1
|
Mócsai R, Helm J, Polacsek K, Stadlmann J, Altmann F. The Diversity of N-Glycans of Chlorella Food Supplements Challenges Current Species Classification. Foods 2024; 13:3182. [PMID: 39410217 PMCID: PMC11482596 DOI: 10.3390/foods13193182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
N-glycans have recently emerged as highly varied elements of Chlorella strains and products. Four years and eighty samples later, the increasing N-glycan diversity calls for a re-examination in the light of concepts of species designations and product authenticity. N-glycans of commercial products were analyzed by matrix-assisted time-of-flight mass spectrometry (MALDI-TOF MS) supported by chromatography on porous graphitic carbon with mass spectrometric detection. Although 36% of 172 products were labeled C. vulgaris, only 9% presented what could be taken as a C. vulgaris type N-glycan pattern. Respectively, 5 and 20% of the products matched with C. sorokiniana strains SAG 211-8k and SAG 211-34, which, however, carry entirely different structures. Furthermore, 41% presented with one of four frequently occurring glyco-types while 26% of the samples showed unique or rare N-glycan patterns. These glycan signatures thus profoundly challenge the stated species designations. By no means do we want to question the presumed health benefits of the products or the sincerity of manufacturers. We rather aim to raise awareness of the fascinating but also concerning diversity of microalgal N-glycans and suggest it as a means for defining product identity and taxonomic classifications.
Collapse
Affiliation(s)
| | | | | | | | - Friedrich Altmann
- Department of Chemistry, BOKU University, Muthgasse 18, 1180 Vienna, Austria; (R.M.); (J.H.); (K.P.); (J.S.)
| |
Collapse
|
2
|
Franco ADODR, Ashworth MP, Odebrecht C. Comparison between p-distance and single-locus species delimitation models for delineating reproductively tested strains of pennate diatoms (Bacillariophyceae) using cox1, rbcL and ITS. J Eukaryot Microbiol 2023; 70:e12986. [PMID: 37243408 DOI: 10.1111/jeu.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Several automated molecular methods have emerged for distinguishing eukaryote species based on DNA sequence data. However, there are knowledge gaps around which of these single-locus methods is more accurate for the identification of microalgal species, such as the highly diverse and ecologically relevant diatoms. We applied genetic divergence, Automatic Barcode Gap Discovery for primary species delimitation (ABGD), Assemble Species by Automatic Partitioning (ASAP), Statistical Parsimony Network Analysis (SPNA), Generalized Mixed Yule Coalescent (GMYC) and Poisson Tree Processes (PTP) using partial cox1, rbcL, 5.8S + ITS2, ITS1 + 5.8S + ITS2 markers to delineate species and compare to published polyphasic identification data (morphological features, phylogeny and sexual reproductive isolation) to test the resolution of these methods. ASAP, ABGD, SPNA and PTP models resolved species of Eunotia, Seminavis, Nitzschia, Sellaphora and Pseudo-nitzschia corresponding to previous polyphasic identification, including reproductive isolation studies. In most cases, these models identified diatom species in similar ways, regardless of sequence fragment length. GMYC model presented smallest number of results that agreed with previous published identification. Following the recommendations for proper use of each model presented in the present study, these models can be useful tools to identify cryptic or closely related species of diatoms, even when the datasets have relatively few sequences.
Collapse
Affiliation(s)
| | - Matt P Ashworth
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, Texas, USA
| | - Clarisse Odebrecht
- Institute of Oceanography, Federal University of Rio Grande - FURG, Rio Grande, Brazil
| |
Collapse
|
3
|
Mai XC, Shen CR, Liu CL, Trinh DM, Nguyen ML. "DNA signaturing" database construction for Tetradesmus species identification and phylogenetic relationships of Scenedesmus-like green microalgae (Scenedesmaceae, Chlorophyta). JOURNAL OF PHYCOLOGY 2023; 59:775-784. [PMID: 37261838 DOI: 10.1111/jpy.13354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Species identification of Scenedesmus-like microalgae, comprising Desmodesmus, Tetradesmus, and Scenedesmus, has been challenging due to their high morphological and genetic similarity. After developing a DNA signaturing tool for Desmodesmus identification, we built a DNA signaturing database for Tetradesmus. The DNA signaturing tool contained species-specific nucleotide sequences of Tetradesmus species or strain groups with high similarity in ITS2 sequences. To construct DNA signaturing, we collected data on ITS2 sequences, aligned the sequences, organized the data by ITS2 sequence homology, and determined signature sequences according to hemi-compensatory base changes (hCBC)/CBC data from previous studies. Four Tetradesmus species and 11 strain groups had DNA signatures. The signature sequence of the genus Tetradesmus, TTA GAG GCT TAA GCA AGG ACCC, recognized 86% (157/183) of the collected Tetradesmus strains. Phylogenetic analysis of Scenedesmus-like species revealed that the Tetradesmus species were monophyletic and closely related to each other based on branch lengths. Desmodesmus was suggested to split into two subgenera due to their genetic and morphological distinction. Scenedesmus must be analyzed along with other genera of the Scenedesmaceae family to determine their genetic relationships. Importantly, DNA signaturing was integrated into a database for identifying Scenedesmus-like species through BLAST.
Collapse
Affiliation(s)
- Xuan Cuong Mai
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Rui Shen
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chao-Lin Liu
- Department of Chemical Engineering and Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Dang Mau Trinh
- Department of Biotechnology, Faculty of Biology and Environmental Science, The University of Danang - University of Science and Education, Danang, Vietnam
| | - Minh Ly Nguyen
- Department of Biotechnology, Faculty of Biology and Environmental Science, The University of Danang - University of Science and Education, Danang, Vietnam
| |
Collapse
|
4
|
Delimitation of Some Taxa of Ulnaria and Fragilaria (Bacillariophyceae) Based on Genetic, Morphological Data and Mating Compatibility. DIVERSITY 2023. [DOI: 10.3390/d15020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Fragilaria and Ulnaria are two closely related diatom genera for which the delimitation and circumscription of several species is unclear. We studied strains isolated from Lake Baikal and compared them with the species from freshwater reservoirs in Europe and Asia using phylogenetic and species delimitation methods, microscopy and interclonal crossing experiments. The results of the phylogenetic analyses of the fragments of rbcL and 18S rRNA genes revealed that baikalian F. radians clade was independent from the representatives of the genus from other localities. Among Ulnaria we found the following 18S rRNA phylogenetic tree groups at species level: U. acus, U. ulna and U. danica. Genetic distance between genera varied between 3.9–10.2% substitutions in rbcL gene and 3.2–11.5% in 18S rRNA. The boundary between intraspecies and interspecies polymorphism for studied species of Ulnaria and Fragilaria in these marker genes was around 0.8% substitutions. Morphometric characters of individual strains showed their variability and division into F. radians, U. acus and U. ulna together with U. danica. Strains of U. acus and U. danica from different localities of Europe and Asia were sexually compatible inside the species. Sexual reproduction has never been observed in monoclonal cultures, either between this species or with strains of the Fragilaria.
Collapse
|
5
|
Species delimitation polyphasic approach reveals Meyerella similis sp. nov.: a new species of “small green balls” within the Chlorella-clade (Trebouxiophyceae, Chlorophyta). ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
DNA Barcodes for Accurate Identification of Selected Medicinal Plants (Caryophyllales): Toward Barcoding Flowering Plants of the United Arab Emirates. DIVERSITY 2022. [DOI: 10.3390/d14040262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The need for herbal medicinal plants is steadily increasing. Hence, the accurate identification of plant material has become vital for safe usage, avoiding adulteration, and medicinal plant trading. DNA barcoding has shown to be a valuable molecular identification tool for medicinal plants, ensuring the safety and efficacy of plant materials of therapeutic significance. Using morphological characters in genera with closely related species, species delimitation is often difficult. Here, we evaluated the capability of the nuclear barcode ITS2 and plastid DNA barcodes rbcL and matK to identify 20 medicinally important plant species of Caryophyllales. In our analysis, we applied an integrative approach for species discrimination using pairwise distance-based unsupervised operational taxonomic unit “OTU picking” methods, viz., ABGD (Automated Barcode Gap Analysis) and ASAP (Assemble Species by Automatic Partitioning). Along with the unsupervised OTU picking methods, Supervised Machine Learning methods (SML) were also implemented to recognize divergent taxa. Our results indicated that ITS2 was more successful in distinguishing between examined species, implying that it could be used to detect the contamination and adulteration of these medicinally important plants. Moreover, this study suggests that the combination of more than one method could assist in the resolution of morphologically similar or closely related taxa.
Collapse
|
7
|
Krivina ES, Temraleeva AD, Bukin YS. Species delimitation and microalgal cryptic diversity analysis of the genus Micractinium (Chlorophyta). Vavilovskii Zhurnal Genet Selektsii 2022; 26:74-85. [PMID: 35342860 PMCID: PMC8894098 DOI: 10.18699/vjgb-22-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022] Open
Abstract
In this article, the system of the green microalgal genus Micractinium, based on morphological, physiological, ecological and molecular data, is considered. The main diagnostic species characteristics and the taxonomic placement of some taxa are also discussed. Phylogenetic analysis showed that the genus Micractinium is characterized by high cryptic diversity. The algorithms used for species delimitation had different results on the number of potentially species-level clusters allocated. The ABGD method was less “sensitive”. The tree-based approaches GMYC and PTP showed a more feasible taxonomy of the genus Micractinium, being an effective additional tool for distinguishing species. The clustering obtained by the latter two methods is in good congruence with morphological (cell size and shape, ability to form colonies, production of bristles, chloroplast type), physiological (vitamin requirements, reaction to high and low temperatures), molecular (presence of introns, level of genetic differences, presence of CBCs or special features of the secondary structure in ITS1 and ITS2) and ecological characteristics (habitat). The polyphyly
of the holotype of the genus M. pusillum as well as M. belenophorum is shown. The intron was effective as an additional
tool for distinguishing species, and the results of the intron analysis should be taken into account together
with other characteristics. The CBC approach, based on the search for compensatory base changes in conservative
ITS2 regions, was successful only for distinguishing cryptic species from “true” members of M. pusillum. Therefore, to
distinguish species, it is more effective to take into account all the CBC in ITS1 and ITS2 and analyze characteristic
structural differences (molecular signatures) in the secondary structure of internal transcribed spacers. The genetic
distances analysis of 18S–ITS1–5.8S–ITS2 nucleotide sequences showed that intraspecific differences in the genus
ranged from 0 to 0.5 % and interspecific differences, from 0.6 to 4.7 %. Due to the polyphasic approach, it was possible
to characterize 29 clusters and phylogenetic lines at the species level within the genus Micractinium and to
make assumptions about the species.
Collapse
Affiliation(s)
- E. S. Krivina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”
| | - A. D. Temraleeva
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”
| | - Yu. S. Bukin
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
8
|
Weiner AKM, Cullison B, Date SV, Tyml T, Volland JM, Woyke T, Katz LA, Sleith RS. Examining the Relationship Between the Testate Amoeba Hyalosphenia papilio (Arcellinida, Amoebozoa) and its Associated Intracellular Microalgae Using Molecular and Microscopic Methods. Protist 2022; 173:125853. [PMID: 35030517 PMCID: PMC9148389 DOI: 10.1016/j.protis.2021.125853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Symbiotic relationships between heterotrophic and phototrophic partners are common in microbial eukaryotes. Among Arcellinida (Amoebozoa) several species are associated with microalgae of the genus Chlorella (Archaeplastida). So far, these symbioses were assumed to be stable and mutualistic, yet details of the interactions are limited. Here, we analyzed 22 single-cell transcriptomes and 36 partially-sequenced genomes of the Arcellinida morphospecies Hyalosphenia papilio, which contains Chlorella algae, to shed light on the amoeba-algae association. By characterizing the genetic diversity of associated Chlorella, we detected two distinct clades that can be linked to host genetic diversity, yet at the same time show a biogeographic signal across sampling sites. Fluorescence and transmission electron microscopy showed the presence of intact algae cells within the amoeba cell. Yet analysis of transcriptome data suggested that the algal nuclei are inactive, implying that instead of a stable, mutualistic relationship, the algae may be temporarily exploited for photosynthetic activity before being digested. Differences in gene expression of H. papilio and Hyalosphenia elegans demonstrated increased expression of genes related to oxidative stress. Together, our analyses increase knowledge of this host-symbiont association and reveal 1) higher diversity of associated algae than previously characterized, 2) a transient association between H. papilio and Chlorella with unclear benefits for the algae, 3) algal-induced gene expression changes in the host.
Collapse
Affiliation(s)
- Agnes K M Weiner
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA; NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Jahnebakken 5, 5007 Bergen, Norway
| | - Billie Cullison
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
| | - Shailesh V Date
- Laboratory for Research in Complex Systems, Menlo Park, California, USA
| | - Tomáš Tyml
- Laboratory for Research in Complex Systems, Menlo Park, California, USA; DOE Joint Genome Institute, Berkeley, California, USA
| | - Jean-Marie Volland
- Laboratory for Research in Complex Systems, Menlo Park, California, USA; DOE Joint Genome Institute, Berkeley, California, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, California, USA
| | - Laura A Katz
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA; University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Robin S Sleith
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA.
| |
Collapse
|
9
|
Lagourgue L, Payri CE. Diversity and taxonomic revision of tribes Rhipileae and Rhipiliopsideae (Halimedaceae, Chlorophyta) based on molecular and morphological data. JOURNAL OF PHYCOLOGY 2021; 57:1450-1471. [PMID: 34003495 DOI: 10.1111/jpy.13186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Genera and species of the tribes Rhipileae and Rhipiliopsideae are abundant in most coral reef ecosystems worldwide. However, the group has been largely overlooked, and very little genetic data is available to accurately assess its diversity, phylogenetic relationships, and geographic distribution. Our study provided an in-depth reassessment of tribes Rhipileae and Rhipiliopsideae based on a species-rich dataset and the combination of molecular species delimitation, multilocus phylogenetic analyses (tufA, rbcL, and 18S rDNA), and morpho-anatomic observations. Our results revealed an unexpected diversity of 38 morphologically validated species hypotheses, including 20 new species, two of which are described in this paper and one resurrected species (Rhipilia diaphana). Based on our phylogenetic results we proposed to redefine the genera Rhipilia and Rhipiliopsis and described two new genera, Kraftalia gen. nov. (Rhipileae) and Rhipiliospina gen. nov. (Rhipiliopsideae). Finally, we validated Rhipiliella Kraft and included it in the tribe Rhipileae. Although Rhipilia and Rhipiliopsis have a pantropical distribution, none of the species studied here appeared cosmopolitan; instead, they have restricted distributions.
Collapse
Affiliation(s)
- Laura Lagourgue
- Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, Paris Cedex 05, 75252, France
- UMR ENTROPIE (IRD, UR, UNC, Ifremer, CNRS), Institut de Recherche pour le Développement, B.P. A5 Nouméa Cedex, Nouvelle-Calédonie, 98848, France
| | - Claude E Payri
- UMR ENTROPIE (IRD, UR, UNC, Ifremer, CNRS), Institut de Recherche pour le Développement, B.P. A5 Nouméa Cedex, Nouvelle-Calédonie, 98848, France
| |
Collapse
|
10
|
Krivina ES, Temraleeva AD, Bukin YS. Species Delimitation and Cryptic Diversity Analysis of Parachlorella-Сlade Microalgae (Chlorophyta). Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721040081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Paz-Sedano S, Wilson NG, Carmona L, Gosliner TM, Pola M. An ocean yet to be discovered: increasing systematic knowledge of Indo-Pacific Okenia Menke, 1830 (Nudibranchia:Goniodorididae). INVERTEBR SYST 2021. [DOI: 10.1071/is20088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Numerous faunistic and ecological studies have been conducted throughout the Indo-Pacific Ocean to assess its biodiversity. Despite the abundance of research, studies on the species that inhabit the Indo-Pacific are still necessary due to its extent and high species richness. The major species richness of the genus Okenia Menke, 1830 (Nudibranchia, Goniodorididae) is found in the Indo-Pacific Ocean, including 38 of 60 valid species. Nevertheless, this number does not represent the real biodiversity, since at least 20 more species are already reported in field-guides as undescribed species belonging to this genus. The systematics of the genus Okenia are still unclear since it has been the subject of only a few and incomplete studies. In the present paper, we describe five new Okenia species from the coastlines of Japan, Mozambique and Australia: Okenia aurorapapillata sp. nov., Okenia elisae sp. nov., Okenia nakanoae sp. nov., Okenia siderata sp. nov. and Okenia tenuifibrata sp. nov. Moreover, anatomical details not previously described of Okenia atkinsonorum, Okenia barnardi, Okenia cf. echinata, Okenia hallucigenia, Okenia hiroi, Okenia japonica, Okenia pellucida, Okenia pilosa and Okenia rhinorma are provided. New partial sequences of standard markers (COI, 16S rRNA and H3) were obtained and a phylogenetic analysis that included all species with available data was performed.
ZOOBANK urn:lsid:zoobank.org:pub:28AE2536-A264–4194–8AE3-C430620572E7
Collapse
|
12
|
Krivina ES, Temraleeva AD. Identification Problems and Cryptic Diversity of Chlorella-Clade Microalgae (Chlorophyta). Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720060107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Puillandre N, Brouillet S, Achaz G. ASAP: assemble species by automatic partitioning. Mol Ecol Resour 2020; 21:609-620. [PMID: 33058550 DOI: 10.1111/1755-0998.13281] [Citation(s) in RCA: 470] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022]
Abstract
Here, we describe Assemble Species by Automatic Partitioning (ASAP), a new method to build species partitions from single locus sequence alignments (i.e., barcode data sets). ASAP is efficient enough to split data sets as large 104 sequences into putative species in several minutes. Although grounded in evolutionary theory, ASAP is the implementation of a hierarchical clustering algorithm that only uses pairwise genetic distances, avoiding the computational burden of phylogenetic reconstruction. Importantly, ASAP proposes species partitions ranked by a new scoring system that uses no biological prior insight of intraspecific diversity. ASAP is a stand-alone program that can be used either through a graphical web-interface or that can be downloaded and compiled for local usage. We have assessed its power along with three others programs (ABGD, PTP and GMYC) on 10 real COI barcode data sets representing various degrees of challenge (from small and easy cases to large and complicated data sets). We also used Monte-Carlo simulations of a multispecies coalescent framework to assess the strengths and weaknesses of ASAP and the other programs. Through these analyses, we demonstrate that ASAP has the potential to become a major tool for taxonomists as it proposes rapidly in a full graphical exploratory interface relevant species hypothesis as a first step of the integrative taxonomy process.
Collapse
Affiliation(s)
- Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Sophie Brouillet
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Guillaume Achaz
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,SMILE Group, CIRB, UMR 7241, Collège de France, CNRS, INSERM, Paris, France.,Éco-anthropologie, Muséum National d'Histoire Naturelle, CNRS UMR 7206, Université de Paris, Paris, France
| |
Collapse
|
14
|
Raphalo EM, Cole ML, Daniels SR. Climatic oscillations during the Mio/Pliocene epochs induced cladogenesis in the terrestrial snail genus Gittenedouardia (Mollusca: Gastropoda: Cerastidae) from South Africa. Mol Phylogenet Evol 2020; 155:107000. [PMID: 33130297 DOI: 10.1016/j.ympev.2020.107000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 08/12/2020] [Accepted: 10/25/2020] [Indexed: 11/18/2022]
Abstract
In South Africa, the terrestrial snail genus Gittenedouardia is the most species-rich member of the Cerastidae, where it is primarily distributed in the highly fragmented Afrotemperate and Indian Ocean coastal belt (IOCB) forest biomes. Phylogenetic relationships and cladogenetic events within the genus remain unstudied. In this respect, we reconstructed a dated phylogeny for eight Gittenedouardia species, and two populations identified to genus level using a combined mitochondrial (16S rRNA and COI) DNA sequencing dataset analysed using Bayesian inference and Maximum Likelihood framework. Furthermore, we investigated the population genetic substructure of the three widely distributed species (Gittenedouardia spadicea, G. natalensis and G. arenicola) for the COI locus, while also subsampling these species using the nuclear DNA ITS-2 locus. Phylogenetic results based on the combined mtDNA dataset supported the monophyly of Gittenedouardia and revealed three major clades and deep genetic structure among the three widely distributed species. Divergence-time estimates suggest that diversification within Gittenedouardia occurred during the middle Miocene/late Pliocene, a period characterised by a decrease in precipitation and the contraction of the Afrotemperate and IOCB forest biomes. We used two species delimitation methods, (PTP and STACEY) to infer putative species in G. spadicea, G. natalensis and G. arenicola. The two methods recovered a large number of evolutionary distinct units, with minimal consensus in the exact number of lineages. Our findings suggest the presence of undescribed diversity, necessitating the need for taxonomic revisionary work on Gittenedouardia. We discuss the climatic factors which may have contributed to the observed cladogenesis and compare our results with other studies of forest dwelling faunal taxa.
Collapse
Affiliation(s)
- Evelyn M Raphalo
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, Matieland, Stellenbosch, South Africa; Aquaculture Research Unit, School of Agricultural and Environmental Science, University of Limpopo (Turfloop Campus), Private Bag X1106, Sovenga 0727, South Africa.
| | - Mary L Cole
- East London Museum, 319 Oxford Street, East London 5201, South Africa; Department of Zoology and Entomology, Rhodes University, P. O. Box 94, Makhanda 6140, South Africa.
| | - Savel R Daniels
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, Matieland, Stellenbosch, South Africa.
| |
Collapse
|
15
|
Fawley MW, Fawley KP. Identification of Eukaryotic Microalgal Strains. JOURNAL OF APPLIED PHYCOLOGY 2020; 32:2699-2709. [PMID: 33542589 PMCID: PMC7853647 DOI: 10.1007/s10811-020-02190-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Proper identification and documentation of microalgae is often lacking in publications of applied phycology, algal physiology and biochemistry. Identification of many eukaryotic microalgae can be very daunting to the non-specialist. We present a systematic process for identifying eukaryotic microalgae using morphological evidence and DNA sequence analysis. Our intent was to provide an identification method that could be used by non-taxonomists, but which is grounded in the current techniques used by algal taxonomists. Central to the identification is database searches with DNA sequences of appropriate loci. We provide usable criteria for identification at the genus or species level, depending on the availability of sequence data in curated databases and repositories. Particular attention is paid to dealing with possible misidentifications in DNA databases and utilizing current taxonomy.
Collapse
Affiliation(s)
- Marvin W Fawley
- Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, AR 72830, USA
| | - Karen P Fawley
- Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, AR 72830, USA
| |
Collapse
|
16
|
Oyebanji OO, Chukwuma EC, Bolarinwa KA, Adejobi OI, Adeyemi SB, Ayoola AO. Re-evaluation of the phylogenetic relationships and species delimitation of two closely related families (Lamiaceae and Verbenaceae) using two DNA barcode markers. J Biosci 2020. [DOI: 10.1007/s12038-020-00061-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Mócsai R, Figl R, Sützl L, Fluch S, Altmann F. A first view on the unsuspected intragenus diversity of N-glycans in Chlorella microalgae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:184-196. [PMID: 32031706 PMCID: PMC7383745 DOI: 10.1111/tpj.14718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 05/24/2023]
Abstract
Chlorella microalgae are increasingly used for various purposes such as fatty acid production, wastewater processing, or as health-promoting food supplements. A mass spectrometry-based survey of N-glycan structures of strain collection specimens and 80 commercial Chlorella products revealed a hitherto unseen intragenus diversity of N-glycan structures. Differing numbers of methyl groups, pentoses, deoxyhexoses, and N-acetylglucosamine culminated in c. 100 different glycan masses. Thirteen clearly discernible glycan-type groups were identified. Unexpected features included the occurrence of arabinose, of different and rare types of monosaccharide methylation (e.g. 4-O-methyl-N-acetylglucosamine), and substitution of the second N-acetylglucosamine. Analysis of barcode ITS1-5.8S-ITS2 rDNA sequences established a phylogenetic tree that essentially went hand in hand with the grouping obtained by glycan patterns. This brief prelude to microalgal N-glycans revealed a fabulous wealth of undescribed structural features that finely differentiated Chlorella-like microalgae, which are notoriously poor in morphological attributes. In light of the almost identical N-glycan structural features that exist within vertebrates or land plants, the herein discovered diversity is astonishing and argues for a selection pressure only explicable by a fundamental functional role of these glycans.
Collapse
Affiliation(s)
- Réka Mócsai
- Department of ChemistryVienna (BOKU)ViennaAustria
| | - Rudolf Figl
- Department of ChemistryVienna (BOKU)ViennaAustria
| | - Leander Sützl
- Department of Food TechnologyUniversity of Natural Resources and Life SciencesVienna (BOKU)ViennaAustria
| | | | | |
Collapse
|
18
|
Lortou U, Gkelis S. Polyphasic taxonomy of green algae strains isolated from Mediterranean freshwaters. ACTA ACUST UNITED AC 2019; 26:11. [PMID: 31696064 PMCID: PMC6822476 DOI: 10.1186/s40709-019-0105-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022]
Abstract
Background Terrestrial, freshwater and marine green algae constitute the large and morphologically diverse phylum of Chlorophyta, which gave rise to the core chlorophytes. Chlorophyta are abundant and diverse in freshwater environments where sometimes they form nuisance blooms under eutrophication conditions. The phylogenetic relationships among core chlorophyte clades (Chlorodendrophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae), are of particular interest as it is a species-rich phylum with ecological importance worldwide, but are still poorly understood. In the Mediterranean ecoregion, data on molecular characterization of eukaryotic microalgae strains are limited and current knowledge is based on ecological studies of natural populations. In the present study we report the isolation and characterization of 11 green microalgae strains from Greece contributing more information for the taxonomy of Chlorophyta. The study combined morphological and molecular data. Results Phylogenetic analysis based on 18S rRNA, internal transcribed spacer (ITS) region and the large subunit of the ribulose-bisphosphate carboxylase (rbcL) gene revealed eight taxa. Eleven green algae strains were classified in four orders (Sphaeropleales, Chlorellales, Chlamydomonadales and Chaetophorales) and were represented by four genera; one strain was not assigned to any genus. Most strains (six) were classified to the genus Desmodesmus, two strains to genus Chlorella, one to genus Spongiosarcinopsis and one filamentous strain to genus Uronema. One strain is placed in a separate independent branch within the Chlamydomonadales and deserves further research. Conclusions Our study reports, for the first time, the presence of Uronema in an aquatic environment up to 40 °C and reveals new diversity within the Chlamydomonadales. The results from the ITS region and the rbcL gene corroborated those obtained from 18S rRNA without providing further information or resolving the phylogenetic relationships within certain genera, due to the limited number of ITS and rbcL sequences available. The comparison of molecular and morphological data showed that they were congruent. Cosmopolitan genera with high worldwide distribution inhabit Greek freshwaters.
Collapse
Affiliation(s)
- Urania Lortou
- Department of Botany, Aristotle University of Thessaloniki, P.O. Box 109, 541 24 Thessaloniki, Greece
| | - Spyros Gkelis
- Department of Botany, Aristotle University of Thessaloniki, P.O. Box 109, 541 24 Thessaloniki, Greece
| |
Collapse
|
19
|
Lagourgue L, Puillandre N, Payri CE. Exploring the Udoteaceae diversity (Bryopsidales, Chlorophyta) in the Caribbean region based on molecular and morphological data. Mol Phylogenet Evol 2018; 127:758-769. [DOI: 10.1016/j.ympev.2018.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/03/2018] [Accepted: 06/11/2018] [Indexed: 11/26/2022]
|
20
|
Ants in Australia’s Monsoonal Tropics: CO1 Barcoding Reveals Extensive Unrecognised Diversity. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10020036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Jiang Y, Pu X, Zheng D, Zhu T, Wang S, Deng L, Wang W. Cultivation of lipid-producing microalgae in struvite-precipitated liquid digestate for biodiesel production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:101. [PMID: 29636819 PMCID: PMC5889564 DOI: 10.1186/s13068-018-1102-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Using liquid digestate from the biogas industry as a medium to culture lipid-producing microalgae is considered mutually beneficial for digestate valorization and for reducing the cost of microalgal cultivation. However, the low transmittance and high ammonium (NH4+-N) levels in liquid digestate negatively influence microalgae growth. RESULTS Struvite precipitation was used to pretreat liquid digestate. To obtain struvite-precipitated supernatant with an ideal transmittance, NH4+-N concentration, salinity, and N:P ratio for microalgal growth, there should be a 1:1.2:1.2 NH4+:Mg2+:PO43- molar ratio in the liquid digestate, with KH2PO4 and MgCl2 added through continuous stirring. The addition and stirring was subsequently stopped when the pH reached 8.5. Of the nine tested microalgae species, Dictyosphaerium ehrenbergianum exhibited the best growth in the supernatant. The biomass productivity and lipid content of D. ehrenbergianum cultured in the struvite-precipitated supernatant were 161.06 mg/l/days and 34.33%, respectively, which was higher than when cultured in the standard BG-11 medium. Moreover, the struvite-precipitated supernatant improved the accumulation of monounsaturated fatty acids and saturated fatty acids. CONCLUSIONS This study described a new way to combine liquid digestate treatment and microalgal biodiesel production. The struvite-pretreated liquid digestate can be used to culture D. ehrenbergianum for biodiesel production.
Collapse
Affiliation(s)
- Yiqi Jiang
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041 People’s Republic of China
- Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu, 610041 People’s Republic of China
| | - Xiaodong Pu
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041 People’s Republic of China
- Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu, 610041 People’s Republic of China
| | - Dan Zheng
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041 People’s Republic of China
- Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu, 610041 People’s Republic of China
| | - Tao Zhu
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041 People’s Republic of China
- Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu, 610041 People’s Republic of China
| | - Shuang Wang
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041 People’s Republic of China
- Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu, 610041 People’s Republic of China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041 People’s Republic of China
- Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu, 610041 People’s Republic of China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041 People’s Republic of China
- Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
22
|
Saddhe AA, Jamdade RA, Kumar K. Evaluation of multilocus marker efficacy for delineating mangrove species of West Coast India. PLoS One 2017; 12:e0183245. [PMID: 28817640 PMCID: PMC5560660 DOI: 10.1371/journal.pone.0183245] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/01/2017] [Indexed: 01/31/2023] Open
Abstract
The plant DNA barcoding is a complex and requires more than one marker(s) as compared to animal barcoding. Mangroves are diverse estuarine ecosystem prevalent in the tropical and subtropical zone, but anthropogenic activity turned them into the vulnerable ecosystem. There is a need to build a molecular reference library of mangrove plant species based on molecular barcode marker along with morphological characteristics. In this study, we tested the core plant barcode (rbcL and matK) and four promising complementary barcodes (ITS2, psbK-psbI, rpoC1 and atpF-atpH) in 14 mangroves species belonging to 5 families from West Coast India. Data analysis was performed based on barcode gap analysis, intra- and inter-specific genetic distance, Automated Barcode Gap Discovery (ABGD), TaxonDNA (BM, BCM), Poisson Tree Processes (PTP) and General Mixed Yule-coalescent (GMYC). matK+ITS2 marker based on GMYC method resolved 57.14% of mangroves species and TaxonDNA, ABGD, and PTP discriminated 42.85% of mangrove species. With a single locus analysis, ITS2 exhibited the higher discriminatory power (87.82%) and combinations of matK + ITS2 provided the highest discrimination success (89.74%) rate except for Avicennia genus. Further, we explored 3 additional markers (psbK-psbI, rpoC1, and atpF-atpH) for Avicennia genera (A. alba, A. officinalis and A. marina) and atpF-atpH locus was able to discriminate three species of Avicennia genera. Our analysis underscored the efficacy of matK + ITS2 markers along with atpF-atpH as the best combination for mangrove identification in West Coast India regions.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, India
| | | | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, India
| |
Collapse
|
23
|
Chlorella sorokiniana Extract Improves Short-Term Memory in Rats. Molecules 2016; 21:molecules21101311. [PMID: 27689989 PMCID: PMC6274193 DOI: 10.3390/molecules21101311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/28/2023] Open
Abstract
Increasing evidence shows that eukaryotic microalgae and, in particular, the green microalga Chlorella, can be used as natural sources to obtain a whole variety of compounds, such as omega (ω)-3 and ω-6 polyunsatured fatty acids (PUFAs). Although either beneficial or toxic effects of Chlorella sorokiniana have been mainly attributed to its specific ω-3 and ω-6 PUFAs content, the underlying molecular pathways remain to be elucidated yet. Here, we investigate the effects of an acute oral administration of a lipid extract of Chlorella sorokiniana, containing mainly ω-3 and ω-6 PUFAs, on cognitive, emotional and social behaviour in rats, analysing possible underlying neurochemical alterations. Our results showed improved short-term memory in Chlorella sorokiniana-treated rats compared to controls, without any differences in exploratory performance, locomotor activity, anxiety profile and depressive-like behaviour. On the other hand, while the social behaviour of Chlorella sorokiniana-treated animals was significantly decreased, no effects on aggressivity were observed. Neurochemical investigations showed region-specific effects, consisting in an elevation of noradrenaline (NA) and serotonin (5-HT) content in hippocampus, but not in the prefrontal cortex and striatum. In conclusion, our results point towards a beneficial effect of Chlorella sorokiniana extract on short-term memory, but also highlight the need of caution in the use of this natural supplement due to its possible masked toxic effects.
Collapse
|