1
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Thomas AM, Antony SP. Marine Antimicrobial Peptides: An Emerging Nightmare to the Life-Threatening Pathogens. Probiotics Antimicrob Proteins 2024; 16:552-578. [PMID: 37022565 DOI: 10.1007/s12602-023-10061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
The emergence of multidrug-resistant pathogens due to improper usage of conventional antibiotics has created a global health crisis. Alternatives to antibiotics being an urgent need, the scientific community is forced to search for new antimicrobials. This exploration has led to the discovery of antimicrobial peptides, a group of small peptides occurring in different phyla such as Porifera, Cnidaria, Annelida, Arthropoda, Mollusca, Echinodermata, and Chordata, as a component of their innate immune system. The marine environment, possessing immense diversity of organisms, is undoubtedly one of the richest sources of unique potential antimicrobial peptides. The distinctiveness of marine antimicrobial peptides lies in their broad-spectrum activity, mechanism of action, less cytotoxicity, and high stability, which form the benchmark for developing a potential therapeutic. This review aims to (1) synthesise the available information on the distinctive antimicrobial peptides discovered from marine organisms, particularly over the last decade, and (2) discuss the distinctiveness of marine antimicrobial peptides and their prospects.
Collapse
Affiliation(s)
- Anne Maria Thomas
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
3
|
Guryanova SV, Balandin SV, Belogurova-Ovchinnikova OY, Ovchinnikova TV. Marine Invertebrate Antimicrobial Peptides and Their Potential as Novel Peptide Antibiotics. Mar Drugs 2023; 21:503. [PMID: 37888438 PMCID: PMC10608444 DOI: 10.3390/md21100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Marine invertebrates constantly interact with a wide range of microorganisms in their aquatic environment and possess an effective defense system that has enabled their existence for millions of years. Their lack of acquired immunity sets marine invertebrates apart from other marine animals. Invertebrates could rely on their innate immunity, providing the first line of defense, survival, and thriving. The innate immune system of marine invertebrates includes various biologically active compounds, and specifically, antimicrobial peptides. Nowadays, there is a revive of interest in these peptides due to the urgent need to discover novel drugs against antibiotic-resistant bacterial strains, a pressing global concern in modern healthcare. Modern technologies offer extensive possibilities for the development of innovative drugs based on these compounds, which can act against bacteria, fungi, protozoa, and viruses. This review focuses on structural peculiarities, biological functions, gene expression, biosynthesis, mechanisms of antimicrobial action, regulatory activities, and prospects for the therapeutic use of antimicrobial peptides derived from marine invertebrates.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
| | | | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Coppola D, Buonocore C, Palisse M, Tedesco P, de Pascale D. Exploring Oceans for Curative Compounds: Potential New Antimicrobial and Anti-Virulence Molecules against Pseudomonas aeruginosa. Mar Drugs 2022; 21:9. [PMID: 36662182 PMCID: PMC9865402 DOI: 10.3390/md21010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Although several antibiotics are already widely used against a large number of pathogens, the discovery of new antimicrobial compounds with new mechanisms of action is critical today in order to overcome the spreading of antimicrobial resistance among pathogen bacteria. In this regard, marine organisms represent a potential source of a wide diversity of unique secondary metabolites produced as an adaptation strategy to survive in competitive and hostile environments. Among the multidrug-resistant Gram-negative bacteria, Pseudomonas aeruginosa is undoubtedly one of the most important species due to its high intrinsic resistance to different classes of antibiotics on the market and its ability to cause serious therapeutic problems. In the present review, we first discuss the general mechanisms involved in the antibiotic resistance of P. aeruginosa. Subsequently, we list the marine molecules identified up until now showing activity against P. aeruginosa, dividing them according to whether they act as antimicrobial or anti-virulence compounds.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Morgan Palisse
- Département des Sciences de la Vie et de la Terre, Université de Caen Normandie, Boulevard Maréchal Juin CS, CEDEX, 14032 Caen, France
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| |
Collapse
|
5
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
6
|
In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022; 218:135-156. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) attracted attention as potential source of novel antimicrobials. Multi-drug resistant (MDR) infections have emerged as a global threat to public health in recent years. Furthermore, due to rapid emergence of new diseases, there is pressing need for development of efficient antimicrobials. AMPs are essential part of the innate immunity in most living organisms, acting as the primary line of defense against foreign invasions. AMPs kill a wide range of microorganisms by primarily targeting cell membranes or intracellular components through a variety of ways. AMPs can be broadly categorized based on their physico-chemical properties, structure, function, target and source of origin. The synthetic analogues produced either with suitable chemical modifications or with the use of suitable delivery systems are projected to eliminate the constraints of toxicity and poor stability commonly linked with natural AMPs. The concept of peptidomimetics is gaining ground around the world nowadays. Among the delivery systems, nanoparticles are emerging as potential delivery tools for AMPs, amplifying their utility against a variety of pathogens. In the present review, the broad classification of various AMPs, their mechanism of action (MOA), challenges associated with AMPs, current applications, and novel strategies to overcome the limitations have been discussed.
Collapse
|
7
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
8
|
Mardirossian M, Rubini M, Adamo MFA, Scocchi M, Saviano M, Tossi A, Gennaro R, Caporale A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021; 26:7401. [PMID: 34885985 PMCID: PMC8659048 DOI: 10.3390/molecules26237401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale, 1, 34125 Trieste, Italy
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Mauro F. A. Adamo
- Department of Chemistry, Centre for Synthesis and Chemical Biology (CSCB), RCSI, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Michele Saviano
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola, 122, 70126 Bari, Italy;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), c/o Area Science Park, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
9
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
10
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
11
|
Dettleff P, Villagra M, González J, Fuentes M, Estrada JM, Valenzuela C, Molina A, Valdés JA. Effect of bacterial LPS, poly I:C and temperature on the immune response of coelomocytes in short term cultures of red sea urchin (Loxechinus albus). FISH & SHELLFISH IMMUNOLOGY 2020; 107:187-193. [PMID: 32971271 DOI: 10.1016/j.fsi.2020.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
In echinoderms, the immune system plays a relevant role in defense against infection by pathogens. Particularly, in sea urchins, the immune system has been shown to be complex, especially in terms of the variety of immune genes and molecules described. A key component of the response to external pathogens are the Toll-like receptors (TLRs), which are a well-characterized class of pattern recognition receptors (PRRs) that participate in the recognition of pathogen-associated molecular patterns (PAMPs). Despite the fact that TLRs have been described in several sea urchin species, for the red sea urchin (Loxechinus albus), which is one of the most important sea urchins across the world in terms of fisheries, limited information on the TLR-mediated immune response exists. In the present study, for the first time, we evaluated the effect of thermal stress, LPS and poly I:C treatment on the coelomocyte immune response of Loxechinus albus to determine how these factors modulate TLR and strongylocin (antimicrobial peptides of echinoderms) responses. We show that the tlr3-like, tlr4-like, tlr6-like and tlr8-like transcripts are modulated by poly I:C, while LPS only modulates the tlr4-like response; there was no effect of temperature on TLR expression, as evaluated by RT-qPCR. Additionally, we showed that strongylocin-1 and strongylocin-2 are modulated in response to simulated viral infection with poly I:C, providing the first evidence of strongylocin expression in L. albus. Finally, we determined that temperature and LPS modify the viability of coelomocytes, while poly I:C treatment did not affect the viability of these cells. This study contributes to the knowledge of immune responses in sea urchins to improve the understanding of the role of TLRs and strongylocins in echinoderms.
Collapse
Affiliation(s)
- Phillip Dettleff
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Maximiliano Villagra
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Joaquín González
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Cristian Valenzuela
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alfredo Molina
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| |
Collapse
|
12
|
Antimicrobial and antibiofilm activity of the EeCentrocin 1 derived peptide EC1-17KV via membrane disruption. EBioMedicine 2020; 55:102775. [PMID: 32403086 PMCID: PMC7218270 DOI: 10.1016/j.ebiom.2020.102775] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background The antibiotic resistance and biofilm formation of pathogenic microbes exacerbate the difficulties of anti-infection therapy in the clinic. The structural modification of antimicrobial peptides (AMP) is an effective strategy to develop novel anti-infective agents. Method Seventeen amino acids (AA) in the longer chain of EeCentrocin 1 (from the edible sea-urchin Echinus esculentus) were truncated and underwent further modification. To produce lead peptides with low toxicity and high efficacy, the antimicrobial activity or cytotoxicity of peptides was evaluated against various multidrug-resistant bacteria/fungi or mammalian cells in vivo/ in vitro. In addition, the stability and modes of action of the lead peptide were investigated. Findings EC1-17KV displayed potent activity and an expanded antimicrobial spectrum, especially against drug-resistant gram-negative bacteria and fungi, attributable to its enhanced amphiphilicity and net charge. In addition, it exhibits bactericidal/fungicidal activity and effectively increased the animal survival rate and mitigated the histopathological damage induced by multidrug-resistant P. aeruginosa or C. albicans in infected mice or G. mellonella. Moreover, EC1-17KV had a poor ability to induce resistance in bacteria and fungi and exhibited desirable high-salt/high-temperature tolerance properties. In bacteria, EC1-17KV promoted divalent cation release to damage bacterial membrane integrity. In fungi, it changed C. albicans membrane fluidity to increase membrane permeabilization or reduced hyphal formation to suppress biofilm formation. Interpretation EC1-17KV is a promising lead peptide for the development of antimicrobial agents against antibiotic resistant bacteria and fungi. Funding This work was funded by the National Natural Science Foundation of China (No. 81673483, 81803591); National Science and Technology Major Project Foundation of China (2019ZX09721001-004-005); National Key Research and Development Program of China (2018YFA0902000); "Double First-Class" University project (CPU2018GF/GY16); Natural Science Foundation of Jiangsu Province of China (No. BK20180563); and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Collapse
|
13
|
Hansen IKØ, Isaksson J, Poth AG, Hansen KØ, Andersen AJC, Richard CSM, Blencke HM, Stensvåg K, Craik DJ, Haug T. Isolation and Characterization of Antimicrobial Peptides with Unusual Disulfide Connectivity from the Colonial Ascidian Synoicum turgens. Mar Drugs 2020; 18:md18010051. [PMID: 31940927 PMCID: PMC7024374 DOI: 10.3390/md18010051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
This study reports the isolation of two novel cysteine-rich antibacterial peptides, turgencin A and turgencin B, along with their oxidized derivatives, from the Arctic marine colonial ascidian Synoicum turgens. The peptides are post-translationally modified, containing six cysteines with an unusual disulfide connectivity of Cys1-Cys6, Cys2-Cys5, and Cys3-Cys4 and an amidated C-terminus. Furthermore, the peptides contain methionine residues resulting in the isolation of peptides with different degrees of oxidation. The most potent peptide, turgencin AMox1 with one oxidized methionine, displayed antimicrobial activity against both Gram-negative and Gram-positive bacteria with a minimum inhibitory concentration (MIC) as low as 0.4 µM against selected bacterial strains. In addition, the peptide inhibited the growth of the melanoma cancer cell line A2058 (IC50 = 1.4 µM) and the human fibroblast cell line MRC-5 (IC50 = 4.8 µM). The results from this study show that natural peptides isolated from marine tunicates have the potential to be promising drug leads.
Collapse
Affiliation(s)
- Ida K. Ø. Hansen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway (C.S.M.R.); (H.-M.B.); (K.S.)
- Correspondence: (I.K.Ø.H.); (T.H.); Tel.: +47-77-64-92-66 (I.K.Ø.H.); +47-77-64-60-71 (T.H.)
| | - Johan Isaksson
- Department of Chemistry, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway;
| | - Aaron G. Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia; (A.G.P.); (D.J.C.)
| | - Kine Ø. Hansen
- Marbio, UiT The Arctic University of Norway, Breivika, N-9037, Tromsø, Norway;
| | - Aaron J. C. Andersen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway (C.S.M.R.); (H.-M.B.); (K.S.)
| | - Céline S. M. Richard
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway (C.S.M.R.); (H.-M.B.); (K.S.)
| | - Hans-Matti Blencke
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway (C.S.M.R.); (H.-M.B.); (K.S.)
| | - Klara Stensvåg
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway (C.S.M.R.); (H.-M.B.); (K.S.)
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia; (A.G.P.); (D.J.C.)
| | - Tor Haug
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway (C.S.M.R.); (H.-M.B.); (K.S.)
- Correspondence: (I.K.Ø.H.); (T.H.); Tel.: +47-77-64-92-66 (I.K.Ø.H.); +47-77-64-60-71 (T.H.)
| |
Collapse
|
14
|
Jimenez EC. Bromotryptophan and its Analogs in Peptides from Marine Animals. Protein Pept Lett 2019; 26:251-260. [PMID: 30663557 DOI: 10.2174/0929866526666190119170020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/29/2023]
Abstract
Bromotryptophan is a nonstandard amino acid that is rarely incorporated in ribosomally synthesized and post-translationally modified peptides (ribosomal peptides). Bromotryptophan and its analogs sometimes occur in non-ribosomal peptides. This paper presents an overview of ribosomal and non-ribosomal peptides that are known to contain bromotryptophan and its analogs. This work further covers the biological activities and therapeutic potential of some of these peptides.
Collapse
Affiliation(s)
- Elsie C Jimenez
- Department of Physical Sciences, College of Science, University of the Philippines Baguio, Baguio City 2600, Philippines
| |
Collapse
|
15
|
Solstad RG, Johansen C, Stensvåg K, Strøm MB, Haug T. Structure‐activity relationship studies of shortened analogues of the antimicrobial peptide EeCentrocin 1 from the sea urchin
Echinus esculentus. J Pept Sci 2019; 26:e3233. [DOI: 10.1002/psc.3233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Runar G. Solstad
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT ‐ The Arctic University of Norway Tromsø Norway
- Nofima – The Norwegian Institute of Food, Fisheries and Aquaculture Research Tromsø Norway
| | - Cecilie Johansen
- Department of Pharmacy, Faculty of Health Sciences, UiT ‐ The Arctic University of Norway Tromsø Norway
| | - Klara Stensvåg
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT ‐ The Arctic University of Norway Tromsø Norway
| | - Morten B. Strøm
- Department of Pharmacy, Faculty of Health Sciences, UiT ‐ The Arctic University of Norway Tromsø Norway
| | - Tor Haug
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT ‐ The Arctic University of Norway Tromsø Norway
| |
Collapse
|
16
|
Lazzara V, Arizza V, Luparello C, Mauro M, Vazzana M. Bright Spots in The Darkness of Cancer: A Review of Starfishes-Derived Compounds and Their Anti-Tumor Action. Mar Drugs 2019; 17:E617. [PMID: 31671922 PMCID: PMC6891385 DOI: 10.3390/md17110617] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
The fight against cancer represents a great challenge for researchers and, for this reason, the search for new promising drugs to improve cancer treatments has become inevitable. Oceans, due to their wide diversity of marine species and environmental conditions have proven to be precious sources of potential natural drugs with active properties. As an example, in this context several studies performed on sponges, tunicates, mollusks, and soft corals have brought evidence of the interesting biological activities of the molecules derived from these species. Also, echinoderms constitute an important phylum, whose members produce a huge number of compounds with diverse biological activities. In particular, this review is the first attempt to summarize the knowledge about starfishes and their secondary metabolites that exhibited a significant anticancer effect against different human tumor cell lines. For each species of starfish, the extracted molecules, their effects, and mechanisms of action are described.
Collapse
Affiliation(s)
- Valentina Lazzara
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| |
Collapse
|
17
|
Shikov AN, Pozharitskaya ON, Faustova NM, Kosman VM, Makarov VG, Razzazi-Fazeli E, Novak J. Pharmacokinetic Study of Bioactive Glycopeptide from Strongylocentrotus droebachiensis After Intranasal Administration to Rats Using Biomarker Approach. Mar Drugs 2019; 17:E577. [PMID: 31614490 PMCID: PMC6835498 DOI: 10.3390/md17100577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
A glycopeptide fraction (GPF) from internal organs of green sea urchins (Strongylocentrotus droebachiensis Müller, Strongylocentrotidae) has been reported to be an effective bronchitis treatment. In this study, we evaluated the pharmacokinetic and tissue distribution of GPF, following single and repeated intranasal (i/n) administration over the course of seven days in rats. The method measuring lactate dehydrogenase as biomarker was used to analyse the plasma and tissue concentrations of GPF. GPF appears in the plasma 15 min after single i/n administration (100 µg/kg) and reaches its maximum at 45 min. The area under the curve (AUC)0-24 and Cmax were similar using both i/n and intravenous administration, while mean residence time (MRT) and T1/2 after i/n administration were significantly higher compared with intravenous (i/v) administration. The absolute bioavailability of GPF after i/n administration was 89%. The values of tissue availability (ft) provided evidence about the highest concentration of GPF in the nose mucosa (ft = 34.9), followed by spleen (ft = 4.1), adrenal glands (ft = 3.8), striated muscle (ft = 1.8), kidneys (ft = 0.5), and liver (ft = 0.3). After repeated dose administration, GPF exhibited significantly higher AUC0-24 and MRT, indicating its accumulation in the plasma.
Collapse
Affiliation(s)
- Alexander N. Shikov
- St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia
| | - Olga N. Pozharitskaya
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Natalia M. Faustova
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Vera M. Kosman
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Valery G. Makarov
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Ebrahim Razzazi-Fazeli
- Vetcore facility for Research, University of Veterinary Medicine, Veterinärplatz 1. 1210 Wien, Austria;
| | - Johannes Novak
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Veterinärplatz 1. 1210 Wien, Austria;
| |
Collapse
|
18
|
Rončević T, Vukičević D, Krce L, Benincasa M, Aviani I, Maravić A, Tossi A. Selection and redesign for high selectivity of membrane-active antimicrobial peptides from a dedicated sequence/function database. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:827-834. [DOI: 10.1016/j.bbamem.2019.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
|
19
|
Membrane-active antimicrobial peptide identified in Rana arvalis by targeted DNA sequencing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:651-659. [DOI: 10.1016/j.bbamem.2018.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022]
|
20
|
Rončević T, Gerdol M, Spazzali F, Florian F, Mekinić S, Tossi A, Pallavicini A. Parallel identification of novel antimicrobial peptide sequences from multiple anuran species by targeted DNA sequencing. BMC Genomics 2018; 19:827. [PMID: 30458708 PMCID: PMC6245896 DOI: 10.1186/s12864-018-5225-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background Antimicrobial peptides (AMPs) are multifunctional effector molecules that often combine direct antimicrobial activities with signaling or immunomodulatory functions. The skin secretions of anurans contain a variety of such bioactive peptides. The identification of AMPs from frog species often requires sacrificing several specimens to obtain small quantities of crude peptides, followed by activity based fractionation to identify the active principles. Results We report an efficient alternative approach to selectively amplify AMP-coding transcripts from very small amounts of tissue samples, based on RNA extraction and cDNA synthesis, followed by PCR amplification and high-throughput sequencing of size-selected amplicons. This protocol exploits the highly conserved signal peptide region of the AMP precursors from Ranidae, Hylidae and Bombinatoridae for the design of family-specific, forward degenerate primers, coupled with a reverse primer targeting the mRNA poly-A tail. Conclusions Analysis of the assembled sequencing output allowed to identify more than a hundred full-length mature peptides, mostly from Ranidae species, including several novel potential AMPs for functional characterization. This (i) confirms the effectiveness of the experimental approach and indicates points for protocol optimization to account for particular cases, and (ii) encourages the application of the same methodology to other multigenic AMP families, also from other genera, sharing common features as in anuran AMPs. Electronic supplementary material The online version of this article (10.1186/s12864-018-5225-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomislav Rončević
- Department of Physics, Faculty of Science, University of Split, 21000, Split, Croatia.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Francesca Spazzali
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Fiorella Florian
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Stjepan Mekinić
- Public Institution for the Management of Protected Areas in the County of Split and Dalmatia - "Sea and karst", 21000, Split, Croatia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | | |
Collapse
|
21
|
Kim CH, Go HJ, Oh HY, Park JB, Lee TK, Seo JK, Elphick MR, Park NG. Identification of a novel antimicrobial peptide from the sea star Patiria pectinifera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:203-213. [PMID: 29733880 DOI: 10.1016/j.dci.2018.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptides (AMPs) are components of innate immunity found in many forms of life. However, there have been no reports of AMPs in sea star (Phylum Echinodermata). Here we report the isolation and characterization of a novel antimicrobial peptide from the coelomic epithelium extract of the sea star Patiria pectinifera. The isolated peptide comprises 38 amino acid residues, is cationic (pI 9.2), has four cysteine residues that form two disulfide bonds (C1-C3 and C2-C4), is amidated at the C-terminus, and is designated P. pectinifera cysteine-rich antimicrobial peptide (PpCrAMP). Synthetic PpCrAMP identical to the native peptide exhibited the most potent antimicrobial activity compared to analogs with different disulfide bond configurations. Expression analysis of PpCrAMP precursor transcripts revealed constitutive expression in the coelomic epithelium and tube feet of P. pectinifera. Analysis of genomic DNA and cDNA encoding the PpCrAMP precursor protein revealed that an intron splits the coding region of the mature peptide into a positively charged N-terminal domain and a C-terminal domain harboring four cysteine residues and a glycine for C-terminal amidation. No significant homology with other known AMPs was observed, while orthologs of PpCrAMP were found in other echinoderm species. These findings indicate that PpCrAMP is the prototype of a family a novel cysteine-rich AMPs that participate in mechanisms of innate immunity in echinoderms. Furthermore, the discovery of PpCrAMP may lead to the identification of related AMPs in vertebrates and protostome invertebrates.
Collapse
Affiliation(s)
- Chan-Hee Kim
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, 48513, South Korea
| | - Hye-Jin Go
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, 48513, South Korea
| | - Hye Young Oh
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, 48513, South Korea
| | - Ji Been Park
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, 48513, South Korea
| | - Tae Kwan Lee
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, 48513, South Korea
| | - Jung-Kil Seo
- Department of Food Science and Biotechnology, Kunsan National University, Kunsan, 54150, South Korea
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
22
|
Bioinspired Designs, Molecular Premise and Tools for Evaluating the Ecological Importance of Antimicrobial Peptides. Pharmaceuticals (Basel) 2018; 11:ph11030068. [PMID: 29996512 PMCID: PMC6161137 DOI: 10.3390/ph11030068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
This review article provides an overview of recent developments in antimicrobial peptides (AMPs), summarizing structural diversity, potential new applications, activity targets and microbial killing responses in general. The use of artificial and natural AMPs as templates for rational design of peptidomimetics are also discussed and some strategies are put forward to curtail cytotoxic effects against eukaryotic cells. Considering the heat-resistant nature, chemical and proteolytic stability of AMPs, we attempt to summarize their molecular targets, examine how these macromolecules may contribute to potential environmental risks vis-à-vis the activities of the peptides. We further point out the evolutional characteristics of the macromolecules and indicate how they can be useful in designing target-specific peptides. Methods are suggested that may help to assess toxic mechanisms of AMPs and possible solutions are discussed to promote the development and application of AMPs in medicine. Even if there is wide exposure to the environment like in the hospital settings, AMPs may instead contribute to prevent healthcare-associated infections so long as ecotoxicological aspects are considered.
Collapse
|
23
|
Moe MK, Haug T, Sydnes MO, Sperstad SV, Li C, Vaagsfjord LC, de la Vega E, Stensvåg K. Paralithocins, Antimicrobial Peptides with Unusual Disulfide Connectivity from the Red King Crab, Paralithodes camtschaticus. JOURNAL OF NATURAL PRODUCTS 2018; 81:140-150. [PMID: 29338238 DOI: 10.1021/acs.jnatprod.7b00780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As part of an ongoing exploration of marine invertebrates as a source of new antimicrobial peptides, hemocyte extracts from the red king crab, Paralithodes camtschaticus, were studied. Three cationic cysteine (Cys)-rich peptides, named paralithocins 1-3, were isolated by bioassay-guided purification, and their amino acid sequences determined by Edman degradation and expressed sequences tag analysis. Disulfide bond mapping was performed by high-resolution tandem mass spectrometry. The peptides (38-51 amino acids in length) share a unique Cys motif composed of eight Cys, forming four disulfide bridges with a bond connectivity of (Cys relative position) Cys1-Cys8, Cys2-Cys6, Cys3-Cys5, and Cys4-Cys7, a disulfide arrangement that has not been previously reported among antimicrobial peptides. Thus, paralithocins 1-3 may be assigned to a previously unknown family of antimicrobial peptides within the group of Cys-rich antimicrobial peptides. Although none of the isolated peptides displayed antimicrobial activity against the target strains Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus, they inhibited the growth of several marine bacterial strains with minimal inhibitory concentrations in the 12.5-100 μM range. These findings corroborate the hypothesis that marine organisms are a valuable source for discovering bioactive peptides with new structural motifs.
Collapse
Affiliation(s)
- Morten K Moe
- Multidiciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital (Ahus) , NO-1478 Lørenskog, Norway
| | - Tor Haug
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Magne O Sydnes
- Biomiljø, International Research Institute of Stavanger , Mekjarvik 12, NO-4070 Randaberg, Norway
- Department of Mathematics and Natural Science, University of Stavanger , NO-4036 Stavanger, Norway
| | - Sigmund V Sperstad
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Chun Li
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Lena C Vaagsfjord
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Enrique de la Vega
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina , 221 Ft. Johnson Road, Charleston, South Carolina 29412, United States
| | - Klara Stensvåg
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina , 221 Ft. Johnson Road, Charleston, South Carolina 29412, United States
| |
Collapse
|
24
|
Semreen MH, El-Gamal MI, Abdin S, Alkhazraji H, Kamal L, Hammad S, El-Awady F, Waleed D, Kourbaj L. Recent updates of marine antimicrobial peptides. Saudi Pharm J 2018; 26:396-409. [PMID: 29556131 PMCID: PMC5856950 DOI: 10.1016/j.jsps.2018.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 01/29/2023] Open
Abstract
Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.
Collapse
Affiliation(s)
- Mohammad H Semreen
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Shifaa Abdin
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hajar Alkhazraji
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Leena Kamal
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Saba Hammad
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Faten El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dima Waleed
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Layal Kourbaj
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
25
|
López Y, Cepas V, Soto SM. The Marine Ecosystem as a Source of Antibiotics. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Patel S, Akhtar N. Antimicrobial peptides (AMPs): The quintessential 'offense and defense' molecules are more than antimicrobials. Biomed Pharmacother 2017; 95:1276-1283. [PMID: 28938518 DOI: 10.1016/j.biopha.2017.09.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are cationic amphiphilic molecules with α-helix or β-sheet linear motifs and linear or cyclic configurations. For their role in 'defense and offense', they are present in all living organisms. AMPs are named so, as they inhibit a wide array of microbes by membrane pore formation and subsequent perturbation of mitochondrial membrane ionic balance. However, their functional repertoire is expanding with validated roles in cytotoxicity, wound healing, angiogenesis, apoptosis, and chemotaxis [1]. A number of endogenous AMPs have been characterized in human body such as defensins, cathelicidins, histatins etc. They mediate critical functions, but when homeostasis is broken, they turn hostile and initiate inflammatory diseases. This review discusses the sources of therapeutic AMPs; auto-immunity risks of endogenous AMPs, and their dermatological applications; normally overlooked risks of the peptides; and scopes ahead. This holistic work is expected to be a valuable reference for further research in this field.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA.
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
27
|
Michael P, Hansen KØ, Isaksson J, Andersen JH, Hansen E. A Novel Brominated Alkaloid Securidine A, Isolated from the Marine Bryozoan Securiflustra securifrons. Molecules 2017; 22:molecules22071236. [PMID: 28737700 PMCID: PMC6152195 DOI: 10.3390/molecules22071236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 02/02/2023] Open
Abstract
A novel brominated alkaloid, Securidine A, was isolated from the cold water marine bryozoan Securiflustra securifrons. Securidine A was isolated using semi-preparative HPLC, and the structure was elucidated by spectroscopic methods. The isolated Securidine A was tested for cytotoxic, antibacterial, and anti-diabetic activities as well as for its potential for inhibition of biofilm formation. No significant biological activity was observed in the applied bioassays, thus expanded bioactivity profiling is required, in order to reveal any potential applications for Securidine A.
Collapse
Affiliation(s)
- Priyanka Michael
- MARBIO, UiT-The Arctic University of Norway, Breivika, Tromsø N-9037, Norway.
| | - Kine Ø Hansen
- MARBIO, UiT-The Arctic University of Norway, Breivika, Tromsø N-9037, Norway.
| | - Johan Isaksson
- Department of Chemistry, UiT-The Arctic University of Norway, Breivika, Tromsø N-9037, Norway.
| | - Jeanette H Andersen
- MARBIO, UiT-The Arctic University of Norway, Breivika, Tromsø N-9037, Norway.
| | - Espen Hansen
- MARBIO, UiT-The Arctic University of Norway, Breivika, Tromsø N-9037, Norway.
| |
Collapse
|
28
|
Logashina YA, Solstad RG, Mineev KS, Korolkova YV, Mosharova IV, Dyachenko IA, Palikov VA, Palikova YA, Murashev AN, Arseniev AS, Kozlov SA, Stensvåg K, Haug T, Andreev YA. New Disulfide-Stabilized Fold Provides Sea Anemone Peptide to Exhibit Both Antimicrobial and TRPA1 Potentiating Properties. Toxins (Basel) 2017; 9:E154. [PMID: 28468269 PMCID: PMC5450702 DOI: 10.3390/toxins9050154] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/12/2023] Open
Abstract
A novel bioactive peptide named τ-AnmTx Ueq 12-1 (short name Ueq 12-1) was isolated and characterized from the sea anemone Urticina eques. Ueq 12-1 is unique among the variety of known sea anemone peptides in terms of its primary and spatial structure. It consists of 45 amino acids including 10 cysteine residues with an unusual distribution and represents a new group of sea anemone peptides. The 3D structure of Ueq 12-1, determined by NMR spectroscopy, represents a new disulfide-stabilized fold partly similar to the defensin-like fold. Ueq 12-1 showed the dual activity of both a moderate antibacterial activity against Gram-positive bacteria and a potentiating activity on the transient receptor potential ankyrin 1 (TRPA1). Ueq 12-1 is a unique peptide potentiator of the TRPA1 receptor that produces analgesic and anti-inflammatory effects in vivo. The antinociceptive properties allow us to consider Ueq 12-1 as a potential analgesic drug lead with antibacterial properties.
Collapse
Affiliation(s)
- Yulia A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine,Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Runar Gjerp Solstad
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT-The Arctic University of Norway, NO 9037 Tromsø, Norway.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Moscow Institute of Physics and Technology, Institutskyi per., 9, Dolgoprudnyi, 141700, Moscow, Russia.
| | - Yuliya V Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Irina V Mosharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Igor A Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia.
- Pushchino State Natural-Science Institute, 142290 Pushchino, Russia.
| | - Victor A Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia.
- Pushchino State Natural-Science Institute, 142290 Pushchino, Russia.
| | - Yulia A Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia.
- Pushchino State Natural-Science Institute, 142290 Pushchino, Russia.
| | - Arkadii N Murashev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia.
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Klara Stensvåg
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT-The Arctic University of Norway, NO 9037 Tromsø, Norway.
| | - Tor Haug
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT-The Arctic University of Norway, NO 9037 Tromsø, Norway.
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine,Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| |
Collapse
|
29
|
Igumnova EM, Mishchenko E, Haug T, Blencke HM, Sollid JUE, Fredheim EGA, Lauksund S, Stensvåg K, Strøm MB. Synthesis and antimicrobial activity of small cationic amphipathic aminobenzamide marine natural product mimics and evaluation of relevance against clinical isolates including ESBL-CARBA producing multi-resistant bacteria. Bioorg Med Chem 2016; 24:5884-5894. [PMID: 27692769 DOI: 10.1016/j.bmc.2016.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 11/29/2022]
Abstract
A library of small aminobenzamide derivatives was synthesised to explore a cationic amphipathic motif found in marine natural antimicrobials. The most potent compound E23 displayed minimal inhibitory concentrations (MICs) of 0.5-2μg/ml against several Gram-positive bacterial strains, including methicillin resistant Staphylococcus epidermidis (MRSE).E23 was also potent against 275 clinical isolates including Staphylococcus aureus, Enterococcus spp., Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, as well as methicillin-resistant S. aureus (MRSA), vancomycin-resistant enterococci (VRE), and ESBL-CARBA producing multi-resistant Gram-negative bacteria. The study demonstrates how structural motifs found in marine natural antimicrobials can be a valuable source for making novel antimicrobial lead-compounds.
Collapse
Affiliation(s)
- Elizaveta M Igumnova
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Ekaterina Mishchenko
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Tor Haug
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Hans-Matti Blencke
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Johanna U Ericson Sollid
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Elizabeth G Aarag Fredheim
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Silje Lauksund
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Klara Stensvåg
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Morten B Strøm
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| |
Collapse
|