1
|
Zoneff E, Wang Y, Jackson C, Smith O, Duchi S, Onofrillo C, Farrugia B, Moulton SE, Williams R, Parish C, Nisbet DR, Caballero-Aguilar LM. Controlled oxygen delivery to power tissue regeneration. Nat Commun 2024; 15:4361. [PMID: 38778053 PMCID: PMC11111456 DOI: 10.1038/s41467-024-48719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Oxygen plays a crucial role in human embryogenesis, homeostasis, and tissue regeneration. Emerging engineered regenerative solutions call for novel oxygen delivery systems. To become a reality, these systems must consider physiological processes, oxygen release mechanisms and the target application. In this review, we explore the biological relevance of oxygen at both a cellular and tissue level, and the importance of its controlled delivery via engineered biomaterials and devices. Recent advances and upcoming trends in the field are also discussed with a focus on tissue-engineered constructs that could meet metabolic demands to facilitate regeneration.
Collapse
Affiliation(s)
- Elizabeth Zoneff
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Yi Wang
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Colin Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, ACT, Australia
| | - Oliver Smith
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, ACT, Australia
| | - Serena Duchi
- Department of Surgery, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Carmine Onofrillo
- Department of Surgery, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Brooke Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Simon E Moulton
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Engineering Technologies, Swinburne University of Technology, Melbourne, VIC, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Richard Williams
- IMPACT, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Clare Parish
- The Florey Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia.
| | - Lilith M Caballero-Aguilar
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Glutaraldehyde-Polymerized Hemerythrin: Evaluation of Performance as an Oxygen Carrier in Hemorrhage Models. Bioinorg Chem Appl 2022; 2022:2209101. [PMID: 36620348 PMCID: PMC9822766 DOI: 10.1155/2022/2209101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Hemoglobin-based oxygen carriers (HBOCs) have been proposed and tested for several decades for the treatment of hemorrhage. We have previously proposed replacing hemoglobin (Hb) in HBOC with the oxygen-carrying protein hemerythrin (Hr), from marine worms, showing that Hr-based derivatives can perform at least as well or even better than Hb-based HBOC in a range of in vitro assays involving oxidative and nitrosative stress as well as in top-up animal models, where small amounts of Hr- or Hb-HBOC were injected into rats. Here, these experiments are extended to a hemorrhage experiment, in which Hr polymerized with glutaraldehyde, alone or conjugated with human serum albumin, is administered after a loss of 20-30% blood volume. The performance of these preparations is compared with that of Hb-based HBOC measured under the same conditions. Polymerized Hr is found to decrease the survival rate and can hence cannot be used as an oxygen carrier in transfusions. On the other hand, an Hr-albumin copolymer restores survival rates to 100% and generally yields biochemical and histological parameters similar to those of glutaraldehyde-polymerized bovine hemoglobin, with the exception of an acid-base imbalance. The latter may be solved by employing an allogeneic albumin as opposed to the human albumin employed in the present study.
Collapse
|
3
|
Phenolic Thiazoles with Antioxidant and Antiradical Activity. Synthesis, In Vitro Evaluation, Toxicity, Electrochemical Behavior, Quantum Studies and Antimicrobial Screening. Antioxidants (Basel) 2021; 10:antiox10111707. [PMID: 34829578 PMCID: PMC8615111 DOI: 10.3390/antiox10111707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress represents the underlying cause of many chronic diseases in human; therefore, the development of potent antioxidant compounds for preventing or treating such conditions is useful. Starting from the good antioxidant and antiradical properties identified for the previously reported Dihydroxy-Phenyl-Thiazol-Hydrazinium chloride (DPTH), we synthesized a congeneric series of phenolic thiazoles. The radical scavenging activity, and the antioxidant and chelation potential were assessed in vitro, a series of quantum descriptors were calculated, and the electrochemical behavior of the synthesized compounds was studied to evaluate the impact on the antioxidant and antiradical activities. In addition, their antibacterial and antifungal properties were evaluated against seven aerobic bacterial strains and a strain of C. albicans, and their cytotoxicity was assessed in vitro. Compounds 5a-b, 7a-b and 8a-b presented remarkable antioxidant and antiradical properties, and compounds 5a-b, 7a and 8a displayed good Cu+2 chelating activity. Compounds 7a and 8a were very active against P. aeruginosa ATCC 27853 compared to norfloxacin, and proved less cytotoxic than ascorbic acid against the human keratinocyte cell line (HaCaT cells, CLS-300493). Several phenolic compounds from the synthesized series presented excellent antioxidant activity and notable anti-Pseudomonas potential.
Collapse
|
4
|
Pușcaș C, Moldovan M, Silaghi-Dumitrescu L, Ungureanu L, Silaghi-Dumitrescu R. On the Apparent Redox Reactivity of "Oxygen-Enriched Water". Biol Trace Elem Res 2020; 198:350-358. [PMID: 32030631 DOI: 10.1007/s12011-020-02056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Molecular oxygen-enriched water (OxEW) is advocated in popular media as useful for various health issues, presumably due to involvement of a purported antioxidant activity and to such notions as "active oxygen." To our knowledge, there are no explicit reports in the scientific literature where such redox reactivity would be described and explained. Reported here are data showing that a commercial preparation of OxEW does display a measurable, albeit very small, antioxidant activity as monitored by reaction with a standard reagent, DPPH. Moreover, OxEW also displays an apparent pro-oxidant reactivity, against caffeic acid. This does not correlate with any UV-vis-detectable contents of chemical substances in the water, nor can it be explained by typical chemical impurities (e.g., hydrogen peroxide or molecular hydrogen) that would arise upon enrichment with molecular oxygen of pure water by the two most common procedures: purging with gaseous O2 or electrolysis. Instead, this apparent redox reactivity is revealed to be due to differences in pH and in chemical content - and the differences in turn are most likely due to the trace amounts of inorganic ions/elements in the OxEW; importantly, electrolysis, which is often employed as a means to generate O2 in OxEW preparation, is also found to enhance the redox effect of OxEW-like preparations. Thus, in line with expectations, the herein-reported data show that there are no long-lived reactive oxygen species, no activated oxygen, and no extra reducing agents in OxEW - but that an apparent weak redox reactivity can still be measured and assigned to simple side effects of the electrolysis procedure presumably performed in order to enrich the sample in oxygen.
Collapse
Affiliation(s)
- Cristina Pușcaș
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Mărioara Moldovan
- "Raluca Ripan" Institute for Chemical Research, "Babeş-Bolyai" University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Laura Silaghi-Dumitrescu
- "Raluca Ripan" Institute for Chemical Research, "Babeş-Bolyai" University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Lavinia Ungureanu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Glutaraldehyde-Polymerized Hemoglobin: In Search of Improved Performance as Oxygen Carrier in Hemorrhage Models. Bioinorg Chem Appl 2020; 2020:1096573. [PMID: 32952540 PMCID: PMC7482000 DOI: 10.1155/2020/1096573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/29/2020] [Accepted: 08/05/2020] [Indexed: 01/19/2023] Open
Abstract
Hemoglobin- (Hb-) based oxygen carriers (HBOC) have for several decades been explored for treatment of hemorrhage. In our previous top-up tests, HBOC with lower in vitro prooxidant reactivity (incorporating a peroxidase or serum albumin to this end) showed a measurable but small improvement of oxidative stress-related parameters. Here, such HBOCs are tested in a hemorrhage set-up; ovine hemoglobin is also tested for the first time in such a setting, based on in vitro data showing its improved performance versus bovine Hb against oxidative and nitrosative stress agents. Indeed, ovine Hb performs better than bovine Hb in terms of survival rates, arterial tension, immunology, and histology. On the other hand, unlike in the top-up models, where the nonheme peroxidase rubrerythrin as well as bovine serum albumin copolymerized with Hb were shown to improve the performance of HBOC, in the present hemorrhage models rubrerythrin fails dramatically as HBOC ingredient (with a distinct immunological reaction), whereas serum albumin appears not feasible if its source is a different species (i.e., bovine serum albumin fares distinctly worse than rat serum albumin, in HBOC transfusions in rats). An effect of the matrix in which the HBOCs are dissolved (PBS versus gelofusine versus plasma) is noted.
Collapse
|
6
|
New Aspects Towards a Molecular Understanding of the Allicin Immunostimulatory Mechanism via Colec12, MARCO, and SCARB1 Receptors. Int J Mol Sci 2019; 20:ijms20153627. [PMID: 31344978 PMCID: PMC6696194 DOI: 10.3390/ijms20153627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
The allicin pleiotropic effects, which include anti-inflammatory, anti-oxidant, anti-tumoral, and antibacterial actions, were well demonstrated and correlated with various molecular pathways. The immunostimulatory mechanism of allicin has not been elucidated; however, there is a possible cytokine stimulation from immunoglobulin release caused by allicin. In this study, when Wistar female rats and CD19+ lymphocytes were treated with three different doses of allicin, immunoglobulins, glutathione, and oxidative stress markers were assayed. Molecular docking was performed between S-allylmercaptoglutathione (GSSA)—a circulating form of allicin in in vivo systems formed by the allicin interaction with glutathione (GSH)—and scavenger receptors class A and B from macrophages, as well as CD19+ B lymphocytes. Our data demonstrated a humoral immunostimulatory effect of allicin in rats and direct stimulation of B lymphocytes by S-allyl-mercapto-glutathione, both correlated with decreased catalase (CAT) activity. The molecular docking revealed that S-allyl-mercapto-glutathione interacting with Colec12, MARCO (class A), and SCARB1 (class B) scavenger receptors in in vitro tests demonstrates a direct stimulation of immunoglobulin secretion by GSSA in CD19+ B lymphocytes. These data collectively indicate that GSSA stimulates immunoglobulin secretion by binding on scavenger receptors class B type 1 (SCARB1) from CD19+ B lymphocytes.
Collapse
|
7
|
Farcaș AD, Moț AC, Pârvu AE, Toma VA, Popa MA, Mihai MC, Sevastre B, Roman I, Vlase L, Pârvu M. In Vivo Pharmacological and Anti-inflammatory Evaluation of Xerophyte Plantago sempervirens Crantz. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5049643. [PMID: 31281580 PMCID: PMC6589197 DOI: 10.1155/2019/5049643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/02/2019] [Accepted: 04/14/2019] [Indexed: 01/24/2023]
Abstract
Known for centuries throughout the world, Plantago species have long been used as traditional herbal remedies for many diseases related to inflammatory conditions of the skin, respiratory and digestive tract, or even malignancy. This study is aimed first at investigating the in vitro antioxidant and regenerative effects of Plantago sempervirens Crantz hydroalcoholic extract followed by an in vivo experiment using a turpentine oil-induced inflammation model. The in vitro evaluation for antioxidant activity was performed using classical assays such as DPPH and TEAC scavenging assays but also EPR, and the total phenolic content was determined using the Folin-Ciocalteu reagent. The wound healing assay was performed on human cells (Human EA.hy926). Besides, the prooxidant activity was determined using a method which involves in situ free radical generation by laccase and the oxidation of haemoglobin. On turpentine oil-induced inflammation in rats, the in vivo effects of three doses of P. sempervirens extracts (100%, 50%, and 25%) were assessed by measuring oxidative stress (MDA, TOS, OSI, NO, CAT, and SOD) and inflammatory (CRP, WBC, and NEU) parameters. Having a rich polyphenolic content, the xerophyte P. sempervirens exhibited a strong in vitro antioxidant activity by scavenging radicals, enhancing cell regeneration, and reducing oxidative stress markers. Diluted P. sempervirens extract (25%) exhibited the best antioxidant, wound healing, and anti-inflammatory activity.
Collapse
Affiliation(s)
- Anca D. Farcaș
- Department of Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca RO-400028, Romania
- Department of Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca RO-400293, Romania
| | - Augustin C. Moț
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca RO-400028, Romania
| | - Alina E. Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Pharmacy and Medicine, Cluj-Napoca RO-400012, Romania
| | - Vlad Al. Toma
- Department of Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca RO-400028, Romania
- Department of Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca RO-400293, Romania
| | - Mirel A. Popa
- Department of Regenerative Medicine, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest RO-0500568, Romania
| | - Maria C. Mihai
- Department of Regenerative Medicine, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest RO-0500568, Romania
| | - Bogdan Sevastre
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca RO-400372, Romania
| | - Ioana Roman
- Department of Experimental Biology and Biochemistry, Institute of Biological Research, Cluj-Napoca, Branch of NIRDSB, Bucharest RO-400115, Romania
| | - Laurian Vlase
- Department of Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Pharmacy and Medicine, Cluj-Napoca RO-400012, Romania
| | - Marcel Pârvu
- Department of Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca RO-400028, Romania
| |
Collapse
|
8
|
Eskandari N, Nejadi Babadaei MM, Nikpur S, Ghasrahmad G, Attar F, Heshmati M, Akhtari K, Rezayat Sorkhabadi SM, Mousavi SE, Falahati M. Biophysical, docking, and cellular studies on the effects of cerium oxide nanoparticles on blood components: in vitro. Int J Nanomedicine 2018; 13:4575-4589. [PMID: 30127607 PMCID: PMC6091479 DOI: 10.2147/ijn.s172162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction The application of nanoparticles (NPs) in medicine and biology has received great interest due to their novel features. However, their adverse effects on the biological system are not well understood. Materials and methods This study aims to evaluate the effect of cerium oxide nanoparticles (CNPs) on conformational changes of human hemoglobin (HHb) and lymphocytes by different spectroscopic (intrinsic and synchronous fluorescence spectroscopy and far and near circular dichroism [CD] spectroscopy), docking and cellular (MTT and flow cytometry) investigations. Results and discussion Transmission electron microscopy (TEM) showed that CNP diameter is ~30 nm. The infrared spectrum demonstrated a strong band around 783 cm−1 corresponding to the CNP stretching bond. Fluorescence data revealed that the CNP is able to quench the intrinsic fluorescence of HHb through both dynamic and static quenching mechanisms. The binding constant (Kb), number of binding sites (n), and thermodynamic parameters over three different temperatures indicated that hydrophobic interactions might play a considerable role in the interaction of CNPs with HHb. Synchronous fluorescence spectroscopy indicated that microenvironmental changes around Trp and Tyr residues remain almost unchanged. CD studies displayed that the regular secondary structure of HHb had no significant changes; however, the quaternary structure of protein is subjected to marginal structural changes. Docking studies showed the larger CNP cluster is more oriented toward experimental data, compared with smaller counterparts. Cellular assays revealed that CNP, at high concentrations (>50 µg/mL), initiated an antiproliferative response through apoptosis induction on lymphocytes. Conclusion The findings may exhibit that, although CNPs did not significantly perturb the native conformation of HHb, they can stimulate some cellular adverse effects at high concentrations that may limit the medicinal and biological application of CNPs. In other words, CNP application in biological systems should be done at low concentrations.
Collapse
Affiliation(s)
- Neda Eskandari
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Sanaz Nikpur
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Ghazal Ghasrahmad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | | | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| |
Collapse
|
9
|
Hathazi D, Scurtu F, Bischin C, Mot A, Attia AAA, Kongsted J, Silaghi-Dumitrescu R. The Reaction of Oxy Hemoglobin with Nitrite: Mechanism, Antioxidant-Modulated Effect, and Implications for Blood Substitute Evaluation. Molecules 2018; 23:molecules23020350. [PMID: 29414908 PMCID: PMC6017026 DOI: 10.3390/molecules23020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/27/2022] Open
Abstract
The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals. For myoglobin (Mb), an initial binding of nitrite to the iron-coordinated oxygen molecule was proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product, the high-valent ferryl form, was demonstrated in stopped-flow experiments. Reported here are the stopped flow spectra recorded upon mixing oxy Hb (native, as well as chemically-derivatized in the form of several candidates of blood substitutes) with a supraphysiological concentration of nitrite. The data may be fitted to a simple kinetic model involving a transient met-aqua form, in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic conditions at much lower concentrations of nitrite (Grubina, R. et al. J. Biol. Chem. 2007, 282, 12916). The simple model for fitting the stopped-flow data leaves a small part of the absorbance changes unaccounted for, unless a fourth species is invoked displaying features similar to the oxy and tentatively assigned as ferrous-peroxynitrate. Density functional theory (DFT) calculations support this latter assignment. The reaction allows for differentiating between the reactivities of various chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of hemoglobin slows the nitrite-induced oxidation, in sharp contrast to oxidative-stress type reactions which are generally accelerated, not inhibited. Sheep hemoglobin is found to be distinctly more resistant to reaction with nitrite compared to bovine Hb, at large nitrite concentrations (stopped-flow experiments directly observing the oxy + nitrite reaction) as well as under auto-catalytic conditions. Copolymerization of Hb with bovine serum albumin (BSA) using glutaraldehyde leads to a distinct increase of the lag time compared to native Hb as well as to any other form of derivatization examined in the present study. The Hb-BSA copolymer also displays a slower initial reaction with nitrite under stopped-flow conditions, compared to native Hb.
Collapse
Affiliation(s)
- Denisa Hathazi
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
| | - Florina Scurtu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
| | - Cristina Bischin
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
| | - Augustin Mot
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
| | - Amr A A Attia
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
10
|
Seven unconfirmed ideas to improve future ICU practice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:315. [PMID: 29297400 PMCID: PMC5751395 DOI: 10.1186/s13054-017-1904-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With imprecise definitions, inexact measurement tools, and flawed study execution, our clinical science often lags behind bedside experience and simply documents what appear to be the apparent faults or validity of ongoing practices. These impressions are later confirmed, modified, or overturned by the results of the next trial. On the other hand, insights that stem from the intuitions of experienced clinicians, scientists and educators-while often neglected-help place current thinking into proper perspective and occasionally point the way toward formulating novel hypotheses that direct future research. Both streams of information and opinion contribute to progress. In this paper we present a wide-ranging set of unproven 'out of the mainstream' ideas of our FCCM faculty, each with a defensible rationale and holding clear implications for altering bedside management. Each proposition was designed deliberately to be provocative so as to raise awareness, stimulate new thinking and initiate lively dialog.
Collapse
|
11
|
Toma VA, Farcas AD, Roman I, Sevastre B, Hathazi D, Scurtu F, Damian G, Silaghi-Dumitrescu R. In vivo evaluation of hemerythrin-based oxygen carriers: Similarities with hemoglobin-based counterparts. Int J Biol Macromol 2017; 107:1422-1427. [PMID: 28986211 DOI: 10.1016/j.ijbiomac.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 11/15/2022]
Abstract
We have previously proposed the annelid-derived protein, hemerythrin, as a viable replacement for hemoglobin in the synthesis of semi-synthetic oxygen carriers ("blood substitutes"). Here, we report the first in vivo tests for potential hemerythrin-based oxygen carriers (HrBOC), using a battery of experiments involving Wistar rats and previously tested on a series of hemoglobin-based oxygen carrier candidates (HBOC). At the concentrations tested, hemerythrin appears to behave similarly to hemoglobin - including, importantly, immunological effects. The antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages.
Collapse
Affiliation(s)
- Vlad Al Toma
- Institute of Biological Research, Cluj-Napoca, 400113, Romania; Department of Chemistry and Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca 400028, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Anca D Farcas
- Institute of Biological Research, Cluj-Napoca, 400113, Romania; Department of Chemistry and Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca 400028, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Ioana Roman
- Institute of Biological Research, Cluj-Napoca, 400113, Romania
| | - Bogdan Sevastre
- Department of Pathophysiology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, 400372, Romania
| | - Denisa Hathazi
- Department of Chemistry and Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca 400028, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Florina Scurtu
- Department of Chemistry and Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca 400028, Romania
| | - Grigore Damian
- Department of Physics, Babes-Bolyai University, Cluj-Napoca 400028, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry and Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca 400028, Romania.
| |
Collapse
|
12
|
Wu M, Feng K, Li Q, Ma H, Zhu H, Xie Y, Yan G, Chen C, Yan K. Glutaraldehyde-polymerized hemoglobin and tempol (PolyHb-tempol) has superoxide dismutase activity that can attenuate oxidative stress on endothelial cells induced by superoxide anion. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:47-55. [PMID: 28521553 DOI: 10.1080/21691401.2017.1328685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A Tempol compound with an amine group (4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, NH2-Tempol) was cross-linked to hemoglobin in a one-step polymerization reaction to produce a novel hemoglobin-based oxygen carrier (HBOC) designated PolyHb-Tempol. The reaction parameters, including the reaction time, pH, temperature, and ratio of reactants, were optimized, and the physiochemical properties of the resulting product were characterized. PolyHb-Tempol didn't show any toxicity towards endothelial cells. Furthermore, from observations of cell morphology and viability, PolyHb-Tempol showed a significant ability to inhibit or eliminate oxidative stress induced by superoxide free radicals. These results suggest that PolyHb-Tempol may potentially be suitable as an HBOC.
Collapse
Affiliation(s)
- Mengdi Wu
- a College of Life Science , Northwest University , Xi'an , P.R. China
| | - Kun Feng
- a College of Life Science , Northwest University , Xi'an , P.R. China
| | - Qiuhui Li
- a College of Life Science , Northwest University , Xi'an , P.R. China
| | - Huiya Ma
- a College of Life Science , Northwest University , Xi'an , P.R. China
| | - Hongli Zhu
- a College of Life Science , Northwest University , Xi'an , P.R. China.,b National Engineering Research Center for Miniaturized Detection System , Xi'an , P.R. China
| | - Yudou Xie
- c Shaanxi Lifegen Co., Ltd. , Xi'an , P.R. China
| | - Gaofei Yan
- c Shaanxi Lifegen Co., Ltd. , Xi'an , P.R. China
| | - Chao Chen
- a College of Life Science , Northwest University , Xi'an , P.R. China.,b National Engineering Research Center for Miniaturized Detection System , Xi'an , P.R. China
| | - Kunping Yan
- a College of Life Science , Northwest University , Xi'an , P.R. China.,b National Engineering Research Center for Miniaturized Detection System , Xi'an , P.R. China
| |
Collapse
|
13
|
Taverne YJ, de Wijs-Meijler D, Te Lintel Hekkert M, Moon-Massat PF, Dubé GP, Duncker DJ, Merkus D. Normalization of hemoglobin-based oxygen carrier-201 induced vasoconstriction: targeting nitric oxide and endothelin. J Appl Physiol (1985) 2017; 122:1227-1237. [PMID: 28183818 DOI: 10.1152/japplphysiol.00677.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/27/2017] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
Hemoglobin-based oxygen carrier (HBOC)-201 is a cell-free modified hemoglobin solution potentially facilitating oxygen uptake and delivery in cardiovascular disorders and hemorrhagic shock. Clinical use has been hampered by vasoconstriction in the systemic and pulmonary beds. Therefore, we aimed to 1) determine the possibility of counteracting HBOC-201-induced pressor effects with either adenosine (ADO) or nitroglycerin (NTG); 2) assess the potential roles of nitric oxide (NO) scavenging, reactive oxygen species (ROS), and endothelin (ET) in mediating the observed vasoconstriction; and 3) compare these effects in resting and exercising swine. Chronically instrumented swine were studied at rest and during exercise after administration of HBOC-201 alone or in combination with ADO. The role of NO was assessed by supplementation with NTG or administration of the eNOS inhibitor Nω-nitro-l-arginine. Alternative vasoactive pathways were investigated via intravenous administration of the ETA/ETB receptor blocker tezosentan or a mixture of ROS scavengers. The systemic and to a lesser extent the pulmonary pressor effects of HBOC-201 could be counteracted by ADO; however, dosage titration was very important to avoid systemic hypotension. Similarly, supplementation of NO with NTG negated the pressor effects but also required titration of the dose. The pressor response to HBOC-201 was reduced after eNOS inhibition and abolished by simultaneous ETA/ETB receptor blockade, while ROS scavenging had no effect. In conclusion, the pressor response to HBOC-201 is mediated by vasoconstriction due to NO scavenging and production of ET. Further research should explore the effect of longer-acting ET receptor blockers to counteract the side effect of hemoglobin-based oxygen carriers.NEW & NOTEWORTHY Hemoglobin-based oxygen carrier (HBOC)-201 can disrupt hemodynamic homeostasis, mimicking some aspects of endothelial dysfunction, resulting in elevated systemic and pulmonary blood pressures. HBOC-201-induced vasoconstriction is mediated by scavenging nitric oxide (NO) and by upregulating endothelin (ET) production. Pressor effects can be prevented by adjuvant treatment with NO donors or direct vasodilators, such as nitroglycerin or adenosine, but dosages must be carefully monitored to avoid hypotension. However, hemodynamic normalization is more easily achieved via administration of an ET receptor blocker.
Collapse
Affiliation(s)
- Yannick J Taverne
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Cardiothoracic Surgery, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maaike Te Lintel Hekkert
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paula F Moon-Massat
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland; and
| | | | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands;
| |
Collapse
|