1
|
Gheno GC, Kappes R, França M, Haygert Velho IMP, Xavier ACH, Lobo E Silva LE, Wagner R, Velho JP, Neto AT. Linseed oil supplementation alters milk fatty acid profile, mitigates heat stress, and improves summer milk yield in grazing dairy cows. Trop Anim Health Prod 2024; 56:337. [PMID: 39390269 DOI: 10.1007/s11250-024-04127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Dietary supplementation of fat can be an important source of energy to compensate for the reduction in dry matter intake in dairy cows during heat stress periods. Studies have reported that supplementing dairy cow diets with linseed oil (LO) can increase milk yield and enhance the levels of beneficial fatty acids, such as omega-3 fatty acids, in the milk. The objective of this research was to evaluate the effect of LO supplementation on milk fatty acids profile, milk yield and composition, and physiological parameters of grazing cows. The study was conducted in two seasons, one in spring and one in summer. A 2 × 2 Latin square design was used in each experiment. Twelve Holstein and crossbred Holstein x Jersey cows were involved in each season. Cows were divided into two groups: control (TC) with no supplementation and treatment (TL) supplemented with 400 g/day of LO. The results showed that LO supplementation altered the milk fatty acid profile: decreased concentrations of short and medium-chain fatty acids (C10:0 - C17:1) except for C13:0 and increased concentrations of long-chain fatty acids (C18, C18:1 (both trans and cis isomers), C18:2 (specific conjugated linoleic acid - CLA isomers), and C18:3 n3 (omega-3)). Additionally, milk yield increased by 1.5 l per day during summer in LO-supplemented cows, while milk fat, protein, and casein content decreased. Milk stability increased by 2.2% in the LO-supplemented group. LO-supplemented cows reduced internal body temperature and heart frequency in the afternoon and increased daily rumination time by 20 min. In conclusion, LO supplementation can be an effective strategy to improve the nutritional profile of milk by altering fatty acid composition towards potentially healthier fats, mitigate the negative effects of heat stress on grazing cows during summer, as evidenced by reduced body temperature and heart frequency and increase milk yield.
Collapse
Affiliation(s)
- Gadriéli Cristina Gheno
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - CAV/UDESC, Lages, Santa Catarina, Brazil
| | - Roberto Kappes
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - CAV/UDESC, Lages, Santa Catarina, Brazil.
| | - Marciél França
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - CAV/UDESC, Lages, Santa Catarina, Brazil
| | | | | | | | - Roger Wagner
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - João Pedro Velho
- Universidade Federal de Santa Maria, Palmeira das Missões, Rio Grande do Sul, Brazil
| | - André Thaler Neto
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - CAV/UDESC, Lages, Santa Catarina, Brazil
| |
Collapse
|
2
|
Han JH, Keum DH, Hong SJ, Kim YJ, Han SG. Comparative Evaluation of Polysaccharide Binders on the Quality Characteristics of Plant-Based Patties. Foods 2023; 12:3731. [PMID: 37893624 PMCID: PMC10606718 DOI: 10.3390/foods12203731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Polysaccharides have been used in the production of plant-based meat analogs to replicate the texture of real meat. However, there has been no study that comprehensively compares the effects of different polysaccharides, and a limited number of polysaccharides have been evaluated. Thus, we aimed to identify the most suitable polysaccharide and concentration for plant-based patties. Plant-based patties were manufactured by blending different concentrations (0%, 1%, and 2%) of six polysaccharides with other ingredients, and the quality characteristics and sensory properties were evaluated. The L* values of plant-based patties reduced during the cooking process resembled the color change of beef patty (BP). In particular, a 2% κ-carrageenan-added patty (Car-2) exhibited the lowest L* value among the plant-based patties, measured at 44.05 (p < 0.05). Texture parameters exhibited high values by adding 2% κ-carrageenan and locust bean gum, which was close to BP. In the sensory evaluation, Car-2 showed higher scores for sensory preferences than other plant-based patties. Based on our data, incorporating 2% κ-carrageenan could offer a feasible way of crafting plant-based meat analogs due to its potential to enhance texture and flavor. Further studies are required to evaluate the suitability of polysaccharides in various types of plant-based meat analogs.
Collapse
Affiliation(s)
| | | | | | | | - Sung-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.H.); (D.-H.K.); (S.-J.H.); (Y.-J.K.)
| |
Collapse
|
3
|
Li Y, Gao J, Lv J, Lambo MT, Wang Y, Wang L, Zhang Y. Replacing soybean meal with high-oil pumpkin seed cake in the diet of lactating Holstein dairy cows modulated rumen bacteria and milk fatty acid profile. J Dairy Sci 2023; 106:1803-1814. [PMID: 36710188 DOI: 10.3168/jds.2022-22503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/22/2022] [Indexed: 01/30/2023]
Abstract
This research aimed to investigate the effects of replacing soybean meal with high-oil pumpkin seed cake (HOPSC) on ruminal fermentation, lactation performance, milk fatty acid, and ruminal bacterial community in Chinese dairy cows. Six multiparous Chinese Holstein cows at 105.50 ± 5.24 d in milk (mean ± standard deviation) and 36.63 ± 0.74 kg/d of milk yield were randomly allocated, in a 3 × 3 Latin square design, to 3 dietary treatments in which HOPSC replaced soybean meal. Group 1 was the basal diet with no HOPSC (0HOPSC); group 2 was a 50% replacement of soybean meal with HOPSC and dried distillers grains with solubles (DDGS; 50HOPSC), and group 3 was a 100% replacement of soybean meal with HOPSC and DDGS (100HOPSC). We found no difference in the quantity of milk produced or milk composition among the 3 treatment groups. Feed efficiency tended to increase linearly as more HOPSC was consumed. In addition, rumen fermentation was not influenced when soybean meal was replaced with HOPSC and DDGS; the relative abundance of ruminal bacteria at the phylum and genus levels was altered. We also observed that as the level of HOPSC supplementation increased, the relative abundance of Firmicutes and Tenericutes linearly increased, whereas that of Bacteroidetes decreased. However, with increasing HOPSC supplementation, the relative abundance of Ruminococcus decreased linearly at the genus level in the rumen, and the relative abundance of Prevotella showed a linear downward tendency. Changes in dietary composition and rumen bacteria had no significant effect on the fatty acid composition of milk. In conclusion, our results indicated that replacing soybean meal with a combination of HOPSC and DDGS can meet the nutritional needs of high-yielding dairy cows without adversely affecting milk yield and quality; however, the composition of rumen bacteria could be modified. Further study is required to investigate the effects of long-term feeding of HOPSC on rumen fermentation and performance of dairy cows.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jianxu Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jingyi Lv
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Wang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Liang Wang
- Research Institute of Applied Technologies, Honghe University, Mengzi 661199, China.
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Mierlita D, Santa A, Mierlita S, Daraban SV, Suteu M, Pop IM, Mintas OS, Macri AM. The Effects of Feeding Milled Rapeseed Seeds with Different Forage:Concentrate Ratios in Jersey Dairy Cows on Milk Production, Milk Fatty Acid Composition, and Milk Antioxidant Capacity. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010046. [PMID: 36675995 PMCID: PMC9862280 DOI: 10.3390/life13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
We aimed to evaluate the effects of milled rapeseed (MR) supplementation of low- or high-concentrate diets on milk production and composition, fatty acids (FAs) profile, and antioxidant capacity. Sixteen Jersey dairy cows were used in a 4 × 4 Latin square design, for four periods of 4 weeks, and assigned to four treatments as a 2 × 2 factorial design. Dietary treatments consisted of iso-nitrogenated total mixed rations with high (65:35; LC-low concentrate) or low (50:50; HC-high concentrate) forage:concentrate (FC) ratios, supplemented with MR to provide 30 g oil/kg dry matter (DM) (LR and HR), or without MR supplement (L and H). Increasing the proportion of concentrates led to an increase in DM intake (DMI), net energy (NEL) intake, and milk production, but milk fat and protein content decreased. Supplementing diets with MR led to an increase in NEL intake and milk production, but did not affect DMI and milk composition. Diets supplemented with MR caused a decrease in the concentration of FAs with atherogenic effect and the increase in the level of FAs beneficial for human health (C18:1 cis-9, C18:1 trans-11, and C18:3 n-3), while the decrease in the FC ratio had a negative effect on omega-3 FAs. An improvement in the antioxidant capacity of milk was observed with diets with the high FC ratio but also by supplementing the feed with MR. These results could contribute to the development of effective strategies to improve the nutritional quality of milk without affecting the productive performance of cows.
Collapse
Affiliation(s)
- Daniel Mierlita
- Department of Animal Science, Faculty of Environmental Protection, University of Oradea, 1 University St., 410087 Oradea, Romania
- Doctoral School of Agricultural Engineering Sciences, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur St., 400372 Cluj-Napoca, Romania
| | - Anita Santa
- Doctoral School of Agricultural Engineering Sciences, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur St., 400372 Cluj-Napoca, Romania
| | - Stefania Mierlita
- Department of Accounting and Audit, Faculty of Economics and Business Administration, Babeş-Bolyai University, 58-60 Teodor Mihali St., 400372 Cluj-Napoca, Romania
| | - Stelian Vasile Daraban
- Department of Technological Science, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur St., 400372 Cluj-Napoca, Romania
- Correspondence:
| | - Mihai Suteu
- Department of Technological Science, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur St., 400372 Cluj-Napoca, Romania
| | - Ioan Mircea Pop
- Department of Animal Nutrition, Faculty of Food and Animal Sciences, Ion Ionescu de la Brad University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Olimpia Smaranda Mintas
- Department of Animal Science, Faculty of Environmental Protection, University of Oradea, 1 University St., 410087 Oradea, Romania
| | - Adrian Maximilian Macri
- Department of Animal Nutrition, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur St., 400372 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Yerba mate (Ilex paraguariensis) as a source of antioxidants with soybean grain in supplementation of lactating ewes reared in tropical pastures. Trop Anim Health Prod 2022; 55:13. [PMID: 36534328 DOI: 10.1007/s11250-022-03427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The hypothesis tested is that the association of soybean grain and yerba mate as an antioxidant source can increase the concentration of polyunsaturated fatty acids (PUFA) with lower oxidation of milk from lactating ewes reared in tropical pastures. Sixteen ewes were randomly distributed in a 2x2 factorial scheme (with or without yerba mate at 110 g / kg of dry matter (DM); with or without soybean grain at 210 g/kg of DM). Yerba mate intake reduced DM intake, and concentrations of ether extract (EE), protein, lactose, defatted dry extract, density, omega-3 concentrations, and the ratio between saturated/monounsaturated fatty acids (FA), but increased the concentration of monounsaturated FA and the sequestering power of free radicals by DPPH without altering the concentrations of conjugated dienes and the concentrations of substances reactive to thiobarbituric acid in milk. Supplementation with soybean grain decreased the birth weight of the lambs and increased the concentrations of conjugated linoleic acid (CLA), PUFA, omega - 6, omega ratio - 6/omega - 3, and total blood cholesterol. The addition of yerba mate did not influence the oxidative profile of milk. Supplementation with soybean grain improved the FA profile of milk, increasing the concentrations of CLA and PUFA. The results suggest that the association of yerba mate and soybean grain helps to improve the fat quality of milk from ewes raised in tropical pastures, as shown by the enhanced antioxidant activity, although it does not help prevent oxidation of milk rich in PUFA.
Collapse
|
6
|
Yousef MA, Farouk MH, Azzaz HH, Khattab MSA, Abd El Tawab AM, El-Sherbiny M. Feeding Corn Oil in a Nanoemulsified Form Alters the Unsaturated Fatty Acids in the Milk of Zaraibi Dairy Goats. Animals (Basel) 2022; 12:ani12192559. [PMID: 36230300 PMCID: PMC9558515 DOI: 10.3390/ani12192559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Increasing the polyunsaturated fatty acid content of ruminant milk represents a much needed step to increase the functional properties of the milk. However, boosting milk fatty acids through feeding strategies has remained a significant challenge for years; it requires new solutions to deliver unsaturated fatty acids in a much safer form for rumen microorganisms than the traditional supplemented raw oil form. The goal is to target less biohydrogenation, which results in less saturated fatty acid accumulation in the rumen and milk. In the present study, the ultrasonic nanoemulsification of corn oil was introduced as a replacement for the raw form of oil supplementation; it was used at 3% of the offered feed dry matter in a trial on dairy goats. The new form of corn oil supplementation was more effective than the raw form of corn oil in increasing milk productivity and fat percentage and preserving a more significant proportion of polyunsaturated fatty acids in the milk of dairy goats. Conversely, the raw form of corn oil resulted in milk fat depression and lower total solid content in addition to milk with higher proportions of saturated fatty acid. Abstract Oil in water nanoemulsion represents a new and unstudied form of oil supplementation to the ruminant diet; that is why the aim was to evaluate the potential of nanoemulsified corn oil in dairy goats’ diets on milk productivity and fatty acid proportion. Twenty-four lactating Zaraibi goats in early lactation were randomly allocated to the following treatments: control—a basal diet without any supplementation, CO—the control diet + corn oil supplied at 3% on a dry matter basis (DM), NCO—the control diet + nanoemulsified corn oil provided at 3% on a DM basis. A completely randomized design that lasted 30 days (25 days of adaptation + 5 days of sampling) was used with eight goats in each treatment. The control diet consisted of 50% concentrate and 50% Egyptian berseem clover. The NCO increased the milk production, fat percentage, and yield compared to the CO and the control. The proportions of oleic, linoleic, and linolenic acids were higher in the NCO compared to the control and CO. The NCO had less effect on the biohydrogenation intermediates’ profile than the CO; noticeably, higher proportions of unsaturated fatty acid (UFA) were associated with the NCO. In conclusion, the NCO increased milk production and decreased the transformation rate of UFA to saturated fatty acids in the biohydrogenation environment.
Collapse
Affiliation(s)
- Mahmoud Atef Yousef
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Hossam H. Azzaz
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Mostafa S. A. Khattab
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Ahmed M. Abd El Tawab
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed El-Sherbiny
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
- Correspondence:
| |
Collapse
|
7
|
Razzaghi A, Leskinen H, Ahvenjärvi S, Aro H, Bayat A. Energy utilization and milk fat responses to rapeseed oil when fed to lactating dairy cows receiving different dietary forage to concentrate ratio. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Inclusion of Sunflower Oil, Organic Selenium, and Vitamin E on Milk Production and Composition, and Blood Parameters of Lactating Cows. Animals (Basel) 2022; 12:ani12151968. [PMID: 35953958 PMCID: PMC9367271 DOI: 10.3390/ani12151968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Feeding sunflower oil, selenium, and vitamin E to lactating dairy cows has improved the nutritional profile of milk for human consumption and positively impacted animal performance. This may be attributed to the increased healthier fat components, i.e., “good fats”, and antioxidant substances in milk. This study evaluated the effects of supplementing sunflower oil, selenium, and vitamin E on milk production and composition, and the blood parameters of lactating dairy cows. Supplementing sunflower oil to lactating dairy cows provided beneficial effects on milk fatty acid profiles, increasing healthier fatty acids concentrations, which have been reported as important anticarcinogenic, antiatherogenic, and antidiabetic nutrients in human diet. However, this strategy reduced the milk fat content. Selenium and vitamin E supplementation improved milk production and provided higher selenium and vitamin E content in blood and milk. These compounds are important antioxidants and nutrients for animal and human health. Abstract Aiming to improve milk quality and animal health, the effects of the inclusion of sunflower oil with added organic selenium (Se) and vitamin E in the diets of lactating cows were evaluated. Twenty-four multiparous lactating Jersey cows were randomly enrolled into four treatments: CON (control); SEL [2.5 mg organic Se kg−1 dry matter (DM) + 1000 IU vitamin E daily]; SUN (sunflower oil 3% DM); and SEL + SUN (sunflower oil 3% DM + 2.5 mg organic Se kg−1 DM + 1000 IU vitamin E daily). The experimental period was 12 weeks with 14 days for acclimation. Cows were milked twice a day. Dry matter intake, milk production, and composition were measured daily and analyzed in a pooled 4-week sample. On day 84, white blood cell counts, as well as serum and milk Se and vitamin E levels, were assessed. Supplementation with selenium and vitamin E alone or combined with sunflower oil increased milk production, and increased the serum and milk concentrations of those nutrients. The inclusion of sunflower oil reduced fat content and DM intake but also altered the milk fatty acid profile, mainly increasing levels of trans 11 C18:1 (vaccenic) and cis 9 trans 11 conjugated linoleic acid (CLA). Our results indicate that supplementation with sunflower oil, Se and vitamin E provides beneficial effects on animal performance and milk composition, which could be an important source of CLA and antioxidants (Se and vitamin E) for human consumption.
Collapse
|
9
|
Ouppamong T, Gunun N, Tamkhonburee C, Khejornsart P, Kaewpila C, Kesorn P, Kimprasit T, Cherdthong A, Wanapat M, Polyorach S, Foiklang S, Gunun P. Fermented Rubber Seed Kernel with Yeast in the Diets of Tropical Lactating Dairy Cows: Effects on Feed Intake, Hematology, Microbial Protein Synthesis, Milk Yield and Milk Composition. Vet Sci 2022; 9:360. [PMID: 35878377 PMCID: PMC9325126 DOI: 10.3390/vetsci9070360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of the present study was to analyze the effects of yeast-fermented rubber seed kernels (YERSEK) on the feed intake, hematology, microbial protein synthesis, milk yield, and milk composition in dairy cows. Six crossbred Holstein Friesian (HF) × Thai lactating dairy cows with 110 ± 10 days in milk were randomly assigned to three different amounts of YERSEK at 0%, 10%, and 20% in a concentrate mixture using a 3 × 3 repeated Latin square design. Cows were fed with concentrate diets at a concentrate-to-milk yield ratio of 1:1.5, with rice straw fed ad libitum. The inclusion of YERSEK did not adversely affect feed intake, nutrient intake, or digestibility (p > 0.05), whereas ether extract intake and digestibility linearly increased in dairy cows receiving YERSEK (p < 0.01). Increasing YERSEK levels did not adversely affect blood urea nitrogen (BUN) levels, hematological parameters, or microbial protein synthesis (p > 0.05). Supplementation of YERSEK did not influence milk production, lactose, or protein levels (p > 0.05). However, milk fat and total solids decreased linearly (p < 0.05) with the addition of YERSEK. In conclusion, in a concentrate diet, YERSEK could be used as a protein source without negative effects on feed intake, digestibility, hematology, microbial protein synthesis, or milk yield. However, it reduced the milk fat and total solids of tropical lactating dairy cows.
Collapse
Affiliation(s)
- Thanaporn Ouppamong
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phangkhon, Sakon Nakhon 47160, Thailand; (T.O.); (C.K.); (P.K.); (T.K.)
| | - Nirawan Gunun
- Department of Animal Science, Faculty of Technology, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | - Chayapol Tamkhonburee
- Dairy Farming Promotion Organization of Thailand (DPO), Northeast Region, Khon Kaen 40260, Thailand;
| | - Pichad Khejornsart
- Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon, Province Campus, Sakon Nakhon 47000, Thailand;
| | - Chatchai Kaewpila
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phangkhon, Sakon Nakhon 47160, Thailand; (T.O.); (C.K.); (P.K.); (T.K.)
| | - Piyawit Kesorn
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phangkhon, Sakon Nakhon 47160, Thailand; (T.O.); (C.K.); (P.K.); (T.K.)
| | - Thachawech Kimprasit
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phangkhon, Sakon Nakhon 47160, Thailand; (T.O.); (C.K.); (P.K.); (T.K.)
| | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (A.C.); (M.W.)
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (A.C.); (M.W.)
| | - Sineenart Polyorach
- Department of Animal Production Technology and Fisheries, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Suban Foiklang
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand;
| | - Pongsatorn Gunun
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phangkhon, Sakon Nakhon 47160, Thailand; (T.O.); (C.K.); (P.K.); (T.K.)
| |
Collapse
|
10
|
Acosta Balcazar IC, Granados Rivera LD, Salinas Chavira J, Estrada Drouaillet B, Albarrán MR, Bautista Martínez Y. Relationship between the Composition of Lipids in Forages and the Concentration of Conjugated Linoleic Acid in Cow's Milk: A Review. Animals (Basel) 2022; 12:1621. [PMID: 35804520 PMCID: PMC9264792 DOI: 10.3390/ani12131621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Conjugated linoleic acid (CLA), has been shown to have protective effects against various diseases, such as obesity, arteriosclerosis, diabetes, chronic inflammatory diseases, and cancer. This fatty acid in ruminants results from two processes, biohydrogenation, which takes place in the rumen, and de novo synthesis, carried out in the mammary gland, and it has linoleic and α-linolenic acids as its precursors. The amounts of precursors in the diets of animals are related to the amounts of CLA in milk. In the literature review, it was found that the milk of cows fed fresh forage has a higher amount of CLA because they have a higher amount of linoleic acid and α-linolenic acid compared to other foods used in the diets of cows. The amount of CLA precursors in pastures can be increased through agronomic practices, such as nitrogen fertilization, and regrowth age. It is also a technique used to increase the amount of CLA in milk to obtain a greater benefit regarding its nutritional value.
Collapse
Affiliation(s)
- Isabel Cristina Acosta Balcazar
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Tamaulipas, Mexico; (I.C.A.B.); (J.S.C.); (M.R.A.)
| | | | - Jaime Salinas Chavira
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Tamaulipas, Mexico; (I.C.A.B.); (J.S.C.); (M.R.A.)
| | - Benigno Estrada Drouaillet
- Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Tamaulipas, Mexico;
| | - Miguel Ruiz Albarrán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Tamaulipas, Mexico; (I.C.A.B.); (J.S.C.); (M.R.A.)
| | - Yuridia Bautista Martínez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Tamaulipas, Mexico; (I.C.A.B.); (J.S.C.); (M.R.A.)
| |
Collapse
|
11
|
Reis LG, da Silva TH, Salles MSV, Andrade AFC, Martins SMMK, Takeuchi PL, Vidal AMC, Netto AS. Effect of cow's milk with different PUFA n-6: n-3 ratios on performance, serum lipid profile, and blood parameters of grower gilts. PLoS One 2022; 17:e0258629. [PMID: 35617293 PMCID: PMC9135250 DOI: 10.1371/journal.pone.0258629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
The concern with human health has increased the interest in producing foods enriched with polyunsaturated fatty acids (PUFA), directly or naturally, by inclusion in the animals' diet. The positive effects such as antithrombotic, anti-inflammatory, and hypolipidemic have been observed in pigs and rats, used as human models for study. The present study evaluated the effect of cow's milk with different lipid profiles on performance, serum fatty acid profile, biochemical analysis, and a complete blood count of gilts used as a human model. At 34 days, thirty gilts were equally distributed in three treatments. Experimental treatments were milk from cows without the oil supplementation (C), milk from cows fed an enriched diet with linseed oil (n-3), and milk from cows fed an enriched diet with soybean oil (n-6). Milk supplementation was performed until 190 days old, provided once in the morning. The n-3 and n-6 milk reduced the concentration of myristic acid in the blood and increased the leukocytes. Milk enriched with n-3 compared to n-6 reduced the stearic acid. In conclusion, milk with a better PUFA profile can reduce saturated fatty acids in the blood and alter the concentration of cells in the defense system.
Collapse
Affiliation(s)
- Leriana Garcia Reis
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Rua Duque de Caxias Norte, Pirassununga, SP, Brazil
| | - Thiago Henrique da Silva
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Rua Duque de Caxias Norte, Pirassununga, SP, Brazil
| | | | - André Furugen Cesar Andrade
- Department of Animal Reproduction, School of Veterinary and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte, Pirassununga, Brazil
| | - Simone Maria Massami Kitamura Martins
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Rua Duque de Caxias Norte, Pirassununga, SP, Brazil
| | - Paula Lumy Takeuchi
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, Brazil
| | - Ana Maria Centola Vidal
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Rua Duque de Caxias Norte, Pirassununga, SP, Brazil
| | - Arlindo Saran Netto
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Rua Duque de Caxias Norte, Pirassununga, SP, Brazil
| |
Collapse
|
12
|
Salles MS, Netto AS, Zanetti MA, Samóra TS, Junior LCR, Lima CG, Salles FA. Milk biofortification through dietary supplementation of combined selenium, vitamin E and sunflower oil. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Chagas JC, Ramin M, Exposito RG, Smidt H, Krizsan SJ. Effect of a Low-Methane Diet on Performance and Microbiome in Lactating Dairy Cows Accounting for Individual Pre-Trial Methane Emissions. Animals (Basel) 2021; 11:ani11092597. [PMID: 34573563 PMCID: PMC8468840 DOI: 10.3390/ani11092597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
This study examined the effects of partly replacing grass silage (GS) with maize silage (MS), with or without rapeseed oil (RSO) supplementation, on methane (CH4) emissions, production performance, and rumen microbiome in the diets of lactating dairy cows. The effect of individual pre-trial CH4-emitting characteristics on dietary emissions mitigation was also examined. Twenty Nordic Red cows at 71 ± 37.2 (mean ± SD) days in milk were assigned to a replicated 4 × 4 Latin square design with four dietary treatments (GS, GS supplemented with RSO, GS plus MS, GS plus MS supplemented with RSO) applied in a 2 × 2 factorial arrangement. Partial replacement of GS with MS decreased the intake of dry matter (DM) and nutrients, milk production, yield of milk components, and general nutrient digestibility. Supplementation with RSO decreased the intake of DM and nutrients, energy-corrected milk yield, composition and yield of milk fat and protein, and general digestibility of nutrients, except for crude protein. Individual cow pre-trial measurements of CH4-emitting characteristics had a significant influence on gas emissions but did not alter the magnitude of CH4 emissions. Dietary RSO decreased daily CH4, yield, and intensity. It also increased the relative abundance of rumen Methanosphaera and Succinivibrionaceae and decreased that of Bifidobacteriaceae. There were no effects of dietary MS on CH4 emissions in this study, but supplementation with 41 g RSO/kg of DM reduced daily CH4 emissions from lactating dairy cows by 22.5%.
Collapse
Affiliation(s)
- Juana C. Chagas
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences (SLU), Skogsmarksgränd, 90183 Umeå, Sweden;
- Correspondence: (J.C.C.); (S.J.K.); Tel.: +46-90-7868748 (J.C.C.)
| | - Mohammad Ramin
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences (SLU), Skogsmarksgränd, 90183 Umeå, Sweden;
| | - Ruth Gomez Exposito
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (R.G.E.); (H.S.)
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (R.G.E.); (H.S.)
| | - Sophie J. Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences (SLU), Skogsmarksgränd, 90183 Umeå, Sweden;
- Correspondence: (J.C.C.); (S.J.K.); Tel.: +46-90-7868748 (J.C.C.)
| |
Collapse
|
14
|
Long-Term Effects of Dietary Supplementation with Olive Oil and Hydrogenated Vegetable Oil on the Rumen Microbiome of Dairy Cows. Microorganisms 2021; 9:microorganisms9061121. [PMID: 34067293 PMCID: PMC8224598 DOI: 10.3390/microorganisms9061121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
Dietary lipids increase energy density in dairy cow diets and in some cases can increase beneficial fatty acids (FA) in milk and dairy products. However, the degree of FA saturation may affect the rumen microbiome. The objective of this study was to determine the long-term effects of feeding saturated (hydrogenated vegetable oil; HVO) or unsaturated (olive oil; OO) fatty acid (FA) sources on the rumen microbiome of dairy cows. For 63 days, 15 mid-lactating cows were fed with either a basal diet (no fat supplement), or the basal diet supplemented with 3% dry matter (DM), either HVO or OO. Rumen contents were collected on days 21, 42 and 63 for 16S rRNA gene sequencing using the Illumina MiSeq platform. The results reveal dominance of the phyla Firmicutes (71.5%) and Bacteroidetes (26.2%), and their respective prevalent genera Succiniclasticum (19.4%) and Prevotella (16.6%). Succiniclasticum increased with both treatments at all time points. Prevotella was reduced on day 42 in both diets. Bacterial diversity alpha or beta were not affected by diets. Predicted bacterial functions by CowPI showed changes in energy and protein metabolism. Overall, 3% DM of lipid supplementation over 63 days can be used in dairy cow diets without major impacts on global bacterial community structure.
Collapse
|
15
|
X. S. Oliveira M, Palma ASV, Reis BR, Franco CSR, Marconi APS, Shiozaki FA, G. Reis L, Salles MSV, Netto AS. Inclusion of soybean and linseed oils in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet. PLoS One 2021; 16:e0246357. [PMID: 33561133 PMCID: PMC7872270 DOI: 10.1371/journal.pone.0246357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/15/2021] [Indexed: 01/09/2023] Open
Abstract
Fluid milk and its derivatives are important dietary ingredients that contribute to daily nutrient intake of the modern Homo sapiens. To produce milk that is healthier for human consumption, the present study evaluated the effect of adding soybean oil and linseed oil in the diet of lactating cows. The fatty acid profile of milk, milk composition, and the blood parameters of cows were evaluated. Eighteen Holstein cows were distributed in a replicated Latin square design and distributed according to the following treatments: 1) Control (CC): traditional dairy cow diet, without addition of oil; 2) Soybean oil (SO): 2.5% addition of soybean oil to the traditional diet, as a source of omega-6; 3) Linseed oil (LO): 2.5% addition of linseed oil in the diet as a source of omega-3. Milk production was not affected, but oil supplementation decreased feed intake by 1.93 kg/cow/day. The milk fat percentage was significantly lower when cows were supplemented with vegetable oil (3.37, 2.75 and 2.89% for CC, SO and LO, respectively). However, both soybean and linseed oils decreased the concentration of saturated fatty acids (66.89, 56.52 and 56.60 g/100g for CC, SO and LO respectively), increased the amount of unsaturated fatty acids in milk (33.05, 43.39, and 43.35 g/100g for CC, SO and LO respectively) and decreased the ratio between saturated/unsaturated fatty acids (2.12, 1.34, and 1.36 for CC, SO and LO respectively). Furthermore, SO and LO increased significantly the concentration of monounsaturated fatty acids (29.58, 39.55 and 39.47 g/100g for CC, SO and LO respectively), though it did not significantly alter the level of polyunsaturated fatty acids in milk fat (3.57, 3.93 and 3.98 g/100g for CC, SO and LO respectively). Supplementation with LO enhanced the concentration of omega-3 fatty acids on milk (0.32, 0.36, and 1.02 for CC, SO and LO respectively). Blood variables aspartate aminotransferase, gamma glutamyl transferase, urea, albumin, creatinine and total proteins were not altered. On the other hand, total cholesterol, HDL and LDL were greater in the group supplemented with vegetable oils. Supplementation with vegetable oils reduced the dry matter intake of cows, the fat content of milk, and improved saturated/unsaturated fatty acid ratio of milk fat. Compared to the SO treatment, animals fed LO produced milk with greater content of omega-3, and a more desirable omega-6/omega-3 ratio on a human nutrition perspective. Thus, the inclusion of SO and LO in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human consumption.
Collapse
Affiliation(s)
- Mauricio X. S. Oliveira
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Andre S. V. Palma
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Barbara R. Reis
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Camila S. R. Franco
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Alessandra P. S. Marconi
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Fabiana A. Shiozaki
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Leriana G. Reis
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Arlindo S. Netto
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
16
|
Samková E, Kalač P. Rapeseed supplements affect propitiously fatty acid composition of cow milk fat: A meta-analysis. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Liu Y, Li Y, Xiao Y, Peng Y, He J, Chen C, Xiao D, Yin Y, Li F. Mulberry leaf powder regulates antioxidative capacity and lipid metabolism in finishing pigs. ACTA ACUST UNITED AC 2020; 7:421-429. [PMID: 34258430 PMCID: PMC8245823 DOI: 10.1016/j.aninu.2020.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/31/2020] [Accepted: 08/02/2020] [Indexed: 11/18/2022]
Abstract
This study evaluated the potential of mulberry leaf powder as an unconventional feed material for finishing pigs by assessing the growth performance, antioxidative properties, fatty acid profile, and lipid metabolism in 180 Xiangcun black pigs. Pigs with an initial body weight (BW) of 71.64 ± 1.46 kg were randomly assigned to 5 treatment groups, including the control diet and 4 experimental diets. The corn, soybean meal, and wheat bran in the control diet were partly replaced by 3%, 6%, 9%, or 12% mulberry leaf powder in experimental diets. There were 6 replicates (pens) of 6 pigs per replicate in each treatment. Blood and muscle samples were collected after the 50-day feed experiment. Compared with the control group, the 3%, 6%, and 9% mulberry diets had no adverse effect (P > 0.05) on the growth performance of pigs. The serum glutathione peroxidase activity and glutathione concentration increased linearly (P < 0.05) with the increase in dietary mulberry inclusion. There was no significant difference in the relative expression levels of antioxidant-related genes in muscle tissue between the control and mulberry groups. Inclusion of dietary mulberry powder increased (P < 0.05) the content of polyunsaturated fatty acids, especially in the longissimus dorsi (LD) muscle, up-regulated (P < 0.05) the relative mRNA expression level of uncoupling protein-3 in muscle tissue, but down-regulated (P < 0.05) the relative mRNA expression levels of hormone-sensitive lipase, acetyl CoA carboxylase α, lipoprotein lipase, and peroxisome proliferator-activated receptor γ in LD in a linear pattern. The nuclear respiratory factor 2 expression level in the LD muscle of pigs fed the 9% mulberry diet was higher (P < 0.01) than that in the other mulberry groups and control group. The inclusion of less than 12% dietary mulberry did not detrimentally affect the growth performance of Xiangcun black pigs, but enhanced the serum antioxidant property, increased the polyunsaturated fatty acid content, and inhibited lipid oxidation by regulating gene expression levels of lipid metabolism and mitochondrial uncoupling protein in muscle tissue. Mulberry leaves can be utilized as a forage crop in the diet of finishing pigs.
Collapse
Affiliation(s)
- Yingying Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, and Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Yinghui Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yinglin Peng
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Chen Chen
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, and Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, and Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Corresponding author.
| |
Collapse
|
18
|
dos Santos M, Munekata PE, Pateiro M, Magalhães GC, Barretto ACS, Lorenzo JM, Pollonio MAR. Pork skin-based emulsion gels as animal fat replacers in hot-dog style sausages. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Lim DH, Mayakrishnan V, Lee HJ, Ki KS, Kim TI, Kim Y. A comparative study on milk composition of Jersey and Holstein dairy cows during the early lactation. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:565-576. [PMID: 32803188 PMCID: PMC7416159 DOI: 10.5187/jast.2020.62.4.565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 11/20/2022]
Abstract
Recently, Jersey cattle was introduced and produced by embryo transfer to Korea. This study was conducted to investigate the differences of milk compositions between Jersey and Holstein cows and the relationship between days in milk (DIM) and milk compositions during early lactation. Data were collected from twelve lactating cows from Department of Animal Resources Development at National Institute of Animal Science. Cows in parity 1 were used, and calved at spring from April to March of 2017. All cows were housed in two sections within a free-stall barn, which divided into six from each breed, and received a basal total mixed ration. Milk samples of each cow were collected at 3 DIM and 30 DIM for analyzing the milk compositions, including fatty acids (FA), amino acids and minerals. Total solids, citrate, and milk urea nitrogen level were differed between the breeds (p < 0.05). As DIM went from 3 to 30, milk protein, total solids, and somatic cell count decreased (p < 0.05), but lactose increased in all breed milk (p < 0.05). Citrate and free fatty acid (FFA) elevated in Jersey milk (p < 0.05), whereas reduced in Holstein milk (p < 0.05). Proportions of some individual FA varied from the breeds. Myristic (C14:0), palmitic (C16:0), and arachidonic acid (C20:4) in milk from all cows were higher at 3 DIM than at 30 DIM (p < 0.05). Also, stearic (C18:0) and oleic acid (C18:1) were lower at 3 DIM than at 30 DIM (p < 0.05), and the C18:1 to C18:0 ratio was significantly differed in DIM × breed interactions (p < 0.05). The contents of the individual amino acids did not differ from the breeds. Calcium, phosphorous, magnesium, and zinc (Zn) contents was significantly increased in Holstein milk than Jersey milk at 3 DIM. Also, K and Zn concentrations were higher in Holstein milk than in Jersey milk at 30 DIM (p < 0.05). It was concluded that Jersey cows would produce more effective milk in processing dairy products and more proper energy status compared with Holstein cows in early lactation under the same environmental and nutritional conditions.
Collapse
Affiliation(s)
- Dong-Hyun Lim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Vijayakumar Mayakrishnan
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Hyun-Jeong Lee
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Kwang-Seok Ki
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Tae-Il Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
20
|
Rodríguez R, Alomar D, Morales R. Milk and meat fatty acids from sheep fed a plantain-chicory mixture or a grass-based permanent sward. Animal 2020; 14:1102-1109. [PMID: 31662130 DOI: 10.1017/s1751731119002611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plantain and chicory are interesting forage species since they present good nutritional quality and are more resistant to drought than many temperate grasses. The fatty acid (FA) profile in milk and meat is related to a growing concern for the consumption of healthy foods, that is, with a lower content of saturated FA, higher polyunsaturated FA (PUFA) and a favourable n-6 : n-3 FAs ratio. Our objective was to evaluate the FA content in ewe's milk and lamb's meat fed a plantain-chicory mixture (PCH) or a grass-based permanent sward (GBS) dominated by perennial ryegrass. Eighteen Austral ewes in mid-lactation were allocated to PCH and GBS treatments. Milk samples were obtained during September (spring). Thirty weaned lambs were finished on both treatments from November to December (7 weeks), slaughtered and their meat sampled. Fat from milk and meat samples was extracted and stored until analysed by gas chromatography. Milk fat from GBS was higher than from PCH (P < 0.05) in C18:0 (11 385 v. 5874 mg/100 g FA), 9c-18:1 (15 750 v. 8565 mg/100 g FA), 11 t-18:1 (4576 v. 2703 mg/100 g FA) and 9c,11 t-18:2 (1405 v. 921 mg/100 g FA) and lower in 18:2n-6 (827 v. 1529 mg/100 g FA) and 18:3n-3 (943 v. 1318 mg/100 g FA) FA. Total mono-unsaturated FA was higher in GBS than PCH (P < 0.05). Meat fat from PCH swards presented a higher (P < 0.05) content than GBS for 18:2n-6 (46.8 v. 28.2 mg/100 g FA), linolenic (24.6 v. 14.2 mg/100 g FA), polyunsaturated FA (119.7 v. 73.4 mg/100 g FA), n-6 (65.9 v. 40.8 mg/100 g FA) and n-3 (53.8 v. 32.5 mg/100 g FA), respectively. No effect of treatment (P > 0.05) was detected for 9c-18:1 (283.9 v. 205.8 mg/100 g FA), 11 t-18:1 (26.2 v. 19.3 mg/100 g FA) and 9c,11 t-18:2 (10.1 v. 7.6 mg/100 g FA), for PCH and GBS. These results suggest that grazing a PCH mixture results in a higher concentration of PUFA in ewes' milk and in lambs' fat, as compared to a GBS sward.
Collapse
Affiliation(s)
- R Rodríguez
- Escuela de Graduados, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile
| | - D Alomar
- Instituto Producción Animal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Casilla 567, Valdivia5090000, Chile
| | - R Morales
- Instituto de Investigaciones Agropecuarias, INIA Remehue, Ruta 5 Norte km 8, P.O. Box 24-0, Osorno, Chile
| |
Collapse
|
21
|
Emulsion gels based on pork skin and dietary fibers as animal fat replacers in meat emulsions: An adding value strategy to byproducts. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108895] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Souto TDS, Nakao FSN, Giriko CÁ, Dias CT, Cheberle AIDP, Lambertucci RH, Mendes-da-Silva C. Lard-rich and canola oil-rich high-fat diets during pregnancy promote rats’ offspring neurodevelopmental delay and behavioral disorders. Physiol Behav 2020; 213:112722. [DOI: 10.1016/j.physbeh.2019.112722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
|
23
|
Ballou MA, Davis EM, Kasl BA. Nutraceuticals: An Alternative Strategy for the Use of Antimicrobials. Vet Clin North Am Food Anim Pract 2019; 35:507-534. [PMID: 31590900 PMCID: PMC7127241 DOI: 10.1016/j.cvfa.2019.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Livestock industries strive to improve the health of their animals and, in the future, they are going to be required to do this with a continued reduction in antimicrobial use. Nutraceuticals represent a group of compounds that may help fill that void because they exert some health benefits when supplemented to livestock. This review is focused on the mechanisms of action, specifically related to the immune responses and health of ruminants. The nutraceutical classes discussed include probiotics, prebiotics, phytonutrients (essential oils and spices), and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Michael A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - Emily M Davis
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Benjamin A Kasl
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
24
|
Nguyen QV, Malau-Aduli BS, Cavalieri J, Malau-Aduli AEO, Nichols PD. Enhancing Omega-3 Long-Chain Polyunsaturated Fatty Acid Content of Dairy-Derived Foods for Human Consumption. Nutrients 2019; 11:E743. [PMID: 30934976 PMCID: PMC6520953 DOI: 10.3390/nu11040743] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/15/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA) are termed essential fatty acids because they cannot be synthesized de novo by humans due to the lack of delta-12 and delta-15 desaturase enzymes and must therefore be acquired from the diet. n-3 PUFA include α-linolenic acid (ALA, 18:3n-3), eicosapentaenoic (EPA, 20:5n-3), docosahexaenoic (DHA, 22:6n-3), and the less recognized docosapentaenoic acid (DPA, 22:5n-3). The three long-chain (≥C20) n-3 PUFA (n-3 LC-PUFA), EPA, DHA, and DPA play an important role in human health by reducing the risk of chronic diseases. Up to the present time, seafood, and in particular, fish oil-derived products, have been the richest sources of n-3 LC-PUFA. The human diet generally contains insufficient amounts of these essential FA due largely to the low consumption of seafood. This issue provides opportunities to enrich the content of n-3 PUFA in other common food groups. Milk and milk products have traditionally been a major component of human diets, but are also among some of the poorest sources of n-3 PUFA. Consideration of the high consumption of milk and its processed products worldwide and the human health benefits has led to a large number of studies targeting the enhancement of n-3 PUFA content in dairy products. The main objective of this review was to evaluate the major strategies that have been employed to enhance n-3 PUFA content in dairy products and to unravel potential knowledge gaps for further research on this topic. Nutritional manipulation to date has been the main approach for altering milk fatty acids (FA) in ruminants. However, the main challenge is ruminal biohydrogenation in which dietary PUFA are hydrogenated into monounsaturated FA and/or ultimately, saturated FA, due to rumen microbial activities. The inclusion of oil seed and vegetable oil in dairy animal diets significantly elevates ALA content, while the addition of rumen-protected marine-derived supplements is the most effective way to increase the concentration of EPA, DHA, and DPA in dairy products. In our view, the mechanisms of n-3 LC-PUFA biosynthesis pathway from ALA and the biohydrogenation of individual n-3 LC-PUFA in ruminants need to be better elucidated. Identified knowledge gaps regarding the activities of candidate genes regulating the concentrations of n-3 PUFA and the responses of ruminants to specific lipid supplementation regimes are also critical to a greater understanding of nutrition-genetics interactions driving lipid metabolism.
Collapse
Affiliation(s)
- Quang V Nguyen
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia.
- College of Economics and Techniques, Thai Nguyen University, Thai Nguyen 252166, Vietnam.
| | - Bunmi S Malau-Aduli
- College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia.
| | - John Cavalieri
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia.
| | - Aduli E O Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia.
- Asia Pacific Nutrigenomics and Nutrigenetics Organisation (APNNO), CSIRO Food & Nutrition, Adelaide SA 5000, Australia.
| | - Peter D Nichols
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia.
- CSIRO Oceans & Atmosphere, PO Box 1538, Hobart TAS 7001, Australia.
- Nutrition Society of Australia (NSA), Level 3, 33-35 Atchison Street, St Leonards, NSW 2065, Australia.
- Section, American Oil Chemists Society (AAOCS), 2710 S. Boulder, Urbana, IL 61802-6996, USA.
| |
Collapse
|
25
|
Hifzulrahman, Abdullah M, Akhtar MU, Pasha TN, Bhatti JA, Ali Z, Saadullah M, Haque MN. Comparison of oil and fat supplementation on lactation performance of Nili Ravi buffaloes. J Dairy Sci 2019; 102:3000-3009. [PMID: 30799102 DOI: 10.3168/jds.2018-15452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022]
Abstract
The effects of feeding rumen-inert fat sources on production responses of lactating dairy cows have been well reported but less thoroughly described in lactating dairy buffalo. The objective of this study was to investigate the effect of oil and 2 different rumen-inert fat sources on dry matter intake, milk yield, milk composition, and milk fatty acid (FA) profile in Nili Ravi buffalo. Twelve multiparous mid-lactating Nili Ravi buffaloes received 4 treatments in a 4 × 4 Latin square design with a period length of 21 d. The treatments were (1) the basal diet without supplementation of oil or fats (CTRL), (2) the basal diet supplemented with canola oil (CO), (3) the basal diet supplemented with calcium salts of palm FA (Ca-FA), and (4) the basal diet supplemented with high palmitic acid (PA). Dry matter intake was decreased by 4.4% in the CO compared with Ca-FA and PA. Milk yield and milk fat yield were increased by 7.8 and 14.3%, respectively, in CO, Ca-FA, and PA compared with the CTRL. Milk fat content increased by 7.5%, whereas milk fat yield tended to increase with the supplementation of Ca-FA and PA compared with CO. No effect on milk yield and milk composition was observed in Ca-FA versus PA treatments. The yield of medium-chain FA was increased by Ca-FA and PA versus CO. The CO treatment increased the yield of long-chain FA compared with Ca-FA and PA treatments. Plasma glucose level was higher in CO, Ca-FA, and PA compared with the CTRL. In conclusion, feeding rumen-inert fats in the lactating buffalo diet proved to be a useful strategy to increase the 3.5% fat-corrected milk yield due to the higher milk fat content in this study.
Collapse
Affiliation(s)
- Hifzulrahman
- Department of Livestock Production, University of Veterinary & Animal Sciences, Outfall Road, Lahore 54000, Pakistan
| | - M Abdullah
- Department of Livestock Production, University of Veterinary & Animal Sciences, Outfall Road, Lahore 54000, Pakistan
| | - M U Akhtar
- Department of Animal Nutrition, University of Veterinary & Animal Sciences, Outfall Road, Lahore 54000, Pakistan
| | - T N Pasha
- Department of Animal Nutrition, University of Veterinary & Animal Sciences, Outfall Road, Lahore 54000, Pakistan
| | - J A Bhatti
- Department of Livestock Production, University of Veterinary & Animal Sciences, Outfall Road, Lahore 54000, Pakistan
| | - Z Ali
- Applied Chemistry Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore 54600, Pakistan
| | - M Saadullah
- Department of Livestock Production, University of Veterinary & Animal Sciences, Outfall Road, Lahore 54000, Pakistan
| | - M N Haque
- Department of Animal Nutrition, University of Veterinary & Animal Sciences, Outfall Road, Lahore 54000, Pakistan.
| |
Collapse
|
26
|
Jackson V, Penumetcha M. Dietary oxidised lipids, health consequences and novel food technologies that thwart food lipid oxidation: an update. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Victoria Jackson
- University of Central Missouri 108 W South St Warrensburg MO 64093 USA
| | - Meera Penumetcha
- University of Central Missouri 108 W South St Warrensburg MO 64093 USA
| |
Collapse
|
27
|
Li Y, Liu Y, Li F, Sun A, Lin Q, Huang X, Yin Y. Effects of dietary ramie powder at various levels on growth performance, antioxidative capacity and fatty acid profile of finishing pigs. J Anim Physiol Anim Nutr (Berl) 2018; 103:564-573. [PMID: 30549111 DOI: 10.1111/jpn.13031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
This study was conducted to evaluate the effects of ramie (Boehmeria nivea, previously known as a fibre crop and also called "China grass") included in diets on growth performance, antioxidative capacity and muscular fatty acid profile of finishing pigs. A total of 180 Xiangcun Black pigs (initial body weight =70.71 ± 1.21 kg) were randomly allotted to 1 of 5 dietary treatments with six pens of six pigs per pen. The pigs were provided a basal diet or a diet contained 3%, 6%, 9% or 12% of ramie powder during a 50-day experiment period. The results showed that the inclusion of ramie increased (quadratic, p < 0.05) the average daily gain (ADG) and gain:feed ratio (G:F) with the highest value of ADG and G:F in 3% ramie group, but ramie content in the diet up to 9% reduced the growth performance of the pigs compared with that of 3% ramie group. The activity of serum total superoxide dismutase (SOD) was increased (linear, p < 0.05) by ramie, while content of malondialdehyde was decreased (linear, p < 0.05). As increasing the dietary ramie level, the mRNA expression level of SOD1 was increased quadratically (p < 0.05) in muscle tissues. Moreover, the addition of ramie linearly increased (p < 0.05) polyunsaturated fatty acids content, whereas it linearly reduced (p < 0.05) the lipid indices of atherogenicity (AI) and thrombogenicity (TI) in muscle tissues, and lower values of AI and TI reflect a "healthier" fat composition. The results indicated that ramie in a diet not more than 9% may improve antioxidative capacity with no detrimental impact on growth performance of Chinese native finishing pigs; meanwhile, it could beneficially change the pork fatty acid pattern which has a positive impact on consumer's health.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Yingying Liu
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Ao Sun
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, China.,School of Biology, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
28
|
Fainberg HP, Birtwistle M, Alagal R, Alhaddad A, Pope M, Davies G, Woods R, Castellanos M, May ST, Ortori CA, Barrett DA, Perry V, Wiens F, Stahl B, van der Beek E, Sacks H, Budge H, Symonds ME. Transcriptional analysis of adipose tissue during development reveals depot-specific responsiveness to maternal dietary supplementation. Sci Rep 2018; 8:9628. [PMID: 29941966 PMCID: PMC6018169 DOI: 10.1038/s41598-018-27376-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/30/2018] [Indexed: 01/23/2023] Open
Abstract
Brown adipose tissue (BAT) undergoes pronounced changes after birth coincident with the loss of the BAT-specific uncoupling protein (UCP)1 and rapid fat growth. The extent to which this adaptation may vary between anatomical locations remains unknown, or whether the process is sensitive to maternal dietary supplementation. We, therefore, conducted a data mining based study on the major fat depots (i.e. epicardial, perirenal, sternal (which possess UCP1 at 7 days), subcutaneous and omental) (that do not possess UCP1) of young sheep during the first month of life. Initially we determined what effect adding 3% canola oil to the maternal diet has on mitochondrial protein abundance in those depots which possessed UCP1. This demonstrated that maternal dietary supplementation delayed the loss of mitochondrial proteins, with the amount of cytochrome C actually being increased. Using machine learning algorithms followed by weighted gene co-expression network analysis, we demonstrated that each depot could be segregated into a unique and concise set of modules containing co-expressed genes involved in adipose function. Finally using lipidomic analysis following the maternal dietary intervention, we confirmed the perirenal depot to be most responsive. These insights point at new research avenues for examining interventions to modulate fat development in early life.
Collapse
Affiliation(s)
- Hernan P Fainberg
- Division of Child Health, Obstetrics & Gynaecology, The University of Nottingham, Nottingham, United Kingdom
| | - Mark Birtwistle
- Division of Child Health, Obstetrics & Gynaecology, The University of Nottingham, Nottingham, United Kingdom
| | - Reham Alagal
- Division of Child Health, Obstetrics & Gynaecology, The University of Nottingham, Nottingham, United Kingdom.,Princess Nourah Bint Abdulrahman University, Department of Nutrition and food science, College of Home Economics, Riyadh, BOX: 84428, Saudi Arabia
| | - Ahmad Alhaddad
- Division of Child Health, Obstetrics & Gynaecology, The University of Nottingham, Nottingham, United Kingdom
| | - Mark Pope
- Division of Child Health, Obstetrics & Gynaecology, The University of Nottingham, Nottingham, United Kingdom
| | - Graeme Davies
- Division of Child Health, Obstetrics & Gynaecology, The University of Nottingham, Nottingham, United Kingdom
| | - Rachel Woods
- Division of Child Health, Obstetrics & Gynaecology, The University of Nottingham, Nottingham, United Kingdom
| | - Marcos Castellanos
- Nottingham Arabidopsis Stock Centre, School of Biosciences, The University of Nottingham, Nottingham, United Kingdom
| | - Sean T May
- Nottingham Arabidopsis Stock Centre, School of Biosciences, The University of Nottingham, Nottingham, United Kingdom
| | - Catharine A Ortori
- Centre for Analytical Bioscience, School of Pharmacy, The University of Nottingham, Nottingham, United Kingdom
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, The University of Nottingham, Nottingham, United Kingdom
| | - Viv Perry
- Robinson Research Institute, Medical School, University of Adelaide, Adelaide, Australia
| | | | | | - Eline van der Beek
- Nutricia Research, Utrecht, The Netherlands.,Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Harold Sacks
- VA Endocrinology and Diabetes Division, VA Greater Los Angeles Healthcare System, and Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Helen Budge
- Division of Child Health, Obstetrics & Gynaecology, The University of Nottingham, Nottingham, United Kingdom
| | - Michael E Symonds
- Division of Child Health, Obstetrics & Gynaecology, The University of Nottingham, Nottingham, United Kingdom. .,Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
29
|
Cheruiyot EK, Bett RC, Amimo JO, Mujibi FDN. Milk Composition for Admixed Dairy Cattle in Tanzania. Front Genet 2018; 9:142. [PMID: 29740476 PMCID: PMC5928135 DOI: 10.3389/fgene.2018.00142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/06/2018] [Indexed: 01/10/2023] Open
Abstract
It is well established that milk composition is affected by the breed and genotype of a cow. The present study investigated the relationship between the proportion of exotic genes and milk composition in Tanzanian crossbred dairy cows. Milk samples were collected from 209 animals kept under smallholder production systems in Rungwe and Lushoto districts of Tanzania. The milk samples were analyzed for the content of components including fat, protein, casein, lactose, solids-not-fat (SNF), and the total solids (TS) through infrared spectroscopy using Milko-Scan FT1 analyzer (Foss Electric, Denmark). Hair samples for DNA analysis were collected from individual cows and breed composition determined using 150,000 single nucleotide polymorphism (SNP) markers. Cows were grouped into four genetic classes based on the proportion of exotic genes present: 25-49, 50-74, 75-84, and >84%, to mimic a backcross to indigenous zebu breed, F1, F2, and F3 crosses, respectively. The breed types were defined based on international commercial dairy breeds as follows: RG (Norwegian Red X Friesian, Norwegian Red X Guernsey, and Norwegian Red X Jersey crosses); RH (Norwegian Red X Holstein crosses); RZ (Norwegian Red X Zebu and Norwegian Red X N'Dama crosses); and ZR (Zebu X GIR, Zebu X Norwegian Red, and Zebu X Holstein crosses). Results obtained indicate low variation in milk composition traits between genetic groups and breed types. For all the milk traits except milk total protein and casein content, no significant differences (p < 0.05) were observed among genetic groups. Protein content was significantly (p < 0.05) higher for genetic group 75-84% at 3.4 ± 0.08% compared to 3.18 ± 0.07% for genetic group >84%. Casein content was significantly lower for genetic group >84% (2.98 ± 0.05%) compared to 3.18 ± 0.09 and 3.16 ± 0.06% for genetic group 25-49 and 75-84%, respectively (p < 0.05). There was no significant difference (p < 0.05) between breed types with respect to milk composition traits. These results suggest that selection of breed types to be used in smallholder systems need not pay much emphasis on milk quality differences as most admixed animals would have similar milk composition profiles. However, a larger sample size would be required to quantify any meaningful differences between groups.
Collapse
Affiliation(s)
- Evans K. Cheruiyot
- Department of Animal Production, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya
- Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania
| | - Rawlynce C. Bett
- Department of Animal Production, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya
| | - Joshua O. Amimo
- Department of Animal Production, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya
| | - Fidalis D. N. Mujibi
- Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania
- USOMI Limited, Nairobi, Kenya
| |
Collapse
|
30
|
Ferreira EM, Ferraz MV, Polizel DM, Urano FS, Susin I, Gentil RS, Biehl MV, Biava JS, Pires AV. Milk yield and composition from ewes fed raw soybeans and their lambs’ performance. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Rezaeenia A, Naserian AA, Valizadeh R, Tahmasbi AM, Mokhtarpour A. Effect of dietary inclusion of date seed (Phoenix dactylifera L.) on intake, digestibility, milk production, and milk fatty acid profile of Holstein dairy cows. Trop Anim Health Prod 2018; 50:1427-1433. [PMID: 29582341 DOI: 10.1007/s11250-018-1576-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/14/2018] [Indexed: 11/29/2022]
Abstract
The objective of this experiment was to investigate the influence of ground date seed (GDS) on intake, digestibility, and milk yield and milk fatty acid (FA) composition of lactating Holstein cows. The experimental design was a 4 × 4 replicated Latin square with eight lactating dairy cows with an average milk production of 35.5 ± 1.5 kg and 75 ± 5 days in milk (DIM). Dairy cows were fed one of the four treatments contained 0, 2, 4, and 6% of diet dry matter (DM) GDS in replacement of wheat bran. All diets contained the same amount of forages (alfalfa hay and corn silage). Dietary treatments had no effect on DM intake (DMI), total tract apparent digestibility, milk yield, and milk composition. Increasing GDS linearly decreased concentration of C13:0 and increased cis-9 C14:1 and trans-11 C18:1 (vaccenic acid) (P < 0.05). A linear tendency for more C16:1 content in milk fat was observed with increasing GDS (P = 0.06). Feeding GDS resulted in a linear decrease (P < 0.01) in saturated FA (SFA) but increased milk fat monounsaturated FA (MUFA) and trans FA (TFA) (P < 0.05). Therefore, low levels of GDS (up to 6%) in the diet of Holstein dairy cows can beneficially modify milk FA composition without any adverse effects on intake, digestibility, and milk yield.
Collapse
Affiliation(s)
- A Rezaeenia
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - A A Naserian
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - R Valizadeh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - A M Tahmasbi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - A Mokhtarpour
- Research Center of Special Domestic Animals, University of Zabol, Zabol, Iran.
| |
Collapse
|
32
|
Bayat A, Tapio I, Vilkki J, Shingfield K, Leskinen H. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. J Dairy Sci 2018; 101:1136-1151. [DOI: 10.3168/jds.2017-13545] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/13/2017] [Indexed: 01/07/2023]
|
33
|
de Lucena ARF, Menezes DR, de Carvalho DTQ, Matos JC, Antonelli AC, de Moraes SA, Dias FS, Queiroz MAÁ, Rodrigues RTS. Effect of commercial tannin and a pornunça (Manihot
spp.) silage-based diet on the fatty acid profile of Saanen goats’ milk. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alita R F de Lucena
- Department of Veterinary Sciences in Semiarid; Universidade Federal do Vale do São Francisco; P.O. Box 56300-990 Petrolina PE Brazil
| | - Daniel R Menezes
- Department of Veterinary Sciences in Semiarid; Universidade Federal do Vale do São Francisco; P.O. Box 56300-990 Petrolina PE Brazil
| | - Dalinne T Q de Carvalho
- Department of Animal Science; Universidade Federal do Vale do São Francisco; P.O. Box 56300-990 Petrolina PE Brazil
- Department of Animal Science; Universidade Federal da Bahia; P.O. Box 40170-110 Salvador BA Brazil
| | - Jair C Matos
- Department of Animal Science; Universidade Federal do Vale do São Francisco; P.O. Box 56300-990 Petrolina PE Brazil
| | - Alexandre C Antonelli
- Department of Veterinary Sciences in Semiarid; Universidade Federal do Vale do São Francisco; P.O. Box 56300-990 Petrolina PE Brazil
| | - Salete A de Moraes
- Empresa Brasileira de Pesquisa Agropecuária; Semiarid Embrapa; P.O. Box 56302-970 Petrolina PE Brazil
| | - Francesca Silva Dias
- Department of Veterinary Sciences in Semiarid; Universidade Federal do Vale do São Francisco; P.O. Box 56300-990 Petrolina PE Brazil
| | - Mario A Á Queiroz
- Department of Animal Science; Universidade Federal do Vale do São Francisco; P.O. Box 56300-990 Petrolina PE Brazil
| | - Rafael T S Rodrigues
- Department of Veterinary Sciences in Semiarid; Universidade Federal do Vale do São Francisco; P.O. Box 56300-990 Petrolina PE Brazil
| |
Collapse
|
34
|
Lopes JC, Harper MT, Giallongo F, Oh J, Smith L, Ortega-Perez AM, Harper SA, Melgar A, Kniffen DM, Fabin RA, Hristov AN. Effect of high-oleic-acid soybeans on production performance, milk fatty acid composition, and enteric methane emission in dairy cows. J Dairy Sci 2017; 100:1122-1135. [PMID: 27988126 DOI: 10.3168/jds.2016-11911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2023]
Abstract
The objective of this study was to investigate the effect of 3 soybean sources differing in fatty acid profile and processing method on productivity, milk composition, digestibility, rumen fermentation, and enteric methane emission in lactating dairy cows. The soybean sources were conventional, high-linoleic-acid variety extruded soybean meal (ESBM; 8.7% ether extract with 15% oleic and 54% linoleic acids); extruded Plenish (DuPont Pioneer, Johnston, IA), high-oleic-acid variety soybean meal (EPSBM; 8.4% ether extract with 73% oleic and 8% linoleic acids); and whole, heated Plenish soybeans (WPSB; 20.2% ether extract). The study involved 15 Holstein cows in a replicated 3 × 3 Latin square design experiment with three 28-d periods. The inclusion rate of the soybean sources in the diet was (dry matter basis) 17.1, 17.1, and 7.4% for ESBM, EPSBM, and WPSB, respectively, which resulted in ether extract concentration of the diets of 3.99, 3.94, and 4.18%, respectively. Compared with ESBM, the Plenish diets tended to increase dry matter intake and decreased feed efficiency (but had no effect on energy-corrected milk feed efficiency). The Plenish diets increased milk fat concentration on average by 5.6% and tended to increase milk fat yield, compared with ESBM. The WPSB diet tended to increased milk true protein compared with the extruded soybean meal diets. Treatments had no effect on rumen fermentation and enteric methane or carbon dioxide emissions, except pH was higher for WPSB versus EPSBM. The Plenish diets decreased the prevalence of Ruminococcus and increased that of Eubacterium and Treponema in whole ruminal contents. Total-tract apparent digestibility of organic matter and crude protein were decreased by WPSB compared with ESBM and EPSBM. Compared with the other treatments, urinary N excretion was increased by EPSBM and fecal N excretion was greater for WPSB. Treatments had marked effects on milk fatty acid profile. Generally, the Plenish diets increased mono-unsaturated (mostly cis-9 18:1) and decreased polyunsaturated, total trans-, and conjugated linoleic fatty acids concentrations in milk fat. In this study, compared with conventional, high-linoleic-acid variety extruded soybean meal, the Plenish soybean diets increased milk fat concentration and tended to increase fat yield, decreased feed efficiency, and modified milk fatty acid profile in a manner expected from the greater concentration of oleic acid in Plenish soybean oil.
Collapse
Affiliation(s)
- J C Lopes
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M T Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - F Giallongo
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - L Smith
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A M Ortega-Perez
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S A Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - D M Kniffen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - R A Fabin
- Fabin Bros. Farms, Indiana, PA 15701
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|