsH proteases (FtsHs) belong to intramembrane ATP-dependent metalloproteases which are widely distributed in eubacteria, mitochondria and chloroplasts. The best-studied roles of FtsH in Escherichia coli include quality control of membrane proteins, regulation of response to heat shock, superoxide stress and viral infection, and control of lipopolysaccharide biosynthesis. While heterotrophic bacteria mostly contain a single indispensable FtsH complex, photosynthetic cyanobacteria usually contain three FtsH complexes: two heterocomplexes and one homocomplex. The essential cytoplasmic FtsH1/3 most probably fulfills a role similar to other bacterial FtsHs, whereas the thylakoid FtsH2/3 heterocomplex and FtsH4 homocomplex appear to maintain the photosynthetic apparatus of cyanobacteria and optimize its functionality. Moreover, recent studies suggest the involvement of all FtsH proteases in a complex response to nutrient stresses. In this review, we aim to comprehensively evaluate the functions of the cyanobacterial FtsHs specifically under stress conditions with emphasis on nutrient deficiency and high irradiance. We also point to various unresolved issues concerning FtsH functions, which deserve further attention.
Collapse
Affiliation(s)
- Vendula Krynická
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický Mlýn, Novohradská 237, Třeboň 37901, The Czech Republic
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický Mlýn, Novohradská 237, Třeboň 37901, The Czech Republic
| |
Collapse
|
3
|
Liu LM, Sun CY, Xi YC, Lu XH, Yong CW, Li SQ, Sun QW, Wang XW, Mao YZ, Chen W, Jiang HB. A global transcriptional activator involved in the iron homeostasis in cyanobacteria. SCIENCE ADVANCES 2024; 10:eadl6428. [PMID: 38959319 PMCID: PMC11221513 DOI: 10.1126/sciadv.adl6428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Cyanobacteria use a series of adaptation strategies and a complicated regulatory network to maintain intracellular iron (Fe) homeostasis. Here, a global activator named IutR has been identified through three-dimensional chromosome organization and transcriptome analysis in a model cyanobacterium Synechocystis sp. PCC 6803. Inactivation of all three homologous IutR-encoding genes resulted in an impaired tolerance of Synechocystis to Fe deficiency and loss of the responses of Fe uptake-related genes to Fe-deplete conditions. Protein-promoter interaction assays confirmed the direct binding of IutR with the promoters of genes related to Fe uptake, and chromatin immunoprecipitation sequencing analysis further revealed that in addition to Fe uptake, IutR could regulate many other physiological processes involved in intracellular Fe homeostasis. These results proved that IutR is an important transcriptional activator, which is essential for cyanobacteria to induce Fe-deficiency response genes. This study provides in-depth insights into the complicated Fe-deficient signaling network and the molecular mechanism of cyanobacteria adaptation to Fe-deficient environments.
Collapse
Affiliation(s)
- Ling-Mei Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Chuan-Yu Sun
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Yi-Cao Xi
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xiao-Hui Lu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Cheng-Wen Yong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Shuang-Qing Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qiao-Wei Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xin-Wei Wang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - You-Zhi Mao
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, Hubei, China
| | - Weizhong Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Hai-Bo Jiang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
4
|
Wada K, Uebayashi K, Toya Y, Putri SP, Matsuda F, Fukusaki E, C Liao J, Shimizu H. Effects of n-butanol production on metabolism and the photosystem in Synecococcus elongatus PCC 7942 based on metabolic flux and target proteome analyses. J GEN APPL MICROBIOL 2024; 69:185-195. [PMID: 36935115 DOI: 10.2323/jgam.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Although n-butanol (BuOH) is an ideal fuel because of its superior physical properties, it has toxicity to microbes. Previously, a Synechococcus elongatus PCC 7942 derivative strain that produces BuOH from CO2 was developed by introducing six heterologous genes (BUOH-SE strain). To identify the bottleneck in BuOH production, the effects of BuOH production and its toxicity on central metabolism and the photosystem were investigated. Parental (WT) and BUOH-SE strains were cultured under autotrophic conditions. Consistent with the results of a previous study, BuOH production was observed only in the BUOH-SE strain. Isotopically non-stationary 13C-metabolic flux analysis revealed that the CO2 fixation rate was much larger than the BuOH production rate in the BUOH-SE strain (1.70 vs 0.03 mmol gDCW-1 h-1), implying that the carbon flow for BuOH biosynthesis was less affected by the entire flux distribution. No large difference was observed in the flux of metabolism between the WT and BUOH-SE strains. Contrastingly, in the photosystem, the chlorophyll content and maximum O2 evolution rate per dry cell weight of the BUOH-SE strain were decreased to 81% and 43% of the WT strain, respectively. Target proteome analysis revealed that the amounts of some proteins related to antennae (ApcA, ApcD, ApcE, and CpcC), photosystem II (PsbB, PsbU, and Psb28-2), and cytochrome b6f complex (PetB and PetC) in photosystems decreased in the BUOH-SE strain. The activation of photosynthesis would be a novel approach for further enhancing BuOH production in S. elongatus PCC 7942.
Collapse
Affiliation(s)
- Keisuke Wada
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Kiyoka Uebayashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - James C Liao
- Department of Chemical and Biomolocular Engineering, University of California
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University
| |
Collapse
|
5
|
Wang Y, Ge H, Xiao Z, Huang C, Wang G, Duan X, Zheng L, Dong J, Huang X, Zhang Y, An H, Xu W, Wang Y. Spatial Proteome Reorganization of a Photosynthetic Model Cyanobacterium in Response to Abiotic Stresses. J Proteome Res 2023; 22:1255-1269. [PMID: 36930737 DOI: 10.1021/acs.jproteome.2c00759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Spatial proteome reorganization in response to a changing environment represents a different layer of adaptation mechanism in addition to differential expression of a subset of stress responsive genes in photosynthetic organisms. Profiling such reorganization events is critically important to extend our understanding how photosynthetic organisms adapt to adverse environments. Thus, we treated a unicellular photosynthetic model cyanobacterium, Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis), with five different types of abiotic stresses including nitrogen starvation, iron deficiency, cold, heat, and darkness, and systematically identified proteins showing stress-induced differential expression and/or redistribution between the membrane and the soluble fractions using a quantitative proteomics approach. A number of proteins showing such a redistribution in response to a single or multiple types of abiotic stresses were identified. These include 12 ribosomal proteins displaying unanimous cold-induced redistribution to the membrane and the protein FurA, a master regulator of iron acquisition, displaying iron deficiency- and nitrogen starvation-induced redistribution to the membrane. Such findings shed light on a novel regulatory mechanism underlying the corresponding stress responses, and establish the results in the present study as an important resource for future studies intended to understand how photosynthetic organisms cope with adverse environments.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Gaojie Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Jinghui Dong
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Hongyu An
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| |
Collapse
|
6
|
Enzingmüller-Bleyl TC, Boden JS, Herrmann AJ, Ebel KW, Sánchez-Baracaldo P, Frankenberg-Dinkel N, Gehringer MM. On the trail of iron uptake in ancestral Cyanobacteria on early Earth. GEOBIOLOGY 2022; 20:776-789. [PMID: 35906866 DOI: 10.1111/gbi.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria oxygenated Earth's atmosphere ~2.4 billion years ago, during the Great Oxygenation Event (GOE), through oxygenic photosynthesis. Their high iron requirement was presumably met by high levels of Fe(II) in the anoxic Archean environment. We found that many deeply branching Cyanobacteria, including two Gloeobacter and four Pseudanabaena spp., cannot synthesize the Fe(II) specific transporter, FeoB. Phylogenetic and relaxed molecular clock analyses find evidence that FeoB and the Fe(III) transporters, cFTR1 and FutB, were present in Proterozoic, but not earlier Archaean lineages of Cyanobacteria. Furthermore Pseudanabaena sp. PCC7367, an early diverging marine, benthic strain grown under simulated Archean conditions, constitutively expressed cftr1, even after the addition of Fe(II). Our genetic profiling suggests that, prior to the GOE, ancestral Cyanobacteria may have utilized alternative metal iron transporters such as ZIP, NRAMP, or FicI, and possibly also scavenged exogenous siderophore bound Fe(III), as they only acquired the necessary Fe(II) and Fe(III) transporters during the Proterozoic. Given that Cyanobacteria arose 3.3-3.6 billion years ago, it is possible that limitations in iron uptake may have contributed to the delay in their expansion during the Archean, and hence the oxygenation of the early Earth.
Collapse
Affiliation(s)
| | - Joanne S Boden
- School of Geographical Sciences, Faculty of Science, University of Bristol, Bristol, UK
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, UK
| | - Achim J Herrmann
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Katharina W Ebel
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | - Michelle M Gehringer
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
7
|
Cross-Activation of Two Nitrogenase Gene Clusters by CnfR1 or CnfR2 in the Cyanobacterium Anabaena variabilis. Microbiol Spectr 2021; 9:e0106021. [PMID: 34612667 PMCID: PMC8510180 DOI: 10.1128/spectrum.01060-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Anabaena variabilis, the nif1 genes, which are activated by CnfR1, produce a Mo-nitrogenase that is expressed only in heterocysts. Similarly, the nif2 genes, which are activated by CnfR2, make a Mo-nitrogenase that is expressed only in anaerobic vegetative cells. However, CnfR1, when it was expressed in anaerobic vegetative cells under the control of the cnfR2 promoter or from the Co2+-inducible coaT promoter, activated the expression of both nifB1 and nifB2. Activation of nifB2, but not nifB1, by CnfR1 required NtcA. Thus, expression of the nif1 system requires no heterocyst-specific factor other than CnfR1. In contrast, CnfR2, when it was expressed in heterocysts under the control of the cnfR1 promoter or from the coaT promoter, did not activate the expression of nifB1 or nifB2. Thus, activation of the nif2 system in anaerobic vegetative cells by CnfR2 requires additional factors absent in heterocysts. CnfR2 made from the coaT promoter activated nifB2 expression in anaerobic vegetative cells grown with fixed nitrogen; however, oxygen inhibited CnfR2 activation of nifB2 expression. In contrast, activation of nifB1 and nifB2 by CnfR1 was unaffected by oxygen. CnfR1, which does not activate the nifB2 promoter in heterocysts, activated the expression of the entire nif2 gene cluster from a nifB2::nifB1::nifB2 hybrid promoter in heterocysts, producing functional Nif2 nitrogenase in heterocysts. However, activity was poor compared to the normal Nif1 nitrogenase. Expression of the nif2 cluster in anaerobic vegetative cells of Nostoc sp. PCC 7120, a strain lacking the nif2 nitrogenase, resulted in expression of the nif2 genes but weak nitrogenase activity. IMPORTANCE Cyanobacterial nitrogen fixation is important in the global nitrogen cycle, in oceanic productivity, and in many plant and fungal symbioses. While the proteins that mediate nitrogen fixation have been well characterized, the regulation of this complex and expensive process is poorly understood in cyanobacteria. Using a genetic approach, we have characterized unique and overlapping functions for two homologous transcriptional activators CnfR1 and CnfR2 that activate two distinct nitrogenases in a single organism. We found that CnfR1 is promiscuous in its ability to activate both nitrogenase systems, whereas CnfR2 depends on additional cellular factors; thus, it activates only one nitrogenase system.
Collapse
|
8
|
Norena-Caro DA, Zuniga C, Pete AJ, Saemundsson SA, Donaldson MR, Adams AJ, Dooley KM, Zengler K, Benton MG. Analysis of the cyanobacterial amino acid metabolism with a precise genome-scale metabolic reconstruction of Anabaena sp. UTEX 2576. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Thioredoxin Dependent Changes in the Redox States of FurA from Anabaena sp. PCC 7120. Antioxidants (Basel) 2021; 10:antiox10060913. [PMID: 34199999 PMCID: PMC8229018 DOI: 10.3390/antiox10060913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
FurA is a multifunctional regulator in cyanobacteria that contains five cysteines, four of them arranged into two CXXC motifs. Lack of a structural zinc ion enables FurA to develop disulfide reductase activity. In vivo, FurA displays several redox isoforms, and the oxidation state of its cysteines determines its activity as regulator and its ability to bind different metabolites. Because of the relationship between FurA and the control of genes involved in oxidative stress defense and photosynthetic metabolism, we sought to investigate the role of type m thioredoxin TrxA as a potential redox partner mediating dithiol-disulfide exchange reactions necessary to facilitate the interaction of FurA with its different ligands. Both in vitro cross-linking assays and in vivo two-hybrid studies confirmed the interaction between FurA and TrxA. Light to dark transitions resulted in reversible oxidation of a fraction of the regulator present in Anabaena sp. PCC7120. Reconstitution of an electron transport chain using E. coli NADPH-thioredoxin-reductase followed by alkylation of FurA reduced cysteines evidenced the ability of TrxA to reduce FurA. Furthermore, the use of site-directed mutants allowed us to propose a plausible mechanism for FurA reduction. These results point to TrxA as one of the redox partners that modulates FurA performance.
Collapse
|
10
|
Nitrogen Sources and Iron Availability Affect Pigment Biosynthesis and Nutrient Consumption in Anabaena sp. UTEX 2576. Microorganisms 2021; 9:microorganisms9020431. [PMID: 33669780 PMCID: PMC7922959 DOI: 10.3390/microorganisms9020431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Anabaena sp. UTEX 2576 metabolizes multiple nitrogen (N) sources and is deemed a biotechnological platform for chemical production. Cyanobacteria have been identified as prolific producers of biofertilizers, biopolymers, biofuels, and other bioactive compounds. Here, we analyze the effect of different N-sources and Fe availability on the bioproduction of phycobiliproteins and β-carotene. We characterize nutrient demand in modified BG11 media, including data on CO2 fixation rates, N-source consumption, and mineral utilization (e.g., phosphorus (P), and 11 metallic elements). Results suggest that non-diazotrophic cultures grow up to 60% faster than diazotrophic cells, resulting in 20% higher CO2-fixation rates. While the production of β-carotene was maximum in medium with NaNO3, Fe starvation increased the cellular abundance of C-phycocyanin and allophycocyanin by at least 22%. Compared to cells metabolizing NaNO3 and N2, cultures adapted to urea media increased their P, calcium and manganese demands by at least 72%, 97% and 76%, respectively. Variations on pigmentation and nutrient uptake were attributed to changes in phycocyanobilin biosynthesis, light-induced oxidation of carotenoids, and urea-promoted peroxidation. This work presents insights into developing optimal Anabaena culture for efficient operations of bioproduction and wastewater bioremediation with cyanobacteria.
Collapse
|
11
|
Rachedi R, Foglino M, Latifi A. Stress Signaling in Cyanobacteria: A Mechanistic Overview. Life (Basel) 2020; 10:life10120312. [PMID: 33256109 PMCID: PMC7760821 DOI: 10.3390/life10120312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are highly diverse, widely distributed photosynthetic bacteria inhabiting various environments ranging from deserts to the cryosphere. Throughout this range of niches, they have to cope with various stresses and kinds of deprivation which threaten their growth and viability. In order to adapt to these stresses and survive, they have developed several global adaptive responses which modulate the patterns of gene expression and the cellular functions at work. Sigma factors, two-component systems, transcriptional regulators and small regulatory RNAs acting either separately or collectively, for example, induce appropriate cyanobacterial stress responses. The aim of this review is to summarize our current knowledge about the diversity of the sensors and regulators involved in the perception and transduction of light, oxidative and thermal stresses, and nutrient starvation responses. The studies discussed here point to the fact that various stresses affecting the photosynthetic capacity are transduced by common mechanisms.
Collapse
|
12
|
Jeong Y, Cho SH, Lee H, Choi HK, Kim DM, Lee CG, Cho S, Cho BK. Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria. Microorganisms 2020; 8:E1849. [PMID: 33255283 PMCID: PMC7761380 DOI: 10.3390/microorganisms8121849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Cyanobacteria, given their ability to produce various secondary metabolites utilizing solar energy and carbon dioxide, are a potential platform for sustainable production of biochemicals. Until now, conventional metabolic engineering approaches have been applied to various cyanobacterial species for enhanced production of industrially valued compounds, including secondary metabolites and non-natural biochemicals. However, the shortage of understanding of cyanobacterial metabolic and regulatory networks for atmospheric carbon fixation to biochemical production and the lack of available engineering tools limit the potential of cyanobacteria for industrial applications. Recently, to overcome the limitations, synthetic biology tools and systems biology approaches such as genome-scale modeling based on diverse omics data have been applied to cyanobacteria. This review covers the synthetic and systems biology approaches for advanced metabolic engineering of cyanobacteria.
Collapse
Affiliation(s)
- Yujin Jeong
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Sang-Hyeok Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Hookeun Lee
- Institute of Pharmaceutical Research, College of Pharmacy, Gachon University, Incheon 21999, Korea;
| | | | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon 22212, Korea;
| | - Suhyung Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Byung-Kwan Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| |
Collapse
|
13
|
Xing WY, Xie LR, Zeng X, Yang Y, Zhang CC. Functional Dissection of Genes Encoding DNA Polymerases Based on Conditional Mutants in the Heterocyst-Forming Cyanobacterium Anabaena PCC 7120. Front Microbiol 2020; 11:1108. [PMID: 32582078 PMCID: PMC7283527 DOI: 10.3389/fmicb.2020.01108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023] Open
Abstract
The filamentous cyanobacterium Anabaena sp. PCC 7120 develops N2-fixing heterocyst cells under condition of combined-nitrogen deprivation and constitutes an excellent model for studying cell differentiation. The mechanism of heterocyst development has been extensively investigated and a network of regulating factors has been identified. A few studies have showed that the process of heterocyst differentiation relates with cell cycle events, but further investigation is still required to understand this relationship. In a previous study, we created a conditional mutant of PolI encoding gene, polA, by using a CRISPR/Cpf1 gene-editing technique. Here, we were able to create another conditional mutant of a PolIII encoding gene dnaENI using a similar strategy and subsequently confirmed the essential roles of both polA and dnaENI in DNA replication. Further investigation on the phenotype of the mutants showed that lack of PolI caused defects in chromosome segregation and cell division, while lack of DnaENI (PolIII) prevented bulk DNA synthesis, causing significant loss of DNA content. Our findings also suggested the possible existence of a SOS-response like mechanism operating in Anabaena PCC 7120. Moreover, we found that heterocyst development was differently affected in the two conditional mutants, with double heterocysts/proheterocysts found in PolI conditional mutant. We further showed that formation of such double heterocysts/proheterocysts are likely caused by the difficulty in nucleoids segregation, resulting delayed, or non-complete closure of the septum between the two daughter cells. This study uncovers a link between DNA replication process and heterocyst differentiation, paving the way for further studies on the relationship between cell cycle and cell development.
Collapse
Affiliation(s)
- Wei-Yue Xing
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Rui Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institut WUT-AMU, Aix-Marseille Université and Wuhan University of Technology, Wuhan, China
| |
Collapse
|
14
|
Behle A, Saake P, Germann AT, Dienst D, Axmann IM. Comparative Dose-Response Analysis of Inducible Promoters in Cyanobacteria. ACS Synth Biol 2020; 9:843-855. [PMID: 32134640 DOI: 10.1021/acssynbio.9b00505] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Design and implementation of synthetic biological circuits highly depends on well-characterized, robust promoters with predictable input-output responses. While great progress has been made with heterotrophic model organisms such as Escherichia coli, the available variety of tunable promoter parts for phototrophic cyanobacteria is still limited. Commonly used synthetic and semisynthetic promoters show weak dynamic ranges or no regulation at all in cyanobacterial models. Well-controlled alternatives such as native metal-responsive promoters, however, pose the problems of inducer toxicity and lacking orthogonality. Here, we present the comparative assessment of dose-response functions of four different inducible promoter systems in the model cyanobacterium Synechocystis sp. PCC 6803. Using the novel bimodular reporter plasmid pSHDY, dose-response dynamics of the re-established vanillate-inducible promoter PvanCC was compared to the previously described rhamnose-inducible Prha, the anhydrotetracycline-inducible PL03, and the Co2+-inducible PcoaT. We estimate individual advantages and disadvantages regarding dynamic range and strength of each promoter, also in comparison with well-established constitutive systems. We observed a delicate balance between transcription factor toxicity and sufficient expression to obtain a dose-dependent response to the inducer. In summary, we expand the current understanding and employability of inducible promoters in cyanobacteria, facilitating the scalability and robustness of synthetic regulatory network designs and of complex metabolic pathway engineering strategies.
Collapse
Affiliation(s)
- Anna Behle
- Institute for Synthetic Microbiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Pia Saake
- Institute for Synthetic Microbiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Anna T. Germann
- Institute for Synthetic Microbiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Dennis Dienst
- Department of Chemistry − Ångström, Uppsala University, 75120 Uppsala, Sweden
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
15
|
Krynická V, Georg J, Jackson PJ, Dickman MJ, Hunter CN, Futschik ME, Hess WR, Komenda J. Depletion of the FtsH1/3 Proteolytic Complex Suppresses the Nutrient Stress Response in the Cyanobacterium Synechocystis sp strain PCC 6803. THE PLANT CELL 2019; 31:2912-2928. [PMID: 31615847 PMCID: PMC6925008 DOI: 10.1105/tpc.19.00411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/03/2019] [Accepted: 10/13/2019] [Indexed: 05/04/2023]
Abstract
The membrane-embedded FtsH proteases found in bacteria, chloroplasts, and mitochondria are involved in diverse cellular processes including protein quality control and regulation. The genome of the model cyanobacterium Synechocystis sp PCC 6803 encodes four FtsH homologs designated FtsH1 to FtsH4. The FtsH3 homolog is present in two hetero-oligomeric complexes: FtsH2/3, which is responsible for photosystem II quality control, and the essential FtsH1/3 complex, which helps maintain Fe homeostasis by regulating the level of the transcription factor Fur. To gain a more comprehensive insight into the physiological roles of FtsH hetero-complexes, we performed genome-wide expression profiling and global proteomic analyses of Synechocystis mutants conditionally depleted of FtsH3 or FtsH1 grown under various nutrient conditions. We show that the lack of FtsH1/3 leads to a drastic reduction in the transcriptional response to nutrient stress of not only Fur but also the Pho, NdhR, and NtcA regulons. In addition, this effect is accompanied by the accumulation of the respective transcription factors. Thus, the FtsH1/3 complex is of critical importance for acclimation to iron, phosphate, carbon, and nitrogen starvation in Synechocystis.plantcell;31/12/2912/FX1F1fx1.
Collapse
Affiliation(s)
- Vendula Krynická
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 379 81, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Jens Georg
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Mark J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Matthias E Futschik
- School of Biomedical Sciences, Institute of Translational and Stratified Medicine (ITSMed), Faculty of Medicine and Dentistry, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- Systems Biology and Bioinformatics Laboratory (SysBioLab), Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Albertstrße 19, D-79104 Freiburg, Germany
| | - Josef Komenda
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 379 81, Czech Republic
| |
Collapse
|
16
|
Sevilla E, Sarasa-Buisan C, González A, Cases R, Kufryk G, Peleato ML, Fillat MF. Regulation by FurC in Anabaena Links the Oxidative Stress Response to Photosynthetic Metabolism. PLANT & CELL PHYSIOLOGY 2019; 60:1778-1789. [PMID: 31111929 DOI: 10.1093/pcp/pcz094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The FUR (Ferric Uptake Regulator) family in Anabaena sp. PCC 7120 consists of three paralogs named FurA (Fur), FurB (Zur) and FurC (PerR). furC seems to be an essential gene in the filamentous nitrogen-fixing strain Anabaena sp. PCC 7120, suggesting that it plays a fundamental role in this organism. In order to better understand the functions of FurC in Anabaena, the phenotype of a derivative strain that overexpresses this regulator (EB2770FurC) has been characterized. The furC-overexpressing variant presented alterations in growth rate, morphology and ultrastructure, as well as higher sensitivity to peroxide than Anabaena sp. PCC 7120. Interestingly, the overexpression of furC led to reduced photosynthetic O2 evolution, increased respiratory activity, and had a significant influence in the composition and efficiency of both photosystems. Comparative transcriptional analyses, together with electrophoretic mobility shift assays allowed the identification of different genes directly controlled by FurC, and involved in processes not previously related to PerR proteins, such as the cell division gene ftsZ and the major thylakoid membrane protease ftsH. The rise in the transcription of ftsH in EB2770FurC cells correlated with reduced levels of the D1 protein, which is involved in the PSII repair cycle. Deregulation of the oxidative stress response in EB2770FurC cells led to the identification of novel FurC targets involved in the response to H2O2 through different mechanisms. These results, together with the effect of furC overexpression on the composition, stability and efficiency of the photosynthetic machinery of Anabaena, disclose novel links between PerR proteins, cell division and photosynthesis in filamentous cyanobacteria.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
| | - Andrés González
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragón), Zaragoza, Spain
| | - Rafael Cases
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza-CSIC, Zaragoza, Spain
| | - Galyna Kufryk
- College of Science, Engineering and Technology, Grand Canyon University, 3300 W. Camelback Rd, Phoenix, AZ, USA
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
| |
Collapse
|
17
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
18
|
Álvarez-Escribano I, Vioque A, Muro-Pastor AM. NsrR1, a Nitrogen Stress-Repressed sRNA, Contributes to the Regulation of nblA in Nostoc sp. PCC 7120. Front Microbiol 2018; 9:2267. [PMID: 30319578 PMCID: PMC6166021 DOI: 10.3389/fmicb.2018.02267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Small regulatory RNAs (sRNAs) are currently considered as major post-transcriptional regulators of gene expression in bacteria. The interplay between sRNAs and transcription factors leads to complex regulatory networks in which both transcription factors and sRNAs may appear as nodes. In cyanobacteria, the responses to nitrogen availability are controlled at the transcriptional level by NtcA, a CRP/FNR family regulator. In this study, we describe an NtcA-regulated sRNA in the cyanobacterium Nostoc sp. PCC 7120, that we have named NsrR1 (nitrogen stress repressed RNA1). We show sequence specific binding of NtcA to the promoter of NsrR1. Prediction of possible mRNA targets regulated by NsrR1 allowed the identification of nblA, encoding a protein adaptor for phycobilisome degradation under several stress conditions, including nitrogen deficiency. We demonstrate specific interaction between NsrR1 and the 5'-UTR of the nblA mRNA, that leads to decreased expression of nblA. Because both NsrR1 and NblA are under transcriptional control of NtcA, this regulatory circuit constitutes a coherent feed-forward loop, involving a transcription factor and an sRNA.
Collapse
Affiliation(s)
- Isidro Álvarez-Escribano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
19
|
Leaden L, Silva LG, Ribeiro RA, Dos Santos NM, Lorenzetti APR, Alegria TGP, Schulz ML, Medeiros MHG, Koide T, Marques MV. Iron Deficiency Generates Oxidative Stress and Activation of the SOS Response in Caulobacter crescentus. Front Microbiol 2018; 9:2014. [PMID: 30210482 PMCID: PMC6120978 DOI: 10.3389/fmicb.2018.02014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/09/2018] [Indexed: 01/18/2023] Open
Abstract
In C. crescentus, iron metabolism is mainly controlled by the transcription factor Fur (ferric uptake regulator). Iron-bound Fur represses genes related to iron uptake and can directly activate the expression of genes for iron-containing proteins. In this work, we used total RNA sequencing (RNA-seq) of wild type C. crescentus growing in minimal medium under iron limitation and a fur mutant strain to expand the known Fur regulon, and to identify novel iron-regulated genes. The RNA-seq of cultures treated with the iron chelator 2-2-dypiridyl (DP) allowed identifying 256 upregulated genes and 236 downregulated genes, being 176 and 204 newly identified, respectively. Sixteen transcription factors and seven sRNAs were upregulated in iron limitation, suggesting that the response to low iron triggers a complex regulatory network. Notably, lexA along with most of its target genes were upregulated, suggesting that DP treatment caused DNA damage, and the SOS DNA repair response was activated in a RecA-dependent manner, as confirmed by RT-qPCR. Fluorescence microscopy assays using an oxidation-sensitive dye showed that wild type cells in iron limitation and the fur mutant were under endogenous oxidative stress, and a direct measurement of cellular H2O2 showed that cells in iron-limited media present a higher amount of endogenous H2O2. A mutagenesis assay using the rpoB gene as a reporter showed that iron limitation led to an increase in the mutagenesis rate. These results showed that iron deficiency causes C. crescentus cells to suffer oxidative stress and to activate the SOS response, indicating an increase in DNA damage.
Collapse
Affiliation(s)
- Laura Leaden
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa G Silva
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rodolfo A Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Naara M Dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alan P R Lorenzetti
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thiago G P Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mariane L Schulz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marilis V Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Polyviou D, Baylay AJ, Hitchcock A, Robidart J, Moore CM, Bibby TS. Desert Dust as a Source of Iron to the Globally Important Diazotroph Trichodesmium. Front Microbiol 2018; 8:2683. [PMID: 29387046 PMCID: PMC5776111 DOI: 10.3389/fmicb.2017.02683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
The marine cyanobacterium Trichodesmium sp. accounts for approximately half of the annual ‘new’ nitrogen introduced to the global ocean but its biogeography and activity is often limited by the availability of iron (Fe). A major source of Fe to the open ocean is Aeolian dust deposition in which Fe is largely comprised of particles with reduced bioavailability over soluble forms of Fe. We report that Trichodesmium erythraeum IMS101 has improved growth rate and photosynthetic physiology and down-regulates Fe-stress biomarker genes when cells are grown in the direct vicinity of, rather than physically separated from, Saharan dust particles as the sole source of Fe. These findings suggest that availability of non-soluble forms of dust-associated Fe may depend on cell contact. Transcriptomic analysis further reveals unique profiles of gene expression in all tested conditions, implying that Trichodesmium has distinct molecular signatures related to acquisition of Fe from different sources. Trichodesmium thus appears to be capable of employing specific mechanisms to access Fe from complex sources in oceanic systems, helping to explain its role as a key microbe in global biogeochemical cycles.
Collapse
Affiliation(s)
- Despo Polyviou
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Alison J Baylay
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Sheffield, United Kingdom
| | - Julie Robidart
- Ocean Technology and Engineering Group, National Oceanography Centre, Southampton, United Kingdom
| | - C M Moore
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Thomas S Bibby
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| |
Collapse
|