1
|
Konyshev IV, Byvalov AA. The bacterial flagellum as an object for optical trapping. Biophys Rev 2024; 16:403-415. [PMID: 39309130 PMCID: PMC11415335 DOI: 10.1007/s12551-024-01212-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
This letter considers the possibility of using the optical trap to study the structure and function of the microbial flagellum. The structure of the flagellum of a typical gram-negative bacterium is described in brief. A standard mathematical model based on the principle of superposition is used to describe the movement of an ellipsoidal microbial cell in a liquid medium. The basic principles of optical trapping based on the combined action of the light pressure and the gradient force are briefly clarified. Several problems related to thermal damage of living microscopic objects when the latter gets to the focus of a laser beam are shortly discussed. It is shown that the probability of cell damage depends nonlinearly on the wavelength of laser radiation. Finally, the model systems that would make it possible to study flagella of the free bacteria and the ones anchored or tethered on the surface of a solid material are discussed in detail.
Collapse
Affiliation(s)
- Ilya V. Konyshev
- Institute of Physiology of the Federal Research Centre, Komi Science Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar, 167982 Russia
- Vyatka State University, Kirov, 610000 Russia
| | - Andrey A. Byvalov
- Institute of Physiology of the Federal Research Centre, Komi Science Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar, 167982 Russia
- Vyatka State University, Kirov, 610000 Russia
| |
Collapse
|
2
|
Rios Galicia B, Sáenz JS, Yergaliyev T, Camarinha-Silva A, Seifert J. Host specific adaptations of Ligilactobacillus aviarius to poultry. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100199. [PMID: 37727231 PMCID: PMC10505982 DOI: 10.1016/j.crmicr.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The genus Ligilactobacillus encompasses species adapted to vertebrate hosts and fermented food. Their genomes encode adaptations to the host lifestyle. Reports of gut microbiota from chicken and turkey gastrointestinal tract have shown a high persistence of Ligilactobacillus aviarius along the digestive system compared to other species found in the same host. However, its adaptations to poultry as a host has not yet been described. In this work, the pan-genome of Ligilactobacillus aviarius was explored to describe the functional adaptability to the gastrointestinal environment. The core genome is composed of 1179 gene clusters that are present at least in one copy that codifies to structural, ribosomal and biogenesis proteins. The rest of the identified regions were classified into three different functional clusters of orthologous groups (clusters) that codify carbohydrate metabolism, envelope biogenesis, viral defence mechanisms, and mobilome inclusions. The pan-genome of Ligilactobacillus aviarius is a closed pan-genome, frequently found in poultry and highly prevalent across chicken faecal samples. The genome of L. aviarius codifies different clusters of glycoside hydrolases and glycosyltransferases that mediate interactions with the host cells. Accessory features, such as antiviral mechanisms and prophage inclusions, variate amongst strains from different GIT sections. This information provides hints about the interaction of this species with viral particles and other bacterial species. This work highlights functional adaptability traits present in L. aviarius that make it a dominant key member of the poultry gut microbiota and enlightens the convergent ecological relation of this species to the poultry gut environment.
Collapse
Affiliation(s)
- Bibiana Rios Galicia
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Johan Sebastian Sáenz
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Timur Yergaliyev
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| |
Collapse
|
3
|
Nilsson DPG, Jonsmoen UL, Malyshev D, Öberg R, Wiklund K, Andersson M. Physico-chemical characterization of single bacteria and spores using optical tweezers. Res Microbiol 2023; 174:104060. [PMID: 37068697 DOI: 10.1016/j.resmic.2023.104060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Spore-forming pathogenic bacteria are adapted for adhering to surfaces, and their endospores can tolerate strong chemicals making decontamination difficult. Understanding the physico-chemical properties of bacteria and spores is therefore essential in developing antiadhesive surfaces and disinfection techniques. However, measuring physico-chemical properties in bulk does not show the heterogeneity between cells. Characterizing bacteria on a single-cell level can thereby provide mechanistic clues usually hidden in bulk measurements. This paper shows how optical tweezers can be applied to characterize single bacteria and spores, and how physico-chemical properties related to adhesion, fluid dynamics, biochemistry, and metabolic activity can be assessed.
Collapse
Affiliation(s)
| | - Unni Lise Jonsmoen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Norway.
| | - Dmitry Malyshev
- Department of Physics, Umeå University, Västerbotten 901 87 Sweden.
| | - Rasmus Öberg
- Department of Physics, Umeå University, Västerbotten 901 87 Sweden.
| | - Krister Wiklund
- Department of Physics, Umeå University, Västerbotten 901 87 Sweden.
| | - Magnus Andersson
- Department of Physics, Umeå University, Västerbotten 901 87 Sweden; Umeå Center for Microbial Research (UCMR), 901 87 Sweden.
| |
Collapse
|
4
|
Dahlberg T, Baker JL, Bullitt E, Andersson M. Unveiling molecular interactions that stabilize bacterial adhesion pili. Biophys J 2022; 121:2096-2106. [PMID: 35491503 PMCID: PMC9247471 DOI: 10.1016/j.bpj.2022.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Adhesion pili assembled by the chaperone-usher pathway are superelastic helical filaments on the surface of bacteria, optimized for attachment to target cells. Here, we investigate the biophysical function and structural interactions that stabilize P pili from uropathogenic bacteria. Using optical tweezers, we measure P pilus subunit-subunit interaction dynamics and show that pilus compliance is contour-length dependent. Atomic details of subunit-subunit interactions of pili under tension are shown using steered molecular dynamics (sMD) simulations. sMD results also indicate that the N-terminal "staple" region of P pili, which provides interactions with pilins that are four and five subunits away, significantly stabilizes the helical filament structure. These data are consistent with previous structural data, and suggest that more layer-to-layer interactions could compensate for the lack of a staple in type 1 pili. This study informs our understanding of essential structural and dynamic features of adhesion pili, supporting the hypothesis that the function of pili is critically dependent on their structure and biophysical properties.
Collapse
Affiliation(s)
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
5
|
Kumar V, Murmu S, Krishnan V. Deciphering the substrate specificity of housekeeping sortase A and pilus-specific sortase C of probiotic bacterium Lactococcus lactis. Biochimie 2022; 200:140-152. [PMID: 35654243 DOI: 10.1016/j.biochi.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Several strains and species of lactic acid bacteria (LAB) are widely used in fermented foods, including dairy products and also as probiotics, because of their contribution to various health benefits in humans. Sortase enzymes decorate the bacterial cell wall with different surface proteins and pili for facilitating the interactions with host and environment for the colonization and beneficial effects. While the sortases and sortase anchored proteins from pathogens have been the prime focus of the research in the past, sortases from many non-pathogenic bacteria, including LAB strains, have attracted attention for their potential applications in vaccine delivery and other clinical interventions. Here, we report the purification and functional characterization of two sortases (housekeeping SrtA and pilus-specific SrtC) from a probiotic Lactococcus lactis. The purified sortases were found to be active against the putative LPXTG motif-based peptide substrates, albeit with differences. The in-silico analysis provides insights into the residues involved in substrate binding and specificity. Overall, this study sheds new light on the aspects of structure, substrate specificity, and function of sortases from non-pathogenic bacteria, which may have physiological ramifications as well as their applications in sortase-mediated protein bioconjugation.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Haryana (NCR Delhi), India
| | - Sumit Murmu
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Haryana (NCR Delhi), India
| | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Haryana (NCR Delhi), India.
| |
Collapse
|
6
|
Konyshev I, Byvalov A. Model systems for optical trapping: the physical basis and biological applications. Biophys Rev 2021; 13:515-529. [PMID: 34471436 DOI: 10.1007/s12551-021-00823-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022] Open
Abstract
The micromechanical methods, among which optical trapping and atomic force microscopy have a special place, are widespread currently in biology to study molecular interactions between different biological objects. Optical trapping is reported to be quite applicable to study the mechanical properties of surface structures onto bacterial (pili and flagella) and eukaryotic (filopodia) cells. The review briefly summarizes the physical basis of optical trapping, as well as the principles of calculating the van der Waals, electrostatic, and donor-acceptor forces when two microparticles or a microparticle and a flat surface are used. Three main types of model systems (abiotic, biotic, and mixed) used in trapping experiments are described, and the peculiarities of manipulation with living (bacteria, fungal spores, etc.) and non-spherical objects (e.g., rod-shaped bacteria) are summarized.
Collapse
Affiliation(s)
- Ilya Konyshev
- Institute of Physiology of Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Komi Republic, 167982 Syktyvkar, Russian Federation.,Vyatka State University, 36 Moskovskaya str, 610000 Kirov, Russian Federation
| | - Andrey Byvalov
- Institute of Physiology of Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Komi Republic, 167982 Syktyvkar, Russian Federation.,Vyatka State University, 36 Moskovskaya str, 610000 Kirov, Russian Federation
| |
Collapse
|
7
|
Martínez B, Rodríguez A, Kulakauskas S, Chapot-Chartier MP. Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiol Rev 2021; 44:538-564. [PMID: 32495833 PMCID: PMC7476776 DOI: 10.1093/femsre/fuaa021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria (LAB) encompasses industrially relevant bacteria involved in food fermentations as well as health-promoting members of our autochthonous microbiota. In the last years, we have witnessed major progresses in the knowledge of the biology of their cell wall, the outermost macrostructure of a Gram-positive cell, which is crucial for survival. Sophisticated biochemical analyses combined with mutation strategies have been applied to unravel biosynthetic routes that sustain the inter- and intra-species cell wall diversity within LAB. Interplay with global cell metabolism has been deciphered that improved our fundamental understanding of the plasticity of the cell wall during growth. The cell wall is also decisive for the antimicrobial activity of many bacteriocins, for bacteriophage infection and for the interactions with the external environment. Therefore, genetic circuits involved in monitoring cell wall damage have been described in LAB, together with a plethora of defence mechanisms that help them to cope with external threats and adapt to harsh conditions. Since the cell wall plays a pivotal role in several technological and health-promoting traits of LAB, we anticipate that this knowledge will pave the way for the future development and extended applications of LAB.
Collapse
Affiliation(s)
- Beatriz Martínez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
8
|
Pili and other surface proteins influence the structure and the nanomechanical properties of Lactococcus lactis biofilms. Sci Rep 2021; 11:4846. [PMID: 33649417 PMCID: PMC7921122 DOI: 10.1038/s41598-021-84030-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 11/08/2022] Open
Abstract
Lactic acid bacteria, in particular Lactococcus lactis, are widely used in the food industry, for the control and/or the protection of the manufacturing processes of fermented food. While L. lactis has been reported to form compact and uniform biofilms it was recently shown that certain strains able to display pili at their surface form more complex biofilms exhibiting heterogeneous and aerial structures. As the impact of those biofilm structures on the biomechanical properties of the biofilms is poorly understood, these were investigated using AFM force spectroscopy and imaging. Three types of strains were used i.e., a control strain devoid of pili and surface mucus-binding protein, a strain displaying pili but no mucus-binding proteins and a strain displaying both pili and a mucus-binding protein. To identify potential correlations between the nanomechanical measurements and the biofilm architecture, 24-h old biofilms were characterized by confocal laser scanning microscopy. Globally the strains devoid of pili displayed smoother and stiffer biofilms (Young Modulus of 4-100 kPa) than those of piliated strains (Young Modulus around 0.04-0.1 kPa). Additional display of a mucus-binding protein did not affect the biofilm stiffness but made the biofilm smoother and more compact. Finally, we demonstrated the role of pili in the biofilm cohesiveness by monitoring the homotypic adhesion of bacteria to the biofilm surface. These results will help to understand the role of pili and mucus-binding proteins withstanding external forces.
Collapse
|
9
|
Francius G, Petit F, Clément E, Chekli Y, Ghigo JM, Beloin C, Duval JFL. On the strong connection between nanoscale adhesion of Yad fimbriae and macroscale attachment of Yad-decorated bacteria to glycosylated, hydrophobic and hydrophilic surfaces. NANOSCALE 2021; 13:1257-1272. [PMID: 33404575 DOI: 10.1039/d0nr06840c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Yad fimbriae are currently viewed as versatile bacterial adhesins able to significantly mediate host or plant-pathogen recognition and contribute to the persistence of Escherichia coli in both the environment and within hosts. To date, however, the underlying adhesion process of Yad fimbriae on surfaces defined by controlled coating chemistries has not been evaluated on the relevant molecular scale. In this work, the interaction forces operational between Yad fimbriae expressed by genetically modified E. coli and self-assembled monolayers (SAM) differing in terms of charge, hydrophobicity or the nature of decorating sugar units are quantified by Single Molecule Force Spectroscopy (SMFS) on the nanoscale. It is found that the adhesion of Yad fimbriae onto probes functionalized with xylose is as strong as that measured with probes decorated with anti-Yad antibodies (ca. 80 to 300 pN). In contrast, the interactions of Yad with galactose, lactose, mannose, -OH, -NH2, -COOH and -CH3 terminated SAMs are clearly non-specific. Interpretation of SMFS measurements on the basis of worm-like-chain modeling for polypeptide nanomechanics further leads to the estimates of the maximal extension of Yad fimbriae upon stretching, of their persistence length and of their polydispersity. Finally, we show for the first time a strong correlation between the adhesion properties of Yad-decorated bacteria determined from conventional macroscopic counting methods and the molecular adhesion capacity of Yad fimbriae. This demonstration advocates the effort that should be made to understand on the nanoscale level the interactions between fimbriae and their cognate ligands. The results could further help the design of potential anti-adhesive molecules or surfaces to better fight against the virulence of bacterial pathogens.
Collapse
Affiliation(s)
- Grégory Francius
- Université de Lorraine, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Dramé I, Formosa-Dague C, Lafforgue C, Chapot-Chartier MP, Piard JC, Castelain M, Dague E. Analysis of Homotypic Interactions of Lactococcus lactis Pili Using Single-Cell Force Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21411-21423. [PMID: 32314572 DOI: 10.1021/acsami.0c03069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell surface proteins of Gram-positive bacteria play crucial roles in their adhesion to abiotic and biotic surfaces. Pili are long and flexible proteinaceous filaments known to enhance bacterial initial adhesion. They promote surface colonization and are thus considered as essential factors in biofilm cohesion. Our hypothesis is that pili mediate interactions between cells and may thereby directly affect biofilm formation. In this study, we use single-cell force spectroscopy (SCFS) to quantify the force of the homotypic pili interactions between individual bacterial cells, using different Lactococcus lactis strains producing pili or not as model bacteria. Moreover the force-distance curves were analyzed to determine the physical and nanomechanical properties of L. lactis pili. The results for pili-devoided strains showed a weak adhesion between cells (adhesion forces and work in the range of 100 pN and 7 × 10-18 J, respectively). On the contrary, the piliated strains showed high adhesion levels with adhesion forces and adhesion work over 200 pN and 50 × 10-18 J, respectively. The force-extension curves showed multiple adhesion events, typical of the unfolding of macromolecules. These unfolding force peaks were fitted using the physical worm-like chain model to get fundamental knowledge on the pili nanomechanical properties. In addition, SCFS applied to a L. lactis isolate expressing both pili and mucus-binding protein at its surface and two derivative mutants revealed the capacity of pili to interact with other surface proteins including mucus-binding proteins. This study demonstrates that pili are involved in L. lactis homotypic interactions and thus can influence biofilm structuring.
Collapse
Affiliation(s)
- Ibrahima Dramé
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31000 Toulouse, France
- LAAS-CNRS, Université de Toulouse, CNRS, 31000 Toulouse, France
| | | | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Mickaël Castelain
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31000 Toulouse, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31000 Toulouse, France
| |
Collapse
|
11
|
Formosa-Dague C, Castelain M, Martin-Yken H, Dunker K, Dague E, Sletmoen M. The Role of Glycans in Bacterial Adhesion to Mucosal Surfaces: How Can Single-Molecule Techniques Advance Our Understanding? Microorganisms 2018; 6:E39. [PMID: 29734645 PMCID: PMC6027152 DOI: 10.3390/microorganisms6020039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022] Open
Abstract
Bacterial adhesion is currently the subject of increased interest from the research community, leading to fast progress in our understanding of this complex phenomenon. Resent research within this field has documented the important roles played by glycans for bacterial surface adhesion, either through interaction with lectins or with other glycans. In parallel with this increased interest for and understanding of bacterial adhesion, there has been a growth in the sophistication and use of sensitive force probes for single-molecule and single cell studies. In this review, we highlight how the sensitive force probes atomic force microscopy (AFM) and optical tweezers (OT) have contributed to clarifying the mechanisms underlying bacterial adhesion to glycosylated surfaces in general and mucosal surfaces in particular. We also describe research areas where these techniques have not yet been applied, but where their capabilities appear appropriate to advance our understanding.
Collapse
Affiliation(s)
| | - Mickaël Castelain
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France.
| | - Hélène Martin-Yken
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France.
| | - Karen Dunker
- Department of Biotechnology and Food Science, NTNU the Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France.
| | - Marit Sletmoen
- Department of Biotechnology and Food Science, NTNU the Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
12
|
Becke TD, Ness S, Gürster R, Schilling AF, di Guilmi AM, Sudhop S, Hilleringmann M, Clausen-Schaumann H. Single Molecule Force Spectroscopy Reveals Two-Domain Binding Mode of Pilus-1 Tip Protein RrgA of Streptococcus pneumoniae to Fibronectin. ACS NANO 2018; 12:549-558. [PMID: 29298375 DOI: 10.1021/acsnano.7b07247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
For host cell adhesion and invasion, surface piliation procures benefits for bacteria. A detailed investigation of how pili adhere to host cells is therefore a key aspect in understanding their role during infection. Streptococcus pneumoniae TIGR 4, a clinical relevant serotype 4 strain, is capable of expressing pilus-1 with terminal RrgA, an adhesin interacting with host extracellular matrix (ECM) proteins. We used single molecule force spectroscopy to investigate the binding of full-length RrgA and single RrgA domains to fibronectin. Our results show that full-length RrgA and its terminal domains D3 and D4 bind to fibronectin with forces of 51.6 (full length), 52.8 (D3), and 46.2 pN (D4) at force-loading rates of around 1500 pN/s. Selective saturation of D3 and D4 binding sites on fibronectin showed that both domains can interact simultaneously with fibronectin, revealing a two-domain binding mechanism for the pilus-1 tip protein. The high off rates and the corresponding short lifetime of the RrgA Fn bond (τ = 0.26 s) may enable piliated pneumococci to form and maintain a transient contact to fibronectin-containing host surfaces and thus to efficiently scan the surface for specific receptors promoting host cell adhesion and invasion. These molecular properties could be essential for S. pneumoniae pili to mediate initial contact to the host cells and-shared with other piliated Gram-positive bacteria-favor host invasion.
Collapse
Affiliation(s)
- Tanja D Becke
- Department for Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München , 81675 Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität München , 80799 Munich, Germany
| | | | | | - Arndt F Schilling
- Department for Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München , 81675 Munich, Germany
- Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie, University Medical Center Göttingen , 37075 Göttingen, Germany
| | | | - Stefanie Sudhop
- Center for NanoScience, Ludwig-Maximilians-Universität München , 80799 Munich, Germany
| | | | | |
Collapse
|
13
|
Mercier-Bonin M, Chapot-Chartier MP. Surface Proteins of Lactococcus lactis: Bacterial Resources for Muco-adhesion in the Gastrointestinal Tract. Front Microbiol 2017; 8:2247. [PMID: 29218032 PMCID: PMC5703838 DOI: 10.3389/fmicb.2017.02247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/31/2017] [Indexed: 01/13/2023] Open
Abstract
Food and probiotic bacteria, in particular lactic acid bacteria, are ingested in large amounts by humans and are part of the transient microbiota which is increasingly considered to be able to impact the resident microbiota and thus possibly the host health. The lactic acid bacterium Lactococcus lactis is extensively used in starter cultures to produce dairy fermented food. Also because of a generally recognized as safe status, L. lactis has been considered as a possible vehicle to deliver in vivo therapeutic molecules with anti-inflammatory properties in the gastrointestinal tract. One of the key factors that may favor health effects of beneficial bacteria to the host is their capacity to colonize transiently the gut, notably through close interactions with mucus, which covers and protects the intestinal epithelium. Several L. lactis strains have been shown to exhibit mucus-binding properties and bacterial surface proteins have been identified as key determinants of such capacity. In this review, we describe the different types of surface proteins found in L. lactis, with a special focus on mucus-binding proteins and pili. We also review the different approaches used to investigate the adhesion of L. lactis to mucus, and particularly to mucins, one of its major components, and we present how these approaches allowed revealing the role of surface proteins in muco-adhesion.
Collapse
Affiliation(s)
- Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | |
Collapse
|
14
|
Tarazanova M, Huppertz T, Beerthuyzen M, van Schalkwijk S, Janssen P, Wels M, Kok J, Bachmann H. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates. Front Microbiol 2017; 8:1691. [PMID: 28936202 PMCID: PMC5594101 DOI: 10.3389/fmicb.2017.01691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities.
Collapse
Affiliation(s)
- Mariya Tarazanova
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
- Molecular Genetics, University of GroningenGroningen, Netherlands
| | - Thom Huppertz
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| | | | | | - Patrick Janssen
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| | - Michiel Wels
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| | - Jan Kok
- TI Food and NutritionWageningen, Netherlands
- Molecular Genetics, University of GroningenGroningen, Netherlands
| | - Herwig Bachmann
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| |
Collapse
|
15
|
|
16
|
Castelain M, Duviau MP, Oxaran V, Schmitz P, Cocaign-Bousquet M, Loubière P, Piard JC, Mercier-Bonin M. Oligomerized backbone pilin helps piliated Lactococcus lactis to withstand shear flow. BIOFOULING 2016; 32:911-923. [PMID: 27472256 DOI: 10.1080/08927014.2016.1213817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
The present work focuses on the role of pili present at the cell surface of Lactococcus lactis in bacterial adhesion to abiotic (hydrophobic polystyrene) and biotic (mucin-coated polystyrene) surfaces. Native pili-displaying strains and isogenic derivatives in which pilins or sortase C structural genes had been modified were used. Surface physico-chemistry, morphology and shear-flow-induced detachment of lactococcal cells were evaluated. The involvement of pili in L. lactis adhesion was clearly demonstrated, irrespective of the surface characteristics (hydrophobic/hydrophilic, presence or not of specific binding sites). The accessory pilin, PilC, and the backbone pilin, PilB, were revealed to play a major role in adhesion, provided that the PilB was present in its polymerized form. Within the population fraction that remained attached to the surface under increasing shear flow, different association behaviors were observed, showing that pili could serve as anchoring sites thus hampering the effect of shear flow on cell orientation and detachment.
Collapse
Affiliation(s)
- Mickaël Castelain
- a LISBP, Université de Toulouse, CNRS, INRA, INSA , Toulouse , France
| | | | - Virginie Oxaran
- b Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay , Jouy-en-Josas , France
| | - Philippe Schmitz
- a LISBP, Université de Toulouse, CNRS, INRA, INSA , Toulouse , France
| | | | - Pascal Loubière
- a LISBP, Université de Toulouse, CNRS, INRA, INSA , Toulouse , France
| | - Jean-Christophe Piard
- b Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay , Jouy-en-Josas , France
| | | |
Collapse
|