1
|
Miner MD, deCamp A, Grunenberg N, De Rosa SC, Fiore-Gartland A, Bar K, Spearman P, Allen M, Yu PC, Manso B, Frahm N, Kalams S, Baden L, Keefer MC, Scott HM, Novak R, Van Tieu H, Tomaras GD, Kublin JG, McElrath MJ, Corey L, Frank I. Polytopic fractional delivery of an HIV vaccine alters cellular responses and results in increased epitope breadth in a phase 1 randomized trial. EBioMedicine 2024; 100:104987. [PMID: 38306894 PMCID: PMC10847480 DOI: 10.1016/j.ebiom.2024.104987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Elicitation of broad immune responses is understood to be required for an efficacious preventative HIV vaccine. This Phase 1 randomized controlled trial evaluated whether administration of vaccine antigens separated at multiple injection sites vs combined, fractional delivery at multiple sites affected T-cell breadth compared to standard, single site vaccination. METHODS We randomized 90 participants to receive recombinant adenovirus 5 (rAd5) vector with HIV inserts gag, pol and env via three different strategies. The Standard group received vaccine at a single anatomic site (n = 30) compared to two polytopic (multisite) vaccination groups: Separated (n = 30), where antigens were separately administered to four anatomical sites, and Fractioned (n = 30), where fractions of each vaccine component were combined and administered at four sites. All groups received the same total dose of vaccine. FINDINGS CD8 T-cell response rates and magnitudes were significantly higher in the Fractioned group than Standard for several antigen pools tested. CD4 T-cell response magnitudes to Pol were higher in the Separated than Standard group. T-cell epitope mapping demonstrated greatest breadth in the Fractioned group (median 8.0 vs 2.5 for Standard, Wilcoxon p = 0.03; not significant after multiplicity adjustment for co-primary endpoints). IgG binding antibody response rates to Env were higher in the Standard and Fractioned groups vs Separated group. INTERPRETATION This study shows that the number of anatomic sites for which a vaccine is delivered and distribution of its antigenic components influences immune responses in humans. FUNDING National Institute of Allergy and Infectious Diseases, NIH.
Collapse
Affiliation(s)
- Maurine D Miner
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, USA.
| | - Allan deCamp
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Paul Spearman
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mary Allen
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pei-Chun Yu
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Bryce Manso
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Spyros Kalams
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Michael C Keefer
- Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Hyman M Scott
- San Francisco Department of Public Health, San Francisco, CA, USA
| | | | - Hong Van Tieu
- Laboratory of Infectious Disease Prevention, Lindsley F. Kimball Research Institute, New York Blood Center, New York City, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York City, NY, USA
| | | | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Ian Frank
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Wang H, Yang S, Liu J, Fu Z, Liu Y, Zhou L, Guo H, Lan K, Chen Y. Human adenoviruses: A suspect behind the outbreak of acute hepatitis in children amid the COVID-19 pandemic. CELL INSIGHT 2022; 1:100043. [PMID: 37192861 PMCID: PMC10120317 DOI: 10.1016/j.cellin.2022.100043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 05/18/2023]
Abstract
As of 10 May 2022, at least 450 cases of pediatric patients with acute hepatitis of unknown cause have been reported worldwide. Human adenoviruses (HAdVs) have been detected in at least 74 cases, including the F type HAdV41 in 18 cases, which indicates that adenoviruses may be associated with this mysterious childhood hepatitis, although other infectious agents or environmental factors cannot be excluded. In this review, we provide a brief introduction of the basic features of HAdVs and describe diseases caused by different HAdVs in humans, aiming to help understand the biology and potential risk of HAdVs and cope with the outbreak of acute child hepatitis.
Collapse
Affiliation(s)
- Hongyun Wang
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shimin Yang
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiying Fu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Mennechet FJD, Paris O, Ouoba AR, Salazar Arenas S, Sirima SB, Takoudjou Dzomo GR, Diarra A, Traore IT, Kania D, Eichholz K, Weaver EA, Tuaillon E, Kremer EJ. A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines 2019; 18:597-613. [PMID: 31132024 DOI: 10.1080/14760584.2019.1588113] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human adenovirus (HAdV)-derived vectors have been used in numerous pre-clinical and clinical trials during the last 40 years. Current research in HAdV-based vaccines focuses on improving transgene immunogenicity and safety. Because pre-existing humoral immunity against HAdV types correlate with reduced vaccine efficacy and safety, many groups are exploring the development of HAdV types vectors with lower seroprevalence. However, global seroepidemiological data are incomplete. Areas covered: The goal of this review is to centralize 65 years of research on (primarily) HAdV epidemiology. After briefly addressing adenovirus biology, we chronical HAdV seroprevalence studies and highlight major milestones. Finally, we analyze data from about 50 studies with respect to HAdVs types that are currently used in the clinic, or are in the developmental pipeline. Expert opinion: Vaccination is among the most efficient tools to prevent infectious disease. HAdV-based vaccines have undeniable potential, but optimization is needed and antivector immunity remains a challenge if the same vectors are to be administrated to different populations. Here, we identify gaps in our knowledge and the need for updated worldwide epidemiological data.
Collapse
Affiliation(s)
- Franck J D Mennechet
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Océane Paris
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Aline Raissa Ouoba
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France.,b UMR 1058, Pathogenesis and Control of Chronic Infections , INSERM - University of Montpellier - Establishment Français du Sang - Centre Hospitalier Universitaire de Montpellier , Montpellier , France.,c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Sofia Salazar Arenas
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Sodiomon B Sirima
- d Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso.,e Groupe de Recherche Action en Santé (GRAS) , Ouagadougou , Burkina Faso
| | - Guy R Takoudjou Dzomo
- f Complexe Hospitalo Universitaire « Le Bon Samaritain » , N'Djamena , Republic of Chad
| | - Amidou Diarra
- d Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso
| | - Isidore T Traore
- c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Dramane Kania
- c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Karsten Eichholz
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Eric A Weaver
- g University of Nebraska-Lincoln, School of Biological Sciences , Lincoln , NE , USA
| | - Edouard Tuaillon
- b UMR 1058, Pathogenesis and Control of Chronic Infections , INSERM - University of Montpellier - Establishment Français du Sang - Centre Hospitalier Universitaire de Montpellier , Montpellier , France
| | - Eric J Kremer
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| |
Collapse
|
4
|
Nyombayire J, Anzala O, Gazzard B, Karita E, Bergin P, Hayes P, Kopycinski J, Omosa-Manyonyi G, Jackson A, Bizimana J, Farah B, Sayeed E, Parks CL, Inoue M, Hironaka T, Hara H, Shu T, Matano T, Dally L, Barin B, Park H, Gilmour J, Lombardo A, Excler JL, Fast P, Laufer DS, Cox JH. First-in-Human Evaluation of the Safety and Immunogenicity of an Intranasally Administered Replication-Competent Sendai Virus-Vectored HIV Type 1 Gag Vaccine: Induction of Potent T-Cell or Antibody Responses in Prime-Boost Regimens. J Infect Dis 2016; 215:95-104. [PMID: 28077588 PMCID: PMC5225252 DOI: 10.1093/infdis/jiw500] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/13/2016] [Indexed: 11/22/2022] Open
Abstract
Background. We report the first-in-human safety and immunogenicity assessment of a prototype intranasally administered, replication-competent Sendai virus (SeV)–vectored, human immunodeficiency virus type 1 (HIV-1) vaccine. Methods. Sixty-five HIV-1–uninfected adults in Kenya, Rwanda, and the United Kingdom were assigned to receive 1 of 4 prime-boost regimens (administered at 0 and 4 months, respectively; ratio of vaccine to placebo recipients, 12:4): priming with a lower-dose SeV-Gag given intranasally, followed by boosting with an adenovirus 35–vectored vaccine encoding HIV-1 Gag, reverse transcriptase, integrase, and Nef (Ad35-GRIN) given intramuscularly (SLA); priming with a higher-dose SeV-Gag given intranasally, followed by boosting with Ad35-GRIN given intramuscularly (SHA); priming with Ad35-GRIN given intramuscularly, followed by boosting with a higher-dose SeV-Gag given intranasally (ASH); and priming and boosting with a higher-dose SeV-Gag given intranasally (SHSH). Results. All vaccine regimens were well tolerated. Gag-specific IFN-γ enzyme-linked immunospot–determined response rates and geometric mean responses were higher (96% and 248 spot-forming units, respectively) in groups primed with SeV-Gag and boosted with Ad35-GRIN (SLA and SHA) than those after a single dose of Ad35-GRIN (56% and 54 spot-forming units, respectively) or SeV-Gag (55% and 59 spot-forming units, respectively); responses persisted for ≥8 months after completion of the prime-boost regimen. Functional CD8+ T-cell responses with greater breadth, magnitude, and frequency in a viral inhibition assay were also seen in the SLA and SHA groups after Ad35-GRIN boost, compared with those who received either vaccine alone. SeV-Gag did not boost T-cell counts in the ASH group. In contrast, the highest Gag-specific antibody titers were seen in the ASH group. Mucosal antibody responses were sporadic. Conclusions. SeV-Gag primed functional, durable HIV-specific T-cell responses and boosted antibody responses. The prime-boost sequence appears to determine which arm of the immune response is stimulated. Clinical Trials Registration. NCT01705990.
Collapse
Affiliation(s)
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative Institute of Clinical Research, Nairobi
| | - Brian Gazzard
- Chelsea and Westminster Healthcare NHS Foundation Trust
| | | | - Philip Bergin
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Peter Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Jakub Kopycinski
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | | | - Akil Jackson
- Chelsea and Westminster Healthcare NHS Foundation Trust
| | | | - Bashir Farah
- Kenya AIDS Vaccine Initiative Institute of Clinical Research, Nairobi
| | - Eddy Sayeed
- International AIDS Vaccine Initiative, New York, New York
| | | | | | | | | | | | - Tetsuro Matano
- University of Tokyo.,National Institute of Infectious Diseases, Tokyo, Japan
| | - Len Dally
- Emmes Corporation, Rockville, Maryland
| | | | - Harriet Park
- International AIDS Vaccine Initiative, New York, New York
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | | | | | - Patricia Fast
- International AIDS Vaccine Initiative, New York, New York
| | - Dagna S Laufer
- International AIDS Vaccine Initiative, New York, New York
| | | | | |
Collapse
|