1
|
Coubris C, Duchatelet L, Dupont S, Mallefet J. A brittle star is born: Ontogeny of luminous capabilities in Amphiura filiformis. PLoS One 2024; 19:e0298185. [PMID: 38466680 PMCID: PMC10927081 DOI: 10.1371/journal.pone.0298185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/20/2024] [Indexed: 03/13/2024] Open
Abstract
Bioluminescence is the production of visible light by living organisms thanks to a chemical reaction, implying the oxidation of a substrate called luciferin catalyzed by an enzyme, the luciferase. The luminous brittle star Amphiura filiformis depends on coelenterazine (i.e., the most widespread luciferin in marine ecosystems) and a luciferase homologous to the cnidarian Renilla luciferase to produce blue flashes in the arm's spine. Only a few studies have focused on the ontogenic apparitions of bioluminescence in marine organisms. Like most ophiuroids, A. filiformis displays planktonic ophiopluteus larvae for which the ability to produce light was not investigated. This study aims to document the apparition of the luminous capabilities of this species during its ontogenic development, from the egg to settlement. Through biochemical assays, pharmacological stimulation, and Renilla-like luciferase immunohistological detection across different developing stages, we pointed out the emergence of the luminous capabilities after the ophiopluteus larval metamorphosis into a juvenile. In conclusion, we demonstrated that the larval pelagic stage of A. filiformis is not bioluminescent compared to juveniles and adults.
Collapse
Affiliation(s)
- Constance Coubris
- Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Laurent Duchatelet
- Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Sam Dupont
- Department of Biological & Environmental Sciences, University of Gothenburg, Fiskebäckskil, Sweden
- IAEA Marine Environment Laboratories, Radioecology Laboratory, Monaco City, Monaco
| | - Jérôme Mallefet
- Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
2
|
Silakov MI, Kuznetsov AV, Temnykh AV, Anninsky BE. Effect of monochromatic light on the behavior of the ctenophore Mnemiopsis leidyi (A. Agassiz, 1865). Biosystems 2023; 231:104987. [PMID: 37516316 DOI: 10.1016/j.biosystems.2023.104987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Ctenophores are invertebrate, gelatinous predators that perform complex movements due to their numerous ciliary comb plates. We investigated the behavioral responses of the ctenophore Mnemiopsis leidyi A. Agassiz, 1865 to red, green, and blue lights of different powers and fluxes emitted by LEDs or lasers. White LEDs were used to mimic natural sunlight. When laser light was directed to the aboral organ, the animals tended to leave the illumination zone. The blue-light reaction was six times faster than the red-light reaction. The behavioral strategy of the animals changed significantly when their freedom of maneuvering was restricted. Typical locomotions were ranked according to the laser beam avoidance time from the beginning of exposure to going into darkness. The minimum reaction time was required for turning and moving the ctenophore, while moving along the laser beam and turning around required more time. Typical patterns of behavior of M. leidyi in the light flux were established using cluster analysis. Three preferential behavioral strategies were identified for avoiding laser irradiation: 1) body rotation; 2) shifting sideways; and 3) movement with deviation from the beam. The elementary ability of ctenophores to make decisions in situative conditions has been demonstrated.
Collapse
Affiliation(s)
- M I Silakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas, RAS, Leninsky Avenue 38, Moscow, 119991, Russia
| | - A V Kuznetsov
- A.O. Kovalevsky Institute of Biology of the Southern Seas, RAS, Leninsky Avenue 38, Moscow, 119991, Russia.
| | - A V Temnykh
- A.O. Kovalevsky Institute of Biology of the Southern Seas, RAS, Leninsky Avenue 38, Moscow, 119991, Russia
| | - B E Anninsky
- A.O. Kovalevsky Institute of Biology of the Southern Seas, RAS, Leninsky Avenue 38, Moscow, 119991, Russia
| |
Collapse
|
3
|
Cocurullo M, Paganos P, Annunziata R, Voronov D, Arnone MI. Single-Cell Transcriptomic Analysis Reveals the Molecular Profile of Go-Opsin Photoreceptor Cells in Sea Urchin Larvae. Cells 2023; 12:2134. [PMID: 37681865 PMCID: PMC10486798 DOI: 10.3390/cells12172134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
The ability to perceive and respond to light stimuli is fundamental not only for spatial vision but also to many other light-mediated interactions with the environment. In animals, light perception is performed by specific cells known as photoreceptors and, at molecular level, by a group of GPCRs known as opsins. Sea urchin larvae possess a group of photoreceptor cells (PRCs) deploying a Go-Opsin (Opsin3.2) which have been shown to share transcription factors and morphology with PRCs of the ciliary type, raising new questions related to how this sea urchin larva PRC is specified and whether it shares a common ancestor with ciliary PRCs or it if evolved independently through convergent evolution. To answer these questions, we combined immunohistochemistry and fluorescent in situ hybridization to investigate how the Opsin3.2 PRCs develop in the sea urchin Strongylocentrotus purpuratus larva. Subsequently, we applied single-cell transcriptomics to investigate the molecular signature of the Sp-Opsin3.2-expressing cells and show that they deploy an ancient regulatory program responsible for photoreceptors specification. Finally, we also discuss the possible functions of the Opsin3.2-positive cells based on their molecular fingerprint, and we suggest that they are involved in a variety of signaling pathways, including those entailing the thyrotropin-releasing hormone.
Collapse
Affiliation(s)
| | | | | | | | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (M.C.); (P.P.); (R.A.); (D.V.)
| |
Collapse
|
4
|
Márquez-Borrás F, Solís-Marín FA, Mejía-Ortiz LM. Troglomorphism in the brittle star Ophionereis commutabilis Bribiesca-Contreras et al., 2019 (Echinodermata, Ophiuroidea, Ophionereididae). SUBTERRANEAN BIOLOGY 2020. [DOI: 10.3897/subtbiol.33.48721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Due to their peculiar and sometimes bizarre morphology, cave fauna (across invertebrates and vertebrates from both aquatic and terrestrial cave habitats) have fascinated researchers throughout history. Despite their success in colonizing most marine ecosystems, the adaptations of cave brittle stars (Ophiuroidea) to a stygobiotic lifestyle have been scarcely examined. Employing comparative methods on a data set of two species belonging to the genus Ophionereis, this study addresses whether a cave-dwelling species from Cozumel exhibited similar troglomorphic traits as those of other taxa inhabiting caves. Our work demonstrated that some characters representing potential morphological cave adaptations in O. commutabilis were: bigger sizes, elongation of arms and tube feet and the presence of traits potentially paedomorphic. In addition, an element of ophiuroid’s photoreceptor system, as well as pigmentation, was observed to be peculiar in this stygobiotic species, plausibly as a result of inhabiting a low light-energy environment. Finally, we add evidence to the statement that O. commutabilis is a cave endemic species, already supported by demography, distribution and origin of this species, and now by a typical array of troglomorphisms.
Collapse
|
5
|
Extraocular Vision in a Brittle Star Is Mediated by Chromatophore Movement in Response to Ambient Light. Curr Biol 2020; 30:319-327.e4. [PMID: 31902727 DOI: 10.1016/j.cub.2019.11.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/27/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Almost all animals can sense light, but only those with spatial vision can "see." Conventionally, this was restricted to animals possessing discrete visual organs (eyes), but extraocular vision could facilitate vision without eyes. Echinoderms form the focus of extraocular vision research [1-7], and the brittle star Ophiocoma wendtii, which exhibits light-responsive color change and shelter seeking, became a key species of interest [4, 8, 9]. Both O. wendtii and an apparently light-indifferent congeneric, O. pumila, possess an extensive network of r-opsin-reactive cells, but its function remains unclear [4]. We show that, although both species are strongly light averse, O. wendtii orients to stimuli necessitating spatial vision for detection, but O. pumila does not. However, O. wendtii's response disappears when chromatophores are contracted within the skeleton. Combining immunohistochemistry, histology, and synchrotron microtomography, we reconstructed models of photoreceptors in situ and extracted estimated angular apertures for O. wendtii and O. pumila. Angular sensitivity estimates, derived from these models, support the hypothesis that chromatophores constitute a screening mechanism in O. wendtii, providing sufficient resolving power to detect the stimuli. RNA sequencing (RNA-seq) identified opsin candidates in both species, including multiple r-opsins and transduction pathway constituents, congruent with immunohistochemistry and studies of other echinoderms [10, 11]. Finally, we note that differing body postures between the two species during experiments may reflect aspect of signal integration. This represents one of the most detailed mechanisms for extraocular vision yet proposed and draws interesting parallels with the only other confirmed extraocular visual system, that of some sea urchins, which also possess chromatophores [1].
Collapse
|
6
|
Lengerer B, Algrain M, Lefevre M, Delroisse J, Hennebert E, Flammang P. Interspecies comparison of sea star adhesive proteins. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190195. [PMID: 31495313 DOI: 10.1098/rstb.2019.0195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Sea stars use adhesive secretions to attach their numerous tube feet strongly and temporarily to diverse surfaces. After detachment of the tube feet, the adhesive material stays bound to the substrate as so-called 'footprints'. In the common sea star species Asterias rubens, the adhesive material has been studied extensively and the first sea star footprint protein (Sfp1) has been characterized. We identified Sfp1-like sequences in 17 additional sea star species, representing different taxa and tube foot morphologies, and analysed the evolutionary conservation of this protein. In A. rubens, we confirmed the expression of 34 footprint proteins in the tube foot adhesive epidermis, with 22 being exclusively expressed in secretory cells of the adhesive epidermis and 12 showing an additional expression in the stem epidermis. The sequences were used for BLAST searches in seven asteroid transcriptomes providing a first insight in the conservation of footprint proteins among sea stars. Our results highlighted a high conservation of the large proteins making up the structural core of the footprints, whereas smaller, potential surface-binding proteins might be more variable among sea star species. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Birgit Lengerer
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Morgane Algrain
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Mathilde Lefevre
- Cell Biology Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Jérôme Delroisse
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Elise Hennebert
- Cell Biology Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
| |
Collapse
|
7
|
Chen M, Talarovicova A, Zheng Y, Storey KB, Elphick MR. Neuropeptide precursors and neuropeptides in the sea cucumber Apostichopus japonicus: a genomic, transcriptomic and proteomic analysis. Sci Rep 2019; 9:8829. [PMID: 31222106 PMCID: PMC6586643 DOI: 10.1038/s41598-019-45271-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
The sea cucumber Apostichopus japonicus is a foodstuff with very high economic value in China, Japan and other countries in south-east Asia. It is at the heart of a multibillion-dollar industry and to meet demand for this product, aquaculture methods and facilities have been established. However, there are challenges associated with optimization of reproduction, feeding and growth in non-natural environments. Therefore, we need to learn more about the biology of A. japonicus, including processes such as aestivation, evisceration, regeneration and albinism. One of the major classes of molecules that regulate physiology and behaviour in animals are neuropeptides, and a few bioactive peptides have already been identified in A. japonicus. To facilitate more comprehensive investigations of neuropeptide function in A. japonicus, here we have analysed genomic and transcriptomic sequence data and proteomic data to identify neuropeptide precursors and neuropeptides in this species. We identified 44 transcripts encoding neuropeptide precursors or putative neuropeptide precursors, and in some instances neuropeptides derived from these precursors were confirmed by mass spectrometry. Furthermore, analysis of genomic sequence data enabled identification of the location of neuropeptide precursor genes on genomic scaffolds and linkage groups (chromosomes) and determination of gene structure. Many of the precursors identified contain homologs of neuropeptides that have been identified in other bilaterian animals. Precursors of neuropeptides that have thus far only been identified in echinoderms were identified, including L- and F-type SALMFamides, AN peptides and others. Precursors of several peptides that act as modulators of neuromuscular activity in A. japonicus were also identified. The discovery of a large repertoire of neuropeptide precursors and neuropeptides provides a basis for experimental studies that investigate the physiological roles of neuropeptide signaling systems in A. japonicus. Looking ahead, some of these neuropeptides may have effects that could be harnessed to enable improvements in the aquaculture of this economically important species.
Collapse
Affiliation(s)
- Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China.
| | - Alzbeta Talarovicova
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
8
|
Delroisse J, Duchatelet L, Flammang P, Mallefet J. De novo transcriptome analyses provide insights into opsin-based photoreception in the lanternshark Etmopterus spinax. PLoS One 2018; 13:e0209767. [PMID: 30596723 PMCID: PMC6312339 DOI: 10.1371/journal.pone.0209767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
The velvet belly lanternshark (Etmopterus spinax) is a small deep-sea shark commonly found in the Eastern Atlantic and the Mediterranean Sea. This bioluminescent species is able to emit a blue-green ventral glow used in counter-illumination camouflage, mainly. In this study, paired-end Illumina HiSeqTM technology has been employed to generate transcriptome data from eye and ventral skin tissues of the lanternshark. About 64 and 49 million Illumina reads were generated from skin and eye tissues respectively. The assembly allowed us to predict 119,749 total unigenes including 94,569 for the skin transcriptome and 94,365 for the eye transcriptome while 74,753 were commonly found in both transcriptomes. A taxonomy filtering was applied to extract a reference transcriptome containing 104,390 unigenes among which 38,836 showed significant similarities to known sequences in NCBI non-redundant protein sequences database. Around 58% of the annotated unigenes match with predicted genes from the Elephant shark (Callorhinchus milii) genome. The transcriptome completeness has been evaluated by successfully capturing around 98% of orthologous genes of the « Core eukaryotic gene dataset » within the E. spinax reference transcriptome. We identified potential "light-interacting toolkit" genes including multiple genes related to ocular and extraocular light perception processes such as opsins, phototransduction actors or crystallins. Comparative gene expression analysis reveals eye-specific expression of opsins, ciliary phototransduction actors, crystallins and vertebrate retinoid pathway actors. In particular, mRNAs from a single rhodopsin gene and its potentially associated peropsin were detected in the eye transcriptome, only, confirming a monochromatic vision of the lanternshark. Encephalopsin mRNAs were mainly detected in the ventral skin transcriptome. In parallel, immunolocalization of the encephalopsin within the ventral skin of the shark suggests a functional relation with the photophores, i.e. epidermal light-producing organs. We hypothesize that extraocular photoreception might be involved in the bioluminescence control possibly acting on the shutter opening and/or the photocyte activity itself. The newly generated reference transcriptome provides a valuable resource for further understanding of the shark biology.
Collapse
Affiliation(s)
- Jérôme Delroisse
- University of Mons (UMONS), Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, Mons, Belgium
| | - Laurent Duchatelet
- Catholic University of Louvain (UCLouvain), Earth and Life Institute, Marine Biology Laboratory, Louvain-La-Neuve, Belgium
| | - Patrick Flammang
- University of Mons (UMONS), Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, Mons, Belgium
| | - Jérôme Mallefet
- Catholic University of Louvain (UCLouvain), Earth and Life Institute, Marine Biology Laboratory, Louvain-La-Neuve, Belgium
| |
Collapse
|
9
|
Szabó R, Ferrier DEK. Two more Posterior Hox genes and Hox cluster dispersal in echinoderms. BMC Evol Biol 2018; 18:203. [PMID: 30587111 PMCID: PMC6307216 DOI: 10.1186/s12862-018-1307-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hox genes are key elements in patterning animal development. They are renowned for their, often, clustered organisation in the genome, with supposed mechanistic links between the organisation of the genes and their expression. The widespread distribution and comparable functions of Hox genes across the animals has led to them being a major study system for comparing the molecular bases for construction and divergence of animal morphologies. Echinoderms (including sea urchins, sea stars, sea cucumbers, feather stars and brittle stars) possess one of the most unusual body plans in the animal kingdom with pronounced pentameral symmetry in the adults. Consequently, much interest has focused on their development, evolution and the role of the Hox genes in these processes. In this context, the organisation of echinoderm Hox gene clusters is distinctive. Within the classificatory system of Duboule, echinoderms constitute one of the clearest examples of Disorganized (D) clusters (i.e. intact clusters but with a gene order or orientation rearranged relative to the ancestral state). RESULTS Here we describe two Hox genes (Hox11/13d and e) that have been overlooked in most previous work and have not been considered in reconstructions of echinoderm Hox complements and cluster organisation. The two genes are related to Posterior Hox genes and are present in all classes of echinoderm. Importantly, they do not reside in the Hox cluster of any species for which genomic linkage data is available. CONCLUSION Incorporating the two neglected Posterior Hox genes into assessments of echinoderm Hox gene complements and organisation shows that these animals in fact have Split (S) Hox clusters rather than simply Disorganized (D) clusters within the Duboule classification scheme. This then has implications for how these genes are likely regulated, with them no longer covered by any potential long-range Hox cluster-wide, or multigenic sub-cluster, regulatory mechanisms.
Collapse
Affiliation(s)
- Réka Szabó
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB UK
| | - David E. K. Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB UK
| |
Collapse
|
10
|
Zandawala M, Moghul I, Yañez Guerra LA, Delroisse J, Abylkassimova N, Hugall AF, O'Hara TD, Elphick MR. Discovery of novel representatives of bilaterian neuropeptide families and reconstruction of neuropeptide precursor evolution in ophiuroid echinoderms. Open Biol 2018; 7:rsob.170129. [PMID: 28878039 PMCID: PMC5627052 DOI: 10.1098/rsob.170129] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/27/2017] [Indexed: 11/12/2022] Open
Abstract
Neuropeptides are a diverse class of intercellular signalling molecules that mediate neuronal regulation of many physiological and behavioural processes. Recent advances in genome/transcriptome sequencing are enabling identification of neuropeptide precursor proteins in species from a growing variety of animal taxa, providing new insights into the evolution of neuropeptide signalling. Here, detailed analysis of transcriptome sequence data from three brittle star species, Ophionotus victoriae, Amphiura filiformis and Ophiopsila aranea, has enabled the first comprehensive identification of neuropeptide precursors in the class Ophiuroidea of the phylum Echinodermata. Representatives of over 30 bilaterian neuropeptide precursor families were identified, some of which occur as paralogues. Furthermore, homologues of endothelin/CCHamide, eclosion hormone, neuropeptide-F/Y and nucleobinin/nesfatin were discovered here in a deuterostome/echinoderm for the first time. The majority of ophiuroid neuropeptide precursors contain a single copy of a neuropeptide, but several precursors comprise multiple copies of identical or non-identical, but structurally related, neuropeptides. Here, we performed an unprecedented investigation of the evolution of neuropeptide copy number over a period of approximately 270 Myr by analysing sequence data from over 50 ophiuroid species, with reference to a robust phylogeny. Our analysis indicates that the composition of neuropeptide ‘cocktails’ is functionally important, but with plasticity over long evolutionary time scales.
Collapse
Affiliation(s)
- Meet Zandawala
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ismail Moghul
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Luis Alfonso Yañez Guerra
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jérôme Delroisse
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Nikara Abylkassimova
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Andrew F Hugall
- Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| | - Timothy D O'Hara
- Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
11
|
Sumner-Rooney L, Rahman IA, Sigwart JD, Ullrich-Lüter E. Whole-body photoreceptor networks are independent of 'lenses' in brittle stars. Proc Biol Sci 2018; 285:rspb.2017.2590. [PMID: 29367398 DOI: 10.1098/rspb.2017.2590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/03/2018] [Indexed: 11/12/2022] Open
Abstract
Photoreception and vision are fundamental aspects of animal sensory biology and ecology, but important gaps remain in our understanding of these processes in many species. The colour-changing brittle star Ophiocoma wendtii is iconic in vision research, speculatively possessing a unique whole-body visual system that incorporates information from nerve bundles underlying thousands of crystalline 'microlenses'. The hypothesis that these might form a sophisticated compound eye-like system regulated by chromatophores has been extensively reiterated, with investigations into biomimetic optics and similar supposedly 'visual' structures in living and fossil taxa. However, no photoreceptors or visual behaviours have ever been identified. We present the first evidence of photoreceptor networks in three Ophiocoma species, both with and without microlenses and colour-changing behaviour. High-resolution microscopy, immunohistochemistry and synchrotron tomography demonstrate that putative photoreceptors cover the animals' oral, lateral and aboral surfaces, but are absent at the hypothesized focal points of the microlenses. The structural optics of these crystal 'lenses' are an exaptation and do not fulfil any apparent visual role. This contradicts previous studies, yet the photoreceptor network in Ophiocoma appears even more widespread than previously anticipated, both taxonomically and anatomically.
Collapse
Affiliation(s)
- Lauren Sumner-Rooney
- Oxford University Museum of Natural History, Oxford, UK .,Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | | | - Julia D Sigwart
- Queen's University Marine Laboratory, Queen's University Belfast, Portaferry, Northern Ireland.,Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Esther Ullrich-Lüter
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
12
|
Suwansa-Ard S, Chaiyamoon A, Talarovicova A, Tinikul R, Tinikul Y, Poomtong T, Elphick MR, Cummins SF, Sobhon P. Transcriptomic discovery and comparative analysis of neuropeptide precursors in sea cucumbers (Holothuroidea). Peptides 2018; 99:231-240. [PMID: 29054501 DOI: 10.1016/j.peptides.2017.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
Abstract
Neuropeptides synthesized and released by neuronal cells play important roles in the regulation of many processes, e.g. growth, feeding, reproduction, and behavior. In the past decade, next-generation sequencing technologies have helped to facilitate the identification of multiple neuropeptide genes in a variety of taxa, including arthropods, molluscs and echinoderms. In this study, we extend these studies to Holothuria scabra, a sea cucumber species that is widely cultured for human consumption. In silico analysis of H. scabra neural and gonadal transcriptomes enabled the identification of 28 transcripts that encode a total of 26 bilaterian and echinoderm-specific neuropeptide precursors. Furthermore, publicly available sequence data from another sea cucumber, Holothuria glaberrima, allowed a more in-depth comparative investigation. Interestingly, two isoforms of a calcitonin-type peptide precursor (CTPP) were deduced from the H. scabra transcriptome - HscCTPP-long and HscCTPP-short, likely the result of alternative splicing. We also identified a sea cucumber relaxin-type peptide precursor, which is of interest because relaxin-type peptides have been shown to act as gonadotropic hormones in starfish. Two neuropeptides that appear to be holothurian-specific are GLRFA, and GN-19. In H. scabra, the expression of GLRFA was restricted to neural tissues, while GN-19 expression was additionally found in the longitudinal muscle and intestinal tissues. In conclusion, we have obtained new insights into the neuropeptide signaling systems of holothurians, which will facilitate physiological studies that may enable advances in the aquaculture of sea cucumbers.
Collapse
Affiliation(s)
- Saowaros Suwansa-Ard
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Alzbeta Talarovicova
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Tanes Poomtong
- Coastal Fisheries Research and Development Center, Klongwan, Prachuab Khiri Khan 77000, Thailand
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Scott F Cummins
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
13
|
Fine structure of the luminous spines and luciferase detection in the brittle star Amphiura filiformis. ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Delroisse J, Ullrich-Lüter E, Blaue S, Ortega-Martinez O, Eeckhaut I, Flammang P, Mallefet J. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence. Open Biol 2017; 7:rsob.160300. [PMID: 28381628 PMCID: PMC5413902 DOI: 10.1098/rsob.160300] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/06/2017] [Indexed: 01/31/2023] Open
Abstract
Bioluminescence relies on the oxidation of a luciferin substrate catalysed by a luciferase enzyme. Luciferins and luciferases are generic terms used to describe a large variety of substrates and enzymes. Whereas luciferins can be shared by phylogenetically distant organisms which feed on organisms producing them, luciferases have been thought to be lineage-specific enzymes. Numerous light emission systems would then have co-emerged independently along the tree of life resulting in a plethora of non-homologous luciferases. Here, we identify for the first time a candidate luciferase of a luminous echinoderm, the ophiuroid Amphiura filiformis Phylogenomic analyses identified the brittle star predicted luciferase as homologous to the luciferase of the sea pansy Renilla (Cnidaria), contradicting with the traditional viewpoint according to which luciferases would generally be of convergent origins. The similarity between the Renilla and Amphiura luciferases allowed us to detect the latter using anti-Renilla luciferase antibodies. Luciferase expression was specifically localized in the spines which were demonstrated to be the bioluminescent organs in vivo However, enzymes homologous to the Renilla luciferase but unable to trigger light emission were also identified in non-luminous echinoderms and metazoans. Our findings strongly indicate that those enzymes, belonging to the haloalkane dehalogenase family, might then have been convergently co-opted into luciferases in cnidarians and echinoderms. In these two benthic suspension-feeding species, similar ecological pressures would constitute strong selective forces for the functional shift of these enzymes and the emergence of bioluminescence.
Collapse
Affiliation(s)
- Jérôme Delroisse
- Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Esther Ullrich-Lüter
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| | - Stefanie Blaue
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| | - Olga Ortega-Martinez
- Department of Marine Science, The Sven Lovén Centre for Marine Sciences - Kristineberg, University of Gothenburg, 45178 Fiskebäckskil, Sweden
| | - Igor Eeckhaut
- Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Patrick Flammang
- Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Jérôme Mallefet
- Marine Biology Laboratory, Université Catholique de Louvain, ELI, 3 Place Croix du Sud L7.04.06, 1348 Louvain-La-Neuve, Belgium
| |
Collapse
|
15
|
Gorzelak P, Rahman IA, Zamora S, Gąsiński A, Trzciński J, Brachaniec T, Salamon MA. Towards a Better Understanding of the Origins of Microlens Arrays in Mesozoic Ophiuroids and Asteroids. Evol Biol 2017. [DOI: 10.1007/s11692-017-9411-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Petie R, Garm A, Hall MR. Crown-of-thorns starfish have true image forming vision. Front Zool 2016; 13:41. [PMID: 27605999 PMCID: PMC5013567 DOI: 10.1186/s12983-016-0174-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/31/2016] [Indexed: 11/28/2022] Open
Abstract
Background Photoreceptors have evolved numerous times giving organisms the ability to detect light and respond to specific visual stimuli. Studies into the visual abilities of the Asteroidea (Echinodermata) have recently shown that species within this class have a more developed visual sense than previously thought and it has been demonstrated that starfish use visual information for orientation within their habitat. Whereas image forming eyes have been suggested for starfish, direct experimental proof of true spatial vision has not yet been obtained. Results The behavioural response of the coral reef inhabiting crown-of-thorns starfish (Acanthaster planci) was tested in controlled aquarium experiments using an array of stimuli to examine their visual performance. We presented starfish with various black-and-white shapes against a mid-intensity grey background, designed such that the animals would need to possess true spatial vision to detect these shapes. Starfish responded to black-and-white rectangles, but no directional response was found to black-and-white circles, despite equal areas of black and white. Additionally, we confirmed that starfish were attracted to black circles on a white background when the visual angle is larger than 14°. When changing the grey tone of the largest circle from black to white, we found responses to contrasts of 0.5 and up. The starfish were attracted to the dark area’s of the visual stimuli and were found to be both attracted and repelled by the visual targets. Conclusions For crown-of-thorns starfish, visual cues are essential for close range orientation towards objects, such as coral boulders, in the wild. These visually guided behaviours can be replicated in aquarium conditions. Our observation that crown-of-thorns starfish respond to black-and-white shapes on a mid-intensity grey background is the first direct proof of true spatial vision in starfish and in the phylum Echinodermata. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0174-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ronald Petie
- Department of Biology, Marine Biological Section, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø, Denmark
| | - Anders Garm
- Department of Biology, Marine Biological Section, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø, Denmark
| | - Michael R Hall
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, 4810 QLD Australia
| |
Collapse
|
17
|
Kelley JL, Davies WIL. The Biological Mechanisms and Behavioral Functions of Opsin-Based Light Detection by the Skin. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|