1
|
Hashemi L, Ormsbee ME, Patel PJ, Nielson JA, Ahlander J, Padash Barmchi M. A Drosophila model of HPV16-induced cancer reveals conserved disease mechanism. PLoS One 2022; 17:e0278058. [PMID: 36508448 PMCID: PMC9744332 DOI: 10.1371/journal.pone.0278058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
High-risk human papillomaviruses (HR-HPVs) cause almost all cervical cancers and a significant number of vaginal, vulvar, penile, anal, and oropharyngeal cancers. HPV16 and 18 are the most prevalent types among HR-HPVs and together cause more than 70% of all cervical cancers. Low vaccination rate and lack of molecularly-targeted therapeutics for primary therapy have led to a slow reduction in cervical cancer incidence and high mortality rate. Hence, creating new models of HPV-induced cancer that can facilitate understanding of the disease mechanism and identification of key cellular targets of HPV oncogenes are important for development of new interventions. Here in this study, we used the tissue-specific expression technique, Gal4-UAS, to establish the first Drosophila model of HPV16-induced cancer. Using this technique, we expressed HPV16 oncogenes E5, E6, E7 and the human E3 ligase (hUBE3A) specifically in the epithelia of Drosophila eye, which allows simple phenotype scoring without affecting the viability of the organism. We found that, as in human cells, hUBE3A is essential for cellular abnormalities caused by HPV16 oncogenes in flies. Several proteins targeted for degradation by HPV16 oncoproteins in human cells were also reduced in the Drosophila epithelial cells. Cell polarity and adhesion were compromised, resulting in impaired epithelial integrity. Cells did not differentiate to the specific cell types of ommatidia, but instead were transformed into neuron-like cells. These cells extended axon-like structures to connect to each other and exhibited malignant behavior, migrating away to distant sites. Our findings suggest that given the high conservation of genes and signaling pathways between humans and flies, the Drosophila model of HPV16- induced cancer could serve as an excellent model for understanding the disease mechanism and discovery of novel molecularly-targeted therapeutics.
Collapse
Affiliation(s)
- Lydia Hashemi
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - McKenzi E. Ormsbee
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - Prashant J. Patel
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - Jacquelyn A. Nielson
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States of America
| | - Joseph Ahlander
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK, United States of America
| | - Mojgan Padash Barmchi
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
- * E-mail:
| |
Collapse
|
2
|
Alghamri MS, Sharma P, Williamson TL, Readler JM, Yan R, Rider SD, Hostetler HA, Cool DR, Kolawole AO, Excoffon KJDA. MAGI-1 PDZ2 Domain Blockade Averts Adenovirus Infection via Enhanced Proteolysis of the Apical Coxsackievirus and Adenovirus Receptor. J Virol 2021; 95:e0004621. [PMID: 33762416 PMCID: PMC8437357 DOI: 10.1128/jvi.00046-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adenoviruses (AdVs) are etiological agents of gastrointestinal, heart, eye, and respiratory tract infections that can be lethal for immunosuppressed people. Many AdVs use the coxsackievirus and adenovirus receptor (CAR) as a primary receptor. The CAR isoform resulting from alternative splicing that includes the eighth exon, CAREx8, localizes to the apical surface of polarized epithelial cells and is responsible for the initiation of AdV infection. We have shown that the membrane level of CAREx8 is tightly regulated by two MAGI-1 PDZ domains, PDZ2 and PDZ4, resulting in increased or decreased AdV transduction, respectively. We hypothesized that targeting the interactions between the MAGI-1 PDZ2 domain and CAREx8 would decrease the apical CAREx8 expression level and prevent AdV infection. Decoy peptides that target MAGI-1 PDZ2 were synthesized (TAT-E6 and TAT-NET1). PDZ2 binding peptides decreased CAREx8 expression and reduced AdV transduction. CAREx8 degradation was triggered by the activation of the regulated intramembrane proteolysis (RIP) pathway through a disintegrin and metalloproteinase (ADAM17) and γ-secretase. Further analysis revealed that ADAM17 interacts directly with the MAGI-1 PDZ3 domain, and blocking the PDZ2 domain enhanced the accessibility of ADAM17 to the substrate (CAREx8). Finally, we validated the efficacy of TAT-PDZ2 peptides in protecting the epithelia from AdV transduction in vivo using a novel transgenic animal model. Our data suggest that TAT-PDZ2 binding peptides are novel anti-AdV molecules that act by enhanced RIP of CAREx8 and decreased AdV entry. This strategy has additional translational potential for targeting other viral receptors that have PDZ binding domains, such as the angiotensin-converting enzyme 2 receptor. IMPORTANCE Adenovirus is a common threat in immunosuppressed populations and military recruits. There are no currently approved treatments/prophylactic agents that protect from most AdV infections. Here, we developed peptide-based small molecules that can suppress AdV infection of polarized epithelia by targeting the AdV receptor, coxsackievirus and adenovirus receptor (CAREx8). The newly discovered peptides target a specific PDZ domain of the CAREx8-interacting protein MAGI-1 and decrease AdV transduction in multiple polarized epithelial models. Peptide-induced CAREx8 degradation is triggered by extracellular domain (ECD) shedding through ADAM17 followed by γ-secretase-mediated nuclear translocation of the C-terminal domain. The enhanced shedding of the CAREx8 ECD further protected the epithelium from AdV infection. Taken together, these novel molecules protect the epithelium from AdV infection. This approach may be applicable to the development of novel antiviral molecules against other viruses that use a receptor with a PDZ binding domain.
Collapse
Affiliation(s)
- Mahmoud S. Alghamri
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | | | - James M. Readler
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Ran Yan
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - S. Dean Rider
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Heather A. Hostetler
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - David R. Cool
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| | | | | |
Collapse
|
3
|
MAGI1 inhibits the AMOTL2/p38 stress pathway and prevents luminal breast tumorigenesis. Sci Rep 2021; 11:5752. [PMID: 33707576 PMCID: PMC7952706 DOI: 10.1038/s41598-021-85056-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
Alterations to cell polarization or to intercellular junctions are often associated with epithelial cancer progression, including breast cancers (BCa). We show here that the loss of the junctional scaffold protein MAGI1 is associated with bad prognosis in luminal BCa, and promotes tumorigenesis. E-cadherin and the actin binding scaffold AMOTL2 accumulate in MAGI1 deficient cells which are subjected to increased stiffness. These alterations are associated with low YAP activity, the terminal Hippo-pathway effector, but with an elevated ROCK and p38 Stress Activated Protein Kinase activities. Blocking ROCK prevented p38 activation, suggesting that MAGI1 limits p38 activity in part through releasing actin strength. Importantly, the increased tumorigenicity of MAGI1 deficient cells is rescued in the absence of AMOTL2 or after inhibition of p38, demonstrating that MAGI1 acts as a tumor-suppressor in luminal BCa by inhibiting an AMOTL2/p38 stress pathway.
Collapse
|
4
|
Inhibition of kinase IKKβ suppresses cellular abnormalities induced by the human papillomavirus oncoprotein HPV 18E6. Sci Rep 2021; 11:1111. [PMID: 33441820 PMCID: PMC7807017 DOI: 10.1038/s41598-020-80193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/15/2020] [Indexed: 11/14/2022] Open
Abstract
Human papillomavirus (HPV) is the leading cause of cervical cancer and has been implicated in several other cancer types including vaginal, vulvar, penile, and oropharyngeal cancers. Despite the recent availability of a vaccine, there are still over 310,000 deaths each year worldwide. Current treatments for HPV-mediated cancers show limited efficacy, and would benefit from improved understanding of disease mechanisms. Recently, we developed a Drosophila ‘HPV 18 E6’ model that displayed loss of cellular morphology and polarity, junctional disorganization, and degradation of the major E6 target Magi; we further provided evidence that mechanisms underlying HPV E6-induced cellular abnormalities are conserved between humans and flies. Here, we report a functional genetic screen of the Drosophila kinome that identified IKK\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β—a regulator of NF-κB—as an enhancer of E6-induced cellular defects. We demonstrate that inhibition of IKK\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β reduces Magi degradation and that this effect correlates with hyperphosphorylation of E6. Further, the reduction in IKK\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β suppressed the cellular transformation caused by the cooperative action of HPVE6 and the oncogenic Ras. Finally, we demonstrate that the interaction between IKK\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β and E6 is conserved in human cells: inhibition of IKK\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β blocked the growth of cervical cancer cells, suggesting that IKK\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β may serve as a novel therapeutic target for HPV-mediated cancers.
Collapse
|
5
|
Cao Z, Ji J, Wang FB, Kong C, Xu H, Xu YL, Chen X, Yu YW, Sun YH. MAGI-2 downregulation: a potential predictor of tumor progression and early recurrence in Han Chinese patients with prostate cancer. Asian J Androl 2020; 22:616-622. [PMID: 32167077 PMCID: PMC7705969 DOI: 10.4103/aja.aja_142_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Membrane-associated guanylate kinase (MAGUK) family protein MAGUK invert 2 (MAGI-2) has been demonstrated to be involved in the tumorigenic mechanism of prostate cancer. The objective of this study was to investigate the expression of MAGI-2 at mRNA and protein levels. The prognostic value of MAGI-2 in Han Chinese patients with prostate cancer was also investigated. The expression data of MAGI-2 were assessed through database retrieval, analysis of sequencing data from our group, and tissue immunohistochemistry using digital scoring system (H-score). The clinical, pathological, and follow-up data were collected. The expression of MAGI-2 in prostate tumor tissues and prostate normal tissues was evaluated and compared. MAGI-2 expression was associated with clinical parameters including tumor stage, lymph node status, Gleason score, PSA level, and biochemical recurrence of prostate cancer. The relative expression of MAGI-2 mRNA was lower in the tumor tissue in The Cancer Genome Atlas (TCGA) database and sequencing data (P < 0.001). There was no difference in MAGI-2 protein expression between tumor and normal tissues in tissue microarray (TMA) results. MAGI-2 expression was associated with pathological tumor stage (P = 0.02), Gleason score (P = 0.05), and preoperation prostate-specific antigen (PSA; P = 0.04). A positive correlation was identified between MAGI-2 and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expressions through the analysis of TCGA and TMA data (P < 0.0001). Patients with higher MAGI-2 expression had longer biochemical recurrence-free survival in the univariate analysis (P = 0.005), which indicates an optimal prognostic value of MAGI-2 in Han Chinese patients with prostate cancer. In conclusion, MAGI-2 expression gradually decreases with tumor progression, and can be used as a predictor of tumor recurrence in Chinese patients.
Collapse
Affiliation(s)
- Zhi Cao
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Jin Ji
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Fu-Bo Wang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Chen Kong
- Department of Traditional Chinese Medicine, New Jiangwan City Community Health Service Centre, Shanghai 200433, China
| | - Huan Xu
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Ya-Long Xu
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Xi Chen
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yong-Wei Yu
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Ying-Hao Sun
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Meng X, Maurel P, Lam I, Heffernan C, Stiffler MA, McBeath G, Salzer JL. Necl-4/Cadm4 recruits Par-3 to the Schwann cell adaxonal membrane. Glia 2019; 67:884-895. [PMID: 30585357 PMCID: PMC7138615 DOI: 10.1002/glia.23578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Interactions between axons and Schwann cells are essential for the acquisition of Schwann cell radial and longitudinal polarity and myelin sheath assembly. In the internode, the largest of these longitudinal domains, axon-Schwann cell interactions are mediated by the Nectin-like (Necl) cell adhesion proteins, also known as SynCAMs or Cadms. In particular, Necl-1/Cadm3 expressed on the axon surface binds to Necl-4/Cadm4 expressed along the adaxonal membrane of myelinating Schwann cells. Necl-4 promotes myelination in vitro and is required for the timely onset of myelination and the fidelity of the organization of the myelin sheath and the internode in vivo. A key question is the identity of the downstream effectors of Necl-4 that mediate its effects. The cytoplasmic terminal region (CTR) of Necl-4 contains a PDZ-domain binding motif. Accordingly, we used the CTR of Necl-4 in an unbiased proteomic screen of PDZ-domain proteins. We identify Par-3, a multi-PDZ domain containing protein of the Par-aPKC polarity complex previously implicated in myelination, as an interacting protein. Necl-4 and Par-3 are colocalized along the inner Schwann cell membrane and coprecipitate from Schwann cell lysates. The CTR of Necl-4 binds to the first PDZ domain of Par-3 thereby recruiting Par-3 to sites of Necl-4/Necl-1 interaction. Knockdown of Necl-4 perturbs Par-3 localization to the inner membrane of Schwann cells in myelinating co-cultures. These findings implicate interactions of Necl-1/Necl-4 in the recruitment of Par-3 to the Schwann cell adaxonal membrane and the establishment of Schwann cell radial polarity.
Collapse
Affiliation(s)
- Xiaosong Meng
- Departments of Neuroscience and Physiology and Neurology,
the Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016
| | - Patrice Maurel
- Department of Biological Sciences, Rutgers, Newark, NJ
07102
| | - Isabel Lam
- Dana-Faber Cancer Institute, Boston, MA 02215
| | - Corey Heffernan
- Department of Biological Sciences, Rutgers, Newark, NJ
07102
| | | | - Gavin McBeath
- Department of Systems Biology, Harvard Medical School,
Boston, MA 02115
| | - James L. Salzer
- Departments of Neuroscience and Physiology and Neurology,
the Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016
- Departments of Neuroscience and Physiology and Neurology,
the Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016
| |
Collapse
|
7
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
8
|
Padash Barmchi M, Gilbert M, Thomas M, Banks L, Zhang B, Auld VJ. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor. PLoS Pathog 2016; 12:e1005789. [PMID: 27537218 PMCID: PMC4990329 DOI: 10.1371/journal.ppat.1005789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. Human papillomaviruses (HPV) are the causative agents of cervical cancer, one of the leading causes of cancer death in women worldwide. The E6 oncoprotein encoded by HPV has been implicated in the progression of primary tumors to metastatic disease and we have developed a new model in the fruit fly (Drosophila melanogaster) to study the cellular effects of E6. The E6 protein recruits an E3 ubiquitin ligase (UBE3A) to induce the degradation of a number of cellular proteins, including members of the MAGUK family of scaffolding proteins that control the structure and polarity of epithelial cells: Dlg, Scribble and Magi. Expression of E6 and human UBE3A in the wing and eye of Drosophila disrupted these tissues. Similar to human cells we found that Drosophila Magi was a major E6 degradation target and that overexpression of Magi rescued the tissue disruption. However, Drosophila p53 was not degraded by E6/UBE3A, making our fly model potentially useful for studying the p53-independent activities of the E6+UBE3A complex. When we paired E6 expression with oncogenic proteins, including activated Ras, we observed that epithelia were transformed into mesechymal-like cells that left the epithelium and spread through the body. As a test of the potential of our system, we carried out a pilot genetic screen and identified the insulin receptor as a strong modulator of the E6-mediated disruption of Drosophila tissues. Therefore, we have developed a new system and approach to help us better understand the mechanisms that underlie how HPV infection leads to cell transformation and cancer.
Collapse
Affiliation(s)
- Mojgan Padash Barmchi
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (MPB); (BZ); (VJA)
| | - Mary Gilbert
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Bing Zhang
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (MPB); (BZ); (VJA)
| | - Vanessa J. Auld
- Department of Zoology, University of British Columbia, Vancouver, Canada
- * E-mail: (MPB); (BZ); (VJA)
| |
Collapse
|