1
|
Jariyasakoolroj T, Chattipakorn SC, Chattipakorn N. Potential biomarkers used for risk estimation of pediatric sepsis-associated organ dysfunction and immune dysregulation. Pediatr Res 2024:10.1038/s41390-024-03289-y. [PMID: 38834784 DOI: 10.1038/s41390-024-03289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 05/11/2024] [Indexed: 06/06/2024]
Abstract
Pediatric sepsis is a serious issue globally and is a significant cause of illness and death among infants and children. Refractory septic shock and multiple organ dysfunction syndrome are the primary causes of mortality in children with sepsis. However, there is incomplete understanding of mechanistic insight of sepsis associated organ dysfunction. Biomarkers present during the body's response to infection-related inflammation can be used for screening, diagnosis, risk stratification/prognostication, and/or guidance in treatment decision-making. Research on biomarkers in children with sepsis can provide information about the risk of poor outcomes and sepsis-related organ dysfunction. This review focuses on clinically used biomarkers associated with immune dysregulation and organ dysfunction in pediatric sepsis, which could be useful for developing precision medicine strategies in pediatric sepsis management in the future. IMPACT: Sepsis is a complex syndrome with diverse clinical presentations, where organ dysfunction is a key factor in morbidity and mortality. Early detection of organ complications is vital in sepsis management, and potential biomarkers offer promise for precision medicine in pediatric cases. Well-designed studies are needed to identify phase-specific biomarkers and improve outcomes through more precise management.
Collapse
Affiliation(s)
- Theerapon Jariyasakoolroj
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Leonard S, Guertin H, Odoardi N, Miller MR, Patel MA, Daley M, Cepinskas G, Fraser DD. Pediatric sepsis inflammatory blood biomarkers that correlate with clinical variables and severity of illness scores. J Inflamm (Lond) 2024; 21:7. [PMID: 38454423 PMCID: PMC10921642 DOI: 10.1186/s12950-024-00379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Sepsis is a dysregulated systemic inflammatory response triggered by infection, resulting in organ dysfunction. A major challenge in clinical pediatrics is to identify sepsis early and then quickly intervene to reduce morbidity and mortality. As blood biomarkers hold promise as early sepsis diagnostic tools, we aimed to measure a large number of blood inflammatory biomarkers from pediatric sepsis patients to determine their predictive ability, as well as their correlations with clinical variables and illness severity scores. METHODS Pediatric patients that met sepsis criteria were enrolled, and clinical data and blood samples were collected. Fifty-eight inflammatory plasma biomarker concentrations were determined using immunoassays. The data were analyzed with both conventional statistics and machine learning. RESULTS Twenty sepsis patients were enrolled (median age 13 years), with infectious pathogens identified in 75%. Vasopressors were administered to 85% of patients, while 55% received invasive ventilation and 20% were ventilated non-invasively. A total of 24 inflammatory biomarkers were significantly different between sepsis patients and age/sex-matched healthy controls. Nine biomarkers (IL-6, IL-8, MCP-1, M-CSF, IL-1RA, hyaluronan, HSP70, MMP3, and MMP10) yielded AUC parameters > 0.9 (95% CIs: 0.837-1.000; p < 0.001). Boruta feature reduction yielded 6 critical biomarkers with their relative importance: IL-8 (12.2%), MCP-1 (11.6%), HSP70 (11.6%), hyaluronan (11.5%), M-CSF (11.5%), and IL-6 (11.5%); combinations of 2 biomarkers yielded AUC values of 1.00 (95% CI: 1.00-1.00; p < 0.001). Specific biomarkers strongly correlated with illness severity scoring, as well as other clinical variables. IL-3 specifically distinguished bacterial versus viral infection (p < 0.005). CONCLUSIONS Specific inflammatory biomarkers were identified as markers of pediatric sepsis and strongly correlated to both clinical variables and sepsis severity.
Collapse
Affiliation(s)
- Sean Leonard
- Pediatrics, Western University, London, ON, Canada
| | | | - Natalya Odoardi
- Emergency Medicine, Lakeridge Health, Ajax/Oshawa, ON, Canada
| | | | - Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, Canada
- Computer Science, Western University, London, ON, Canada
| | - Gediminas Cepinskas
- Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Douglas D Fraser
- Pediatrics, Western University, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada.
- Clinical Neurological Sciences, Western University, London, ON, Canada.
- Physiology & Pharmacology, Western University, London, ON, Canada.
- Room C2-C82, London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
3
|
Khattab AA, Dawood AAER, Saleh NY. Value of Thrombomodulin as a Marker for Sepsis in Critically Ill Children. Indian J Pediatr 2021; 88:864-871. [PMID: 33242147 DOI: 10.1007/s12098-020-03564-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/01/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Pediatric sepsis is altered organ function in critically ill children and a main etiology of mortality for children. Therefore, the authors aimed to assess the role of serum thrombomodulin as valuable biomarker in the diagnosis and prognosis of sepsis in acutely ill pediatrics in the intensive unit. METHODS This prospective clinical study conducted on 140 acutely ill patients admitted to the Pediatric Intensive Care Unit (PICU) of Menoufia University Hospital and 50 apparently healthy controls from October 2018 through September 2019. All included children were subjected to clinical examination and the Pediatric Risk of Mortality (PRISM) and Pediatric Index of Mortality II (PIM II) scores were calculated. Serum thrombomodulin was measured for both patients and the control group upon admission. The children were followed for a period of 30 d. RESULTS Serum thrombomodulin level was increased among all the patients and those with systemic inflammatory response syndrome (SIRS), sepsis and severe sepsis compared with controls (p < 0.001). Furthermore, serum thrombomodulin was higher in patients who died than who survived (p = 0.005). Thrombomodulin had area under Receiver Operating Characteristic Curve (AUC) =0.915 for predicting sepsis, whereas C-reactive protein had AUC = 0.789. According to the prognosis, thrombomodulin had AUC = 0.711 for predicting mortality whereas PRISM and PIM scores had AUC = (0.918, 0.960) respectively. CONCLUSIONS Serum thrombomodulin is a promising marker for pediatric sepsis. The data showed that serum thrombomodulin had a valuable role in diagnosis of sepsis early in critically ill pediatrics.
Collapse
Affiliation(s)
- Ahmed Anwar Khattab
- Department of Pediatrics, Faculty of Medicine, Menoufia University Hospital, Menoufia Governorate, Shibin El Kom, Egypt
| | - Ashraf Abd El Raouf Dawood
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University Hospital, Menoufia Governorate, Shibin El Kom, Egypt
| | - Nagwan Yossery Saleh
- Department of Pediatrics, Faculty of Medicine, Menoufia University Hospital, Menoufia Governorate, Shibin El Kom, Egypt.
| |
Collapse
|
4
|
Barton AK, Richter IG, Ahrens T, Merle R, Alalwani A, Lilge S, Purschke K, Barnewitz D, Gehlen H. MMP-9 Concentration in Peritoneal Fluid Is a Valuable Biomarker Associated with Endotoxemia in Equine Colic. Mediators Inflamm 2021; 2021:9501478. [PMID: 33488296 PMCID: PMC7803393 DOI: 10.1155/2021/9501478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/03/2020] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Abstract
The purpose of the study was to compare the results of sepsis scoring (clinical examination and clinical pathology) to the concentrations of matrix-metalloproteinases (MMPs) -2, -8, and -9; tissue-inhibitor of metalloproteinases (TIMPs) -1 and -2; and inflammatory chemokines interleukin (IL) 1β and tumor-necrosis-factor-alpha (TNF-α) in plasma and peritoneal fluid of equine colic patients. A modified sepsis scoring including general condition, heart and respiratory rate, rectal temperature, mucous membranes, white blood cell count (WBC), and ionized calcium was applied in 47 horses presented with clinical signs of colic. Using this scoring system, horses were classified as negative (n = 32, ≤6/19 points), questionable (n = 9, 7-9/19 points), or positive (n = 6, ≥10/19 points) for sepsis. MMPs, TIMPs, IL-1β, and TNF-α concentrations were evaluated in plasma and peritoneal fluid using species-specific sandwich ELISA kits. In a linear discriminant analysis, all parameters of sepsis scoring apart from calcium separated well between sepsis severity groups (P < 0.05). MMP-9 was the only biomarker of high diagnostic value, while all others remained insignificant. A significant influence of overall sepsis scoring on MMP-9 was found for peritoneal fluid (P = 0.005) with a regression coefficient of 0.092, while no association was found for plasma (P = 0.085). Using a MMP-9 concentration of >113 ng/ml in the peritoneal fluid was found to be the ideal cutoff to identify positive sepsis scoring (≥10/19 points; sensitivity of 83.3% and specificity of 82.9%). In conclusion, MMP-9 was found to be a biomarker of high diagnostic value for sepsis and endotoxemia in equine colic. The evaluation of peritoneal fluid seems preferable in comparison to plasma. As abdominocentesis is commonly performed in the diagnostic work-up of equine colic, a pen-side assay would be useful and easy-to-perform diagnostic support in the decision for therapeutic intervention.
Collapse
Affiliation(s)
| | - Ina-Gabriele Richter
- Research Centre of Medical Technology and Biotechnology, Bad Langensalza, Germany
| | - Tanja Ahrens
- Equine Clinic, Freie Universitaet Berlin, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology, Freie Universitaet Berlin, Berlin, Germany
| | | | - Svenja Lilge
- Equine Clinic, Freie Universitaet Berlin, Berlin, Germany
| | | | - Dirk Barnewitz
- Research Centre of Medical Technology and Biotechnology, Bad Langensalza, Germany
| | - Heidrun Gehlen
- Equine Clinic, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
5
|
Qiao Y, Zhang B, Liu Y. Identification of Potential Diagnostic Gene Targets for Pediatric Sepsis Based on Bioinformatics and Machine Learning. Front Pediatr 2021; 9:576585. [PMID: 33748037 PMCID: PMC7969637 DOI: 10.3389/fped.2021.576585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/01/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose: To develop a comprehensive differential expression gene profile as well as a prediction model based on the expression analysis of pediatric sepsis specimens. Methods: In this study, compared with control specimens, a total of 708 differentially expressed genes in pediatric sepsis (case-control at a ratio of 1:3) were identified, including 507 up-regulated and 201 down-regulated ones. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes indicated the close interaction between neutrophil activation, neutrophil degranulation, hematopoietic cell lineage, Staphylococcus aureus infection, and periodontitis. Meanwhile, the results also suggested a significant difference for 16 kinds of immune cell compositions between two sample sets. The two potential selected biomarkers (MMP and MPO) had been validated in septic children patients by the ELISA method. Conclusion: This study identified two potential hub gene biomarkers and established a differentially expressed genes-based prediction model for pediatric sepsis, which provided a valuable reference for future clinical research.
Collapse
Affiliation(s)
- Ying Qiao
- Department of Pediatrics, Tianjin Union Medical Center, Tianjin, China
| | - Bo Zhang
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Liu
- Department of Pediatrics, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
6
|
Ma Y, Li R, Wang J, Jiang W, Yuan X, Cui J, Wang C. ITIH4, as an inflammation biomarker, mainly increases in bacterial bloodstream infection. Cytokine 2020; 138:155377. [PMID: 33348064 DOI: 10.1016/j.cyto.2020.155377] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Bloodstream infection (BSI) is usually accompanied with the changes of varieties of inflammation proteins. In our previous study, we identified that inter-α-trypsin inhibitor heavy chain H4 (ITIH4) was highly expressed in the infection arms than the normal control arm. However, the correlated verification and mechanism remain obscure. Escherichia coli infected mice model and clinical serum samples were used to validate the concentration of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), as well as ITIH4, in ELISA method. Cytokines (IL-6, TNF-α, IL-10 and lipopolysaccharide (LPS)) were used to stimulate the HepG2 cell model to explore which cytokines influence the expression of ITIH4. JAK/STAT inhibitor was treated before IL-6 and LPS stimulation. Westernblot, as well as real-time PCR were performed to detect the expression of ITIH4 in liver tissue from protein and transcription levels. Immunohistochemistry analysis was used to observe the expression of ITIH4 in mice liver tissue. In mice model, IL-6, TNF-α, as well as IL-10 increased in the infection arms than the normal control arm. ITIH4 in serum and liver tissue of mice model increased from 1 h to 128 h, which were remarkably different from that of the normal control arm. Besides, ITIH4 increased in the bacterial infection arm greatly than the fungemia arm, mycoplasma pneumoniae (MP) arm and febrile arm in clinical serum samples. Furthermore, using the HepG2 cell line, we demonstrated that ITIH4 was up-regulated at both protein and mRNA levels upon dose- and time- response treatments with IL-6, as well as LPS. Moreover, IL-6 or LPS mediated induction of ITIH4 expression could be significantly decreased by treatment with an JAK/STAT inhibitor in protein or mRNA level. No changes were observed after TNF-α or IL-10 stimulation. ITIH4 might be a critical inflammatory biomarker which correlated with the development of BSI, especially with bacterial bloodstream infection. It is expected that this study would provide some insights into potential functional mechanisms underlying BSI.
Collapse
Affiliation(s)
- Yating Ma
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China; Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Ruibing Li
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianan Wang
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Wencan Jiang
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaozhou Yuan
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiayue Cui
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Chengbin Wang
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China; Nankai University School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Z Oikonomakou M, Gkentzi D, Gogos C, Akinosoglou K. Biomarkers in pediatric sepsis: a review of recent literature. Biomark Med 2020; 14:895-917. [PMID: 32808806 DOI: 10.2217/bmm-2020-0016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023] Open
Abstract
Sepsis remains the leading cause of death in infants and children worldwide. Prompt diagnosis and monitoring of infection is pivotal to guide therapy and optimize outcomes. No single biomarker has so far been identified to accurately diagnose sepsis, monitor response and predict severity. We aimed to assess existing evidence of available sepsis biomarkers, and their utility in pediatric population. C-reactive protein and procalcitonin remain the most extensively evaluated and used biomarkers. However, biomarkers related to endothelial damage, vasodilation, oxidative stress, cytokines/chemokines and cell bioproducts have also been identified, often with regard to the site of infection and etiologic pathogen; still, with controversial utility. A multi-biomarker model driven by genomic tools could establish a personalized approach in future disease management.
Collapse
Affiliation(s)
| | - Despoina Gkentzi
- Department of Pediatrics, University Hospital of Patras, Rio 26504, Greece
| | - Charalambos Gogos
- Department of Internal Medicine & Infectious Diseases, University Hospital of Patras, Rio 26504, Greece
| | - Karolina Akinosoglou
- Department of Internal Medicine & Infectious Diseases, University Hospital of Patras, Rio 26504, Greece
| |
Collapse
|
8
|
Wang W, Sun Y, Li X, Shi X, Li Z, Lu X. Dihydroartemisinin Prevents Distant Metastasis of Laryngeal Carcinoma by Inactivating STAT3 in Cancer Stem Cells. Med Sci Monit 2020; 26:e922348. [PMID: 32176678 PMCID: PMC7101200 DOI: 10.12659/msm.922348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Accumulating evidence indicates that cancer stem cells (CSCs) are a minor subpopulation of cancer cells that may be the primary source of cancer invasion, migration, and widespread metastasis. Material/Methods We investigated the effects of dihydroartemisinin (DHA) on distant metastasis of laryngeal carcinoma and the relevant mechanism. In vitro, we used the Hep-2 human laryngeal squamous carcinoma cell line (Hep-2 cells) to assemble CSCs, using CD133 as the cell surface marker. Our data demonstrate that the CD133+ subpopulation of Hep-2 cells has greater invasion and migration capabilities than CD133− cells. We also evaluated the effects of DHA, a newly defined STAT3 inhibitor, on the invasion and migration of CD133+ Hep-2 cells under hypoxia and IL-6 stimulation, both of which can activate STAT3 phosphorylation. Results CSCs exhibited a significant decrease in the ability of migration and invasion upon the application of DHA, along with simultaneous alterations in related proteins, both in cultured cells and in xenograft tumors. The associated signaling proteins included phosphorylated STAT3 (p-STAT3), matrix metalloproteinase-9 (MMP-9), and E-cadherin, which are closely involved in cancer invasion and metastasis. In vivo, we found that DHA can reduce lung metastasis formation caused by CSCs and prolong survival in mice, and can inhibit STAT3 activation, downregulate MMP-9, and upregulate E-cadherin in lung metastatic tumors. Conclusions Taken together, our findings indicate that CSCs possess stronger invasive and metastatic capabilities than non-CSCs, and DHA inhibits invasion and prevents metastasis induced by CSCs by inhibiting STAT3 activation.
Collapse
Affiliation(s)
- Weiyi Wang
- Department of Otorhinolaryngology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yajing Sun
- Department of Otorhinolaryngology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Xiaoming Li
- Department of Otorhinolaryngology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China (mainland)
| | - Zhen Li
- Department of Otorhinolaryngology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Xiuying Lu
- Department of Otorhinolaryngology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
9
|
Wang Y, Liu W, Hang C, Du Y, Chen Y, Xing J, Gao J, Qiu D. Association of A-FABP gene polymorphism and mRNA expression with intramuscular fat content (IMF) in Baicheng-You chicken. J Anim Physiol Anim Nutr (Berl) 2019; 103:1447-1452. [PMID: 31276245 DOI: 10.1111/jpn.13150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022]
Abstract
This study aims to assess the association of polymorphisms and mRNA expression of adipocyte-type fatty acid-binding protein (A-FABP) with intramuscular fat (IMF) in the breast muscle (BM) and leg muscle (LM) of Baicheng-You chickens (BYCs). A total of 180 chickens, including sixty black Baicheng-You chickens (BBYCs), sixty silky Baicheng-You chickens (SBYCs) and sixty white Baicheng-You chickens (WBYCs), were reared from 1 to 120 day. A polymerase chain reaction-single-strand conformation polymorphism strategy (PCR-SSCP) was used to detect the polymorphism of the A-FABP gene in the first exon, and the C51T silent mutational site was found. The IMF content with the AA genotype was significantly higher than that with the AG genotype (p = 0.0473) in the LM of WBYC. Thus, this site could be taken as a molecular marker in selecting a higher IMF content of LM in WBYC. A-FABP gene mRNA expression in the BM and LM of BYCs was detected, and a significant positive correlation was observed in the LM of WBYC. These findings provide fundamental data that might be useful in further study of the role of the A-FABP gene in IMF content and fatty metabolism in chickens.
Collapse
Affiliation(s)
- Yong Wang
- College of Animal Science, Tarim University, Alar, China
| | - Wenqiang Liu
- Department of Animal Science and Technology, College of Agriculture, Liaocheng University, Liaocheng, China
| | - Chao Hang
- College of Animal Science, Tarim University, Alar, China
| | - Yiqiang Du
- College of Animal Science, Tarim University, Alar, China
| | - Ying Chen
- College of Animal Science, Tarim University, Alar, China
| | - Jinming Xing
- College of Animal Science, Tarim University, Alar, China
| | - Jun Gao
- College of Animal Science, Tarim University, Alar, China
| | - Dexin Qiu
- College of Animal Science, Tarim University, Alar, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Dreschers S, Platen C, Ludwig A, Gille C, Köstlin N, Orlikowsky TW. Metalloproteinases TACE and MMP-9 Differentially Regulate Death Factors on Adult and Neonatal Monocytes After Infection with Escherichia coli. Int J Mol Sci 2019; 20:ijms20061399. [PMID: 30897723 PMCID: PMC6471605 DOI: 10.3390/ijms20061399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/22/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Cleaving ligands and receptors of the tumor necrosis factor (TNF) superfamily can critically regulate the induction of apoptosis. Matrix metalloproteinases (MMPs) such as MMP-9 and tumor necrosis factor-α-converting enzyme (TACE) have been shown to cleave CD95-Ligand (CD95L) and TNF/(TNF receptor-1) TNFR1 which induce phagocytosis induced cell death (PICD) in adult monocytes. This process is reduced in neonatal monocytes. Methods: Here we tested in vitro, whether Escherichia coli infection mounts for activation of MMP-9 and TACE in monocytes and whether this process regulates PICD. Results: The surface expression of TACE was most prominent on infected adult monocytes. In contrast, surface presentation of MMP-9 was highest on infected neonatal monocytes. Selective blocking of MMP-9 decreased CD95L secretion, while inhibition of TACE left CD95L secretion unaltered. Blocking of MMP-9 increased surface CD95L (memCD95L) expression on infected neonatal monocytes to levels comparable to infected adult monocytes. Moreover, MMP-9 inhibition raised PICD of infected neonatal monocytes to levels observed for infected adult monocytes. In contrast, TACE inhibition decreased PICD in infected monocytes. Addition of extracellular TNF effectively induced memCD95L presentation and PICD of adult monocytes and less of neonatal monocytes. Conclusion: MMP-9 activity is crucial for downregulating cell-contact dependent PICD in E. coli infected neonatal monocytes. By this mechanism, MMP-9 could contribute to reducing sustained inflammation in neonates.
Collapse
Affiliation(s)
- Stephan Dreschers
- Department of Neonatology, University Children's Hospital, Aachen 52074, Germany.
| | - Christopher Platen
- Department of Neonatology, University Children's Hospital, Aachen 52074, Germany.
| | - Andreas Ludwig
- Department of Pharmacology and Toxicology, University Hospital, Aachen 52074, Germany.
| | - Christian Gille
- Department of Neonatology, University Children's Hospital, Tuebingen 72074, Germany.
| | - Natascha Köstlin
- Department of Pharmacology and Toxicology, University Hospital, Aachen 52074, Germany.
| | | |
Collapse
|
11
|
Affiliation(s)
- Robert J Vinci
- Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Elliot Melendez
- Pediatric Critical Care, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| |
Collapse
|
12
|
Gu X, Wei C, Zhu X, Lu F, Sheng B, Zang X. Effect of interleukin-31 on septic shock through regulating inflammasomes and interleukin-1β. Exp Ther Med 2018; 16:171-177. [PMID: 29896237 PMCID: PMC5995029 DOI: 10.3892/etm.2018.6181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
Sepsis with severe systemic inflammation remains a great challenge for the intensive care unit in clinics. Although biomarkers have been identified to diagnose, monitor and predict these syndromes, novel therapeutic approaches are required for the amelioration of symptoms of sepsis and septic shock. The present study demonstrated that interleukin (IL)-31 was able reduce the mortality rate of lipopolysaccharide (LPS)-induced sepsis with the reduction of inflammatory cytokines in the sera. IL-31 also inhibited IL-1β production in the peritoneal lavage fluid in LPS-induced or cecal ligation and puncture-induced sepsis. The in vitro mechanism responsible for IL-31 regulation on peritoneal IL-1β activation following LPS challenge was explored. It was demonstrated that IL-1β secretion was suppressed by IL-31 treatment from LPS-challenged peritoneal macrophages following adenosine triphosphate stimulation, which is an activator of NLR family, pyrin domain-containing 3 (NLRP3). Furthermore, IL-31 inhibited the expression of NLRP3 at the transcriptional level. In human THP-1 cells, anti-IL-31/anti-IL-31 receptor (R) neutralizing antibody enhanced NLRP3 expression as well as IL-1β activation, suggesting a role of the IL-31-IL-31R-NLRP3-IL-1β signaling axis in the physiological status of sepsis. On the other hand, IL-31 displayed a negative effect on the NLRP1 inflammasome, but not on NLRP3 on the LPS-primed human peripheral blood monocytes, resulting in reduction of the inflammatory cytokine, tumor necrosis factor (TNF)-α, in the supernatant. Taken together, the present data implied that T helper 2-type cytokine, IL-31, may be a promising therapeutic option for treatment of sepsis and septic shock in clinics.
Collapse
Affiliation(s)
- Xuyun Gu
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Chen Wei
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Xishan Zhu
- Department of Cancer Chemotherapy, Peking University First Hospital, Beijing 100038, P.R. China
| | - Feiping Lu
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Bo Sheng
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Xuefeng Zang
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
13
|
Matrix Metalloproteinase-9 and Tissue Inhibitor of Matrix Metalloproteinase-1 in Sepsis after Major Abdominal Surgery. DISEASE MARKERS 2018; 2018:5064684. [PMID: 29861795 PMCID: PMC5976929 DOI: 10.1155/2018/5064684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Abstract
Background The role of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in sepsis after major abdominal surgery and sepsis-associated organ dysfunction is unexplored. Materials and Methods Fifty-three patients with sepsis after major abdominal surgery were compared to 50 operated and 50 nonoperated controls. MMP-9, TIMP-1, biomarkers of inflammation, kidney and liver injury, coagulation, and metabolic disorders were measured daily during 96 h following diagnosis of sepsis and once in controls. MMP-9/TIMP-1 ratios and disease severity scores were calculated. Use of vasopressors/inotropes, mechanical ventilation, and survival were recorded. Results Septic patients had lower MMP-9 and MMP-9/TIMP-1 ratios but higher TIMP-1 levels compared to controls. AUC-ROC for diagnosis of sepsis was 0.940 and 0.854 for TIMP-1 and 0.924 and 0.788 for MMP-9/TIMP-1 ratio (sepsis versus nonoperated and sepsis versus operated controls, resp.). Lower MMP-9 and MMP-9/TIMP-1 ratio and higher TIMP-1 levels were associated with shorter survival. MMP-9, TIMP-1, and MMP-9/TIMP-1 ratio correlated with biomarkers of inflammation, kidney and liver injury, coagulation, metabolic disorders, and disease severity scores. Use of vasopressors/inotropes was associated with higher TIMP-1 levels. Conclusions MMP-9, TIMP-1, and MMP-9/TIMP ratio were good diagnostic or prognostic biomarkers of sepsis after major abdominal surgery and were linked to sepsis-associated organ dysfunction.
Collapse
|
14
|
Single nucleotide polymorphisms within rabbits ( Oryctolagus cuniculus ) fatty acids binding protein 4 ( FABP4 ) are associated with meat quality traits. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Jan JS, Chou YC, Cheng YW, Chen CK, Huang WJ, Hsiao G. The Novel HDAC8 Inhibitor WK2-16 Attenuates Lipopolysaccharide-Activated Matrix Metalloproteinase-9 Expression in Human Monocytic Cells and Improves Hypercytokinemia In Vivo. Int J Mol Sci 2017; 18:ijms18071394. [PMID: 28661460 PMCID: PMC5535887 DOI: 10.3390/ijms18071394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 12/29/2022] Open
Abstract
Dysregulated human monocytes/macrophages can synthesize and secrete matrix metalloproteinases (MMPs), which play important roles in the progression of sepsis. In this study, we investigated the effects and mechanism of a novel histone deacetylase (HDAC8) inhibitor, (E)-N-hydroxy-4-methoxy-2-(biphenyl-4-yl)cinnamide (WK2-16), on MMP-9 production and activation in stimulated human monocytic THP-1 cells. Our results demonstrated that the acetylation level of structural maintenance of chromosomes 3 (SMC3) was up-regulated by WK2-16 in THP-1 cells. Consistently, an in vitro enzyme study demonstrated that WK2-16 selectively inhibited HDAC8 activity. Moreover, the WK2-16 concentration dependently suppressed MMP-9-mediated gelatinolysis induced by tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS). Additionally, WK2-16 significantly inhibited both MMP-9 protein and mRNA expression without cellular toxicity. Nevertheless, WK2-16 suppressed the extracellular levels of interleukin (IL)-6 from LPS-stimulated THP-1 cells. For the signaling studies, WK2-16 had no effect on LPS/TLR4 downstream signaling pathways, such as the NF-κB and ERK/JNK/P38 MAPK pathways. On the other hand, WK2-16 enhanced the recruitment of acetylated Yin Yang 1 (YY1) with HDAC1. Finally, in vivo studies indicated that WK2-16 could reduce the serum levels of TNF-α and IL-6 in endotoxemic mice. These results suggested that HDAC8 inhibition might provide a novel therapeutic strategy of hypercytokinemia in sepsis.
Collapse
Affiliation(s)
- Jing-Shiun Jan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yung-Chen Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chih-Kuang Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan.
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|