1
|
Binobaid L, As Sobeai HM, Alhazzani K, AlAbdi L, Alwazae MM, Alotaibi M, Parrington J, Alhoshani A. Whole-exome sequencing identifies cancer-associated variants of the endo-lysosomal ion transport channels in the Saudi population. Saudi Pharm J 2024; 32:101961. [PMID: 38313820 PMCID: PMC10832475 DOI: 10.1016/j.jsps.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Background Although national efforts are underway to document the genomic variability of the Saudi population relative to other populations, such variability remains largely unexplored. Genetic variability is known to impact the fate of cells and increase or decrease the risk of a variety of complex diseases including cancer forms. Therefore, the identification of variants associated with cancer susceptibility in Saudi population may protect individuals from cancer or aid in patient-tailored therapies. The endo-lysosomal ion transport genes responsible for cationic ion homeostasis within the cell. We screened 703 single-nucleotide polymorphisms (SNPs) of the endo-lysosomal ion transporter genes in the Saudi population and identified cancer-associated variants that have been reported in other populations. Methods Utilizing previously derived local data of Whole-Exome Sequencing (WES), we examined SNPs of TPCN1, TPCN2, P2RX4, TRPM7, TRPV4, TRPV4, and TRPV6 genes. The SNPs were identified for those genes by our in-house database. We predicted the pathogenicity of these variants using in silico tools CADD, Polyphen-2, SIFT, PrimateAI, and FATHMM-XF. Then, we validated our findings by exploring the genetics database (VarSome, dbSNP NCB, OMIM, ClinVar, Ensembl, and GWAS Catalog) to further link cancer risk. Results The WES database yielded 703 SNPs found in TPCN2, P2RX4, TRPM7, TRPV4, and TRPV6 genes in 1,144 subjects. The number of variants that were found to be common in our population was 150 SNPs. We identified 13 coding-region non-synonymous variants of the endo-lysosomal genes that were most common with a minor allele frequency (MAF) of ≥ 1 %. Twelve of these variants are rs2376558, rs3750965, rs61746574, rs35264875, rs3829241, rs72928978, rs25644, rs8042919, rs17881456, rs4987682, rs4987667, and rs4987657 that were classified as cancer-associated genes. Conclusion Our study highlighted cancer-associated SNPs in the endo-lysosomal genes among Saudi individuals. The allelic frequencies on polymorphic variants confer susceptibility to complex diseases that are comparable to other populations. There is currently insufficient clinical data supporting the link between these SNPs and cancer risk in the Saudi population. Our data argues for initiating future cohort studies in which individuals with the identified SNPs are monitored and assessed for their likelihood of developing malignancies and therapy outcomes.
Collapse
Affiliation(s)
- Lama Binobaid
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Homood M. As Sobeai
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Khalid Alhazzani
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Meshari M. Alwazae
- Computational Sciences Department, Center of Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Moureq Alotaibi
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ali Alhoshani
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| |
Collapse
|
2
|
Housini M, Dariya B, Ahmed N, Stevens A, Fiadjoe H, Nagaraju GP, Basha R. Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials. Gene 2024; 892:147857. [PMID: 37783294 DOI: 10.1016/j.gene.2023.147857] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly detected cancer with a serious global health issue. The rates for incidence and mortality for CRC are alarming, especially since the prognosis is abysmal when the CRC is diagnosed at an advanced or metastatic stage. Both type of (modifiable/ non-modifiable) types of risk factors are established for CRC. Despite the advances in recent technology and sophisticated research, the survival rate is still meager due to delays in diagnosis. Therefore, there is urgently required to identify critical biomarkers aiming at early diagnosis and improving effective therapeutic strategies. Additionally, a complete understanding of the dysregulated pathways like PI3K/Akt, Notch, and Wnt associated with CRC progression and metastasis is very beneficial in designing a therapeutic regimen. This review article focused on the dysregulated signaling pathways, genetics and epigenetics alterations, and crucial biomarkers of CRC. This review also provided the list of clinical trials targeting signaling cascades and therapies involving small molecules. This review discusses up-to-date information on novel diagnostic and therapeutic strategies alongside specific clinical trials.
Collapse
Affiliation(s)
- Mohammad Housini
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, MN 5545, United States
| | - Nadia Ahmed
- Department of Diagnostic Radiology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Alyssa Stevens
- Missouri Southern State University, Joplin, MO 64801, United States
| | - Hope Fiadjoe
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Ganji Purnachandra Nagaraju
- Division of Hematology & Oncology, The University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| | - Riyaz Basha
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
3
|
Montes de Jesus FM, Giovanella L. Unexplained increase of serum carcinoembryonic antigen: don't forget the thyroid! Clin Chem Lab Med 2023; 61:e203-e205. [PMID: 37053395 DOI: 10.1515/cclm-2023-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Affiliation(s)
- Filipe Miguel Montes de Jesus
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Luca Giovanella
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Clinic for Nuclear Medicine, University Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
CEACAMS 1, 5, and 6 in disease and cancer: interactions with pathogens. Genes Cancer 2023; 14:12-29. [PMID: 36741860 PMCID: PMC9891707 DOI: 10.18632/genesandcancer.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The CEA family comprises 18 genes and 11 pseudogenes located at chromosome 19q13.2 and is divided into two main groups: cell surface anchored CEA-related cell adhesion molecules (CEACAMs) and the secreted pregnancy-specific glycoproteins (PSGs). CEACAMs are highly glycosylated cell surface anchored, intracellular, and intercellular signaling molecules with diverse functions, from cell differentiation and transformation to modulating immune responses associated with infection, inflammation, and cancer. In this review, we explore current knowledge surrounding CEACAM1, CEACAM5, and CEACAM6, highlight their pathological significance in the areas of cancer biology, immunology, and inflammatory disease, and describe the utility of murine models in exploring questions related to these proteins.
Collapse
|
5
|
Islam SA, Díaz-Gay M, Wu Y, Barnes M, Vangara R, Bergstrom EN, He Y, Vella M, Wang J, Teague JW, Clapham P, Moody S, Senkin S, Li YR, Riva L, Zhang T, Gruber AJ, Steele CD, Otlu B, Khandekar A, Abbasi A, Humphreys L, Syulyukina N, Brady SW, Alexandrov BS, Pillay N, Zhang J, Adams DJ, Martincorena I, Wedge DC, Landi MT, Brennan P, Stratton MR, Rozen SG, Alexandrov LB. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. CELL GENOMICS 2022; 2:None. [PMID: 36388765 PMCID: PMC9646490 DOI: 10.1016/j.xgen.2022.100179] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022]
Abstract
Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.
Collapse
Affiliation(s)
- S.M. Ashiqul Islam
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yang Wu
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Mike Vella
- NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, CA 95051, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jon W. Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Peter Clapham
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sergey Senkin
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Riva
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andreas J. Gruber
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
- Department of Biology, University of Konstanz, Universitaetsstrasse 10, D-78464 Konstanz, Germany
| | - Christopher D. Steele
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | | | - Samuel W. Brady
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Boian S. Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David J. Adams
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - David C. Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Michael R. Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Steven G. Rozen
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Lin L, He Y, Ni Z, Zhang M, Liu J, Mao Q, Huang B, Lin J. GPC2 deficiency inhibits cell growth and metastasis in colon adenocarcinoma. Open Med (Wars) 2022; 17:304-316. [PMID: 35233466 PMCID: PMC8847712 DOI: 10.1515/med-2022-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Glypican-2 (GPC2) has been reported to promote tumor progression through metabolic pathways. However, the role of GPC2 in colon adenocarcinoma (COAD) remains to be further investigated. This study was designed to evaluate the role of GPC2 in COAD. Based on patients with complete clinical information and GPC2 expression from the Cancer Genome Atlas-COAD database, we found that GPC2 mRNA was highly expressed in COAD tissues, which was associated with poor prognosis and tumornode-metastasis (TNM) stage. The predicted survival probability based on GPC2 mRNA expression and TNM stage was in good agreement with the observed survival probability. Furthermore, the genes coexpressed with GPC2 in COAD tissues were significantly enriched in basal cell carcinoma, Notch signaling pathway, and Hedgehog signaling pathway. After GPC2 was decreased through transfecting short hairpin RNA of GPC2 into HCT-8 and SW620 cells, cell cycle was arrested in G0/G1 phase, proliferation was decreased, apoptosis was increased, and migration and invasion were repressed. In conclusion, decreasing GPC2 significantly inhibited proliferation, migration, and invasion, and enhanced apoptosis, which implied that GPC2 can be considered a promising therapeutic target of COAD in the future.
Collapse
Affiliation(s)
- Lumin Lin
- Department of Spleen and Stomach Diseases, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine , Fuzhou 350003 , China
| | - Yanbin He
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian , 350122 , China
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian 350122 , China
| | - Zhuona Ni
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian , 350122 , China
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian 350122 , China
| | - Min Zhang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian , 350122 , China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian 350122 , China
| | - Jie Liu
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian , 350122 , China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian 350122 , China
| | - Qianqian Mao
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian , 350122 , China
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian 350122 , China
| | - Bin Huang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian , 350122 , China
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian 350122 , China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian , 350122 , China
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian 350122 , China
| |
Collapse
|
7
|
Perne C, Peters S, Cartolano M, Horpaopan S, Grimm C, Altmüller J, Sommer AK, Hillmer AM, Thiele H, Odenthal M, Möslein G, Adam R, Sivalingam S, Kirfel J, Schweiger MR, Peifer M, Spier I, Aretz S. Variant profiling of colorectal adenomas from three patients of two families with MSH3-related adenomatous polyposis. PLoS One 2021; 16:e0259185. [PMID: 34843512 PMCID: PMC8629245 DOI: 10.1371/journal.pone.0259185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
The spectrum of somatic genetic variation in colorectal adenomas caused by biallelic pathogenic germline variants in the MSH3 gene, was comprehensively analysed to characterise mutational signatures and identify potential driver genes and pathways of MSH3-related tumourigenesis. Three patients from two families with MSH3-associated polyposis were included. Whole exome sequencing of nine adenomas and matched normal tissue was performed. The amount of somatic variants in the MSH3-deficient adenomas and the pattern of single nucleotide variants (SNVs) was similar to sporadic adenomas, whereas the fraction of small insertions/deletions (indels) (21-42% of all small variants) was significantly higher. Interestingly, pathogenic somatic APC variants were found in all but one adenoma. The vast majority (12/13) of these were di-, tetra-, or penta-base pair (bp) deletions. The fraction of APC indels was significantly higher than that reported in patients with familial adenomatous polyposis (FAP) (p < 0.01) or in sporadic adenomas (p < 0.0001). In MSH3-deficient adenomas, the occurrence of APC indels in a repetitive sequence context was significantly higher than in FAP patients (p < 0.01). In addition, the MSH3-deficient adenomas harboured one to five (recurrent) somatic variants in 13 established or candidate driver genes for early colorectal carcinogenesis, including ACVR2A and ARID genes. Our data suggest that MSH3-related colorectal carcinogenesis seems to follow the classical APC-driven pathway. In line with the specific function of MSH3 in the mismatch repair (MMR) system, we identified a characteristic APC mutational pattern in MSH3-deficient adenomas, and confirmed further driver genes for colorectal tumourigenesis.
Collapse
Affiliation(s)
- Claudia Perne
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Sophia Peters
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Maria Cartolano
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sukanya Horpaopan
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Christina Grimm
- Institute for Translational Epigenetics, Medical Faculty and University Clinic Cologne, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
- Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anna K. Sommer
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Axel M. Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gabriela Möslein
- Zentrum für Hereditäre Tumore, BETHESDA Khs. Duisburg, Duisburg, Germany
| | - Ronja Adam
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Sugirthan Sivalingam
- Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jutta Kirfel
- Institute of Pathology, University of Lübeck, Lübeck, Germany
| | - Michal R. Schweiger
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Translational Epigenetics, Medical Faculty and University Clinic Cologne, University of Cologne, Cologne, Germany
| | - Martin Peifer
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Gough NR, Xiang X, Mishra L. TGF-β Signaling in Liver, Pancreas, and Gastrointestinal Diseases and Cancer. Gastroenterology 2021; 161:434-452.e15. [PMID: 33940008 PMCID: PMC8841117 DOI: 10.1053/j.gastro.2021.04.064] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Genetic alterations affecting transforming growth factor-β (TGF-β) signaling are exceptionally common in diseases and cancers of the gastrointestinal system. As a regulator of tissue renewal, TGF-β signaling and the downstream SMAD-dependent transcriptional events play complex roles in the transition from a noncancerous disease state to cancer in the gastrointestinal tract, liver, and pancreas. Furthermore, this pathway also regulates the stromal cells and the immune system, which may contribute to evasion of the tumors from immune-mediated elimination. Here, we review the involvement of the TGF-β pathway mediated by the transcriptional regulators SMADs in disease progression to cancer in the digestive system. The review integrates human genomic studies with animal models that provide clues toward understanding and managing the complexity of the pathway in disease and cancer.
Collapse
Affiliation(s)
- Nancy R. Gough
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, New York
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, New York
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, New York; Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, District of Columbia.
| |
Collapse
|
9
|
Genomic, Microbial and Immunological Microenvironment of Colorectal Polyps. Cancers (Basel) 2021; 13:cancers13143382. [PMID: 34298598 PMCID: PMC8303543 DOI: 10.3390/cancers13143382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancers (CRC) initiate from small cell clusters known as polyps. Colonoscopic surveillance and removal of polyps is an important strategy to prevent CRC progression. Recent advances in sequencing technologies have highlighted genetic mutations in polyps that potentially contribute to CRC development. However, CRC might be considered more than a genetic disease, as emerging evidence describes early changes to immune surveillance and gut microbiota in people with polyps. Here, we review the molecular landscape of colorectal polyps, considering their genomic, microbial and immunological features, and discuss the potential clinical utility of these data. Abstract Colorectal cancer (CRC) develops from pre-cancerous cellular lesions in the gut epithelium, known as polyps. Polyps themselves arise through the accumulation of mutations that disrupt the function of key tumour suppressor genes, activate proto-oncogenes and allow proliferation in an environment where immune control has been compromised. Consequently, colonoscopic surveillance and polypectomy are central pillars of cancer control strategies. Recent advances in genomic sequencing technologies have enhanced our knowledge of key driver mutations in polyp lesions that likely contribute to CRC. In accordance with the prognostic significance of Immunoscores for CRC survival, there is also a likely role for early immunological changes in polyps, including an increase in regulatory T cells and a decrease in mature dendritic cell numbers. Gut microbiotas are under increasing research interest for their potential contribution to CRC evolution, and changes in the gut microbiome have been reported from analyses of adenomas. Given that early changes to molecular components of bowel polyps may have a direct impact on cancer development and/or act as indicators of early disease, we review the molecular landscape of colorectal polyps, with an emphasis on immunological and microbial alterations occurring in the gut and propose the potential clinical utility of these data.
Collapse
|
10
|
Memariani Z, Abbas SQ, Ul Hassan SS, Ahmadi A, Chabra A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol Res 2020; 171:105264. [PMID: 33166734 DOI: 10.1016/j.phrs.2020.105264] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Although the rates of many cancers are controlled in Western countries, those of some cancers, such as lung, breast, and colorectal cancer are currently increasing in many low- and middle-income countries due to increases in risk factors caused by development and societal problems. Additionally, endogenous factors, such as inherited mutations, steroid hormones, insulin, and insulin-like growth factor systems, inflammation, oxidative stress, and exogenous factors (including tobacco, alcohol, infectious agents, and radiation), are believed to compromise cell functions and lead to carcinogenesis. Chemotherapy, surgery, radiation therapy, hormone therapy, and targeted therapies are some examples of the approaches used for cancer treatment. However, various short- and long-term side effects can also considerably impact patient prognosis based on clinical factors associated with treatments. Recently, increasing numbers of studies have been conducted to identify novel therapeutic agents from natural products, among which plant-derived bioactive compounds have been increasingly studied. Naringin (NG) and its aglycone naringenin (NGE) are abundantly present in citrus fruits, such as grapefruits and oranges. Their anti-carcinogenic activities have been shown to be exerted through several cell signal transduction pathways. Recently, different pharmacological strategies based on combination therapy, involving NG and NGE with the current anti-cancer agents have shown prodigious synergistic effects when compared to monotherapy. Besides, NG and NGE have been reported to overcome multidrug resistance, resulting from different defensive mechanisms in cancer, which is one of the major obstacles of clinical treatment. Thus, we comprehensively reviewed the inhibitory effects of NG and NGE on several types of cancers through different signal transduction pathways, the roles on sensitizing with the current anticancer medicines, and the efficacy of the cancer combination therapy.
Collapse
Affiliation(s)
- Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar, Pakistan.
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Aroona Chabra
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
11
|
Gu S, Zaidi S, Hassan I, Mohammad T, Malta TM, Noushmehr H, Nguyen B, Crandall KA, Srivastav J, Obias V, Lin P, Nguyen BN, Yao M, Yao R, King CH, Mazumder R, Mishra B, Rao S, Mishra L. Mutated CEACAMs Disrupt Transforming Growth Factor Beta Signaling and Alter the Intestinal Microbiome to Promote Colorectal Carcinogenesis. Gastroenterology 2020; 158:238-252. [PMID: 31585122 PMCID: PMC7124154 DOI: 10.1053/j.gastro.2019.09.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS We studied interactions among proteins of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, which interact with microbes, and transforming growth factor beta (TGFB) signaling pathway, which is often altered in colorectal cancer cells. We investigated mechanisms by which CEACAM proteins inhibit TGFB signaling and alter the intestinal microbiome to promote colorectal carcinogenesis. METHODS We collected data on DNA sequences, messenger RNA expression levels, and patient survival times from 456 colorectal adenocarcinoma cases, and a separate set of 594 samples of colorectal adenocarcinomas, in The Cancer Genome Atlas. We performed shotgun metagenomic sequencing analyses of feces from wild-type mice and mice with defects in TGFB signaling (Sptbn1+/- and Smad4+/-/Sptbn1+/-) to identify changes in microbiota composition before development of colon tumors. CEACAM protein and its mutants were overexpressed in SW480 and HCT116 colorectal cancer cell lines, which were analyzed by immunoblotting and proliferation and colony formation assays. RESULTS In colorectal adenocarcinomas, high expression levels of genes encoding CEACAM proteins, especially CEACAM5, were associated with reduced survival times of patients. There was an inverse correlation between expression of CEACAM genes and expression of TGFB pathway genes (TGFBR1, TGFBR2, and SMAD3). In colorectal adenocarcinomas, we also found an inverse correlation between expression of genes in the TGFB signaling pathway and genes that regulate stem cell features of cells. We found mutations encoding L640I and A643T in the B3 domain of human CEACAM5 in colorectal adenocarcinomas; structural studies indicated that these mutations would alter the interaction between CEACAM5 and TGFBR1. Overexpression of these mutants in SW480 and HCT116 colorectal cancer cell lines increased their anchorage-independent growth and inhibited TGFB signaling to a greater extent than overexpression of wild-type CEACAM5, indicating that they are gain-of-function mutations. Compared with feces from wild-type mice, feces from mice with defects in TGFB signaling had increased abundance of bacterial species that have been associated with the development of colon tumors, including Clostridium septicum, and decreased amounts of beneficial bacteria, such as Bacteroides vulgatus and Parabacteroides distasonis. CONCLUSION We found expression of CEACAMs and genes that regulate stem cell features of cells to be increased in colorectal adenocarcinomas and inversely correlated with expression of TGFB pathway genes. We found colorectal adenocarcinomas to express mutant forms of CEACAM5 that inhibit TGFB signaling and increase proliferation and colony formation. We propose that CEACAM proteins disrupt TGFB signaling, which alters the composition of the intestinal microbiome to promote colorectal carcinogenesis.
Collapse
Affiliation(s)
- Shoujun Gu
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA
| | - Sobia Zaidi
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Tathiane M. Malta
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Bryan Nguyen
- Computational Biology Institute and Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Keith A. Crandall
- Computational Biology Institute and Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | | | - Vincent Obias
- Department of Surgery, The George Washington University, Washington, DC, USA
| | - Paul Lin
- Department of Surgery, The George Washington University, Washington, DC, USA
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA
| | - Michael Yao
- Department of Gastroenterology, Veterans Affairs Medical Center, Washington DC, USA
| | - Ren Yao
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Charles Hadley King
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Bibhuti Mishra
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA
| | - Shuyun Rao
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA
| | - Lopa Mishra
- Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, DC, USA
- Department of Gastroenterology, Veterans Affairs Medical Center, Washington DC, USA
| |
Collapse
|
12
|
Korkut A, Zaidi S, Kanchi RS, Rao S, Gough NR, Schultz A, Li X, Lorenzi PL, Berger AC, Robertson G, Kwong LN, Datto M, Roszik J, Ling S, Ravikumar V, Manyam G, Rao A, Shelley S, Liu Y, Ju Z, Hansel D, de Velasco G, Pennathur A, Andersen JB, O'Rourke CJ, Ohshiro K, Jogunoori W, Nguyen BN, Li S, Osmanbeyoglu HU, Ajani JA, Mani SA, Houseman A, Wiznerowicz M, Chen J, Gu S, Ma W, Zhang J, Tong P, Cherniack AD, Deng C, Resar L, Weinstein JN, Mishra L, Akbani R. A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily. Cell Syst 2018; 7:422-437.e7. [PMID: 30268436 PMCID: PMC6370347 DOI: 10.1016/j.cels.2018.08.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
We present an integromic analysis of gene alterations that modulate transforming growth factor β (TGF-β)-Smad-mediated signaling in 9,125 tumor samples across 33 cancer types in The Cancer Genome Atlas (TCGA). Focusing on genes that encode mediators and regulators of TGF-β signaling, we found at least one genomic alteration (mutation, homozygous deletion, or amplification) in 39% of samples, with highest frequencies in gastrointestinal cancers. We identified mutation hotspots in genes that encode TGF-β ligands (BMP5), receptors (TGFBR2, AVCR2A, and BMPR2), and Smads (SMAD2 and SMAD4). Alterations in the TGF-β superfamily correlated positively with expression of metastasis-associated genes and with decreased survival. Correlation analyses showed the contributions of mutation, amplification, deletion, DNA methylation, and miRNA expression to transcriptional activity of TGF-β signaling in each cancer type. This study provides a broad molecular perspective relevant for future functional and therapeutic studies of the diverse cancer pathways mediated by the TGF-β superfamily.
Collapse
Affiliation(s)
- Anil Korkut
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sobia Zaidi
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Rupa S Kanchi
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuyun Rao
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Nancy R Gough
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Andre Schultz
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ashton C Berger
- Cancer Program, The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Gordon Robertson
- Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mike Datto
- Department of Pathology, Duke School of Medicine Durham, Durham, NC 27710, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology and Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shiyun Ling
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Visweswaran Ravikumar
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon Shelley
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Donna Hansel
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Guillermo de Velasco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, University Hospital 12 de Octubre, Madrid 28041, Spain
| | - Arjun Pennathur
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jesper B Andersen
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen 2200, Denmark
| | - Colm J O'Rourke
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen 2200, Denmark
| | - Kazufumi Ohshiro
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Wilma Jogunoori
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA; Veterans Affairs Medical Center, Institute of Clinical Research, Washington, DC 20422, USA
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hatice U Osmanbeyoglu
- Memorial Sloan Kettering Cancer Center, Computational & Systems Biology Program, New York, NY 10065, USA
| | - Jaffer A Ajani
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andres Houseman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 9733, USA
| | - Maciej Wiznerowicz
- Poznań University of Medical Sciences, Poznań 61701, Poland; Greater Poland Cancer Center, Poznań 61866, Poland; International Institute for Molecular Oncology, Poznań 60203, Poland
| | - Jian Chen
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shoujun Gu
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Wencai Ma
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiexin Zhang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew D Cherniack
- Cancer Program, The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Chuxia Deng
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA; Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Linda Resar
- Departments of Medicine, Division of Hematology, Oncology and Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lopa Mishra
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA; Veterans Affairs Medical Center, Institute of Clinical Research, Washington, DC 20422, USA.
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Lin SH, Raju GS, Huff C, Ye Y, Gu J, Chen JS, Hildebrandt MAT, Liang H, Menter DG, Morris J, Hawk E, Stroehlein JR, Futreal A, Kopetz S, Mishra L, Wu X. The somatic mutation landscape of premalignant colorectal adenoma. Gut 2018; 67:1299-1305. [PMID: 28607096 PMCID: PMC6031265 DOI: 10.1136/gutjnl-2016-313573] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE There are few studies which characterised the molecular alterations in premalignant colorectal adenomas. Our major goal was to establish colorectal adenoma genome atlas and identify molecular markers of progression from colorectal adenoma to adenocarcinoma. DESIGN Whole-exome sequencing and targeted sequencing were carried out in 149 adenoma samples and paired blood from patients with conventional adenoma or sessile serrated adenoma to characterise the somatic mutation landscape for premalignant colorectal lesions. The identified somatic mutations were compared with those in colorectal cancer (CRC) samples from The Cancer Genome Atlas. A supervised random forest model was employed to identify gene panels differentiating adenoma from CRC. RESULTS Similar somatic mutation frequencies, but distinctive driver mutations, were observed in sessile serrated adenomas and conventional adenomas. The final model included 20 genes and was able to separate the somatic mutation profile of colorectal adenoma and adenocarcinoma with an area under the curve of 0.941. CONCLUSION The findings of this project hold potential to better identify patients with adenoma who may be candidates for targeted surveillance programmes and preventive interventions to reduce the incidence of CRC.
Collapse
Affiliation(s)
- Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, Texas, USA
| | - Gottumukkala S Raju
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chad Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiun-Sheng Chen
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, Texas, USA
| | - Michelle A T Hildebrandt
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffery Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ernest Hawk
- Division of Cancer Prevention and Population Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John R Stroehlein
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lopa Mishra
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
14
|
Gu S, Nguyen BN, Rao S, Li S, Shetty K, Rashid A, Shukla V, Deng CX, Mishra L, Mishra B. Alcohol, stem cells and cancer. Genes Cancer 2017; 8:695-700. [PMID: 29234487 PMCID: PMC5724803 DOI: 10.18632/genesandcancer.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dosage, gender, and genetic susceptibility to the effects of alcohol remained only partially elucidated. In this review, we summarize the current knowledge of the mechanisms underlying the role of alcohol in liver and gastrointestinal cancers. In addition, two recent pathways- DNA repair and TGF-β signaling which provide new insights into alcohol in the regulation of cancers and stem cells are also discussed here.
Collapse
Affiliation(s)
- Shoujun Gu
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| | - Bao-Ngoc Nguyen
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| | - Shuyun Rao
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| | - Shulin Li
- Departments of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kirti Shetty
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Asif Rashid
- Departments of Gastroenterology and Liver Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek Shukla
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Chu-Xia Deng
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA.,Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lopa Mishra
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA.,Surgical Service, Veterans Affairs Medicale Center, Washington DC, USA
| | - Bibhuti Mishra
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|
15
|
Ahmed HH, El-Abhar HS, Hassanin EAK, Abdelkader NF, Shalaby MB. Ginkgo biloba L. leaf extract offers multiple mechanisms in bridling N-methylnitrosourea – mediated experimental colorectal cancer. Biomed Pharmacother 2017; 95:387-393. [DOI: 10.1016/j.biopha.2017.08.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022] Open
|
16
|
Rao S, Zaidi S, Banerjee J, Jogunoori W, Sebastian R, Mishra B, Nguyen BN, Wu RC, White J, Deng C, Amdur R, Li S, Mishra L. Transforming growth factor-β in liver cancer stem cells and regeneration. Hepatol Commun 2017; 1:477-493. [PMID: 29404474 PMCID: PMC5678904 DOI: 10.1002/hep4.1062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells have established mechanisms that contribute to tumor heterogeneity as well as resistance to therapy. Over 40% of hepatocellular carcinomas (HCCs) are considered to be clonal and arise from a stem-like/cancer stem cell. Moreover, HCC is the second leading cause of cancer death worldwide, and an improved understanding of cancer stem cells and targeting these in this cancer are urgently needed. Multiple studies have revealed etiological patterns and multiple genes/pathways signifying initiation and progression of HCC; however, unlike the transforming growth factor β (TGF-β) pathway, loss of p53 and/or activation of β-catenin do not spontaneously drive HCC in animal models. Despite many advances in cancer genetics that include identifying the dominant role of TGF-β signaling in gastrointestinal cancers, we have not reached an integrated view of genetic mutations, copy number changes, driver pathways, and animal models that support effective targeted therapies for these common and lethal cancers. Moreover, pathways involved in stem cell transformation into gastrointestinal cancers remain largely undefined. Identifying the key mechanisms and developing models that reflect the human disease can lead to effective new treatment strategies. In this review, we dissect the evidence obtained from mouse and human liver regeneration, and mouse genetics, to provide insight into the role of TGF-β in regulating the cancer stem cell niche. (Hepatology Communications 2017;1:477-493).
Collapse
Affiliation(s)
- Shuyun Rao
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Sobia Zaidi
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Jaideep Banerjee
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Wilma Jogunoori
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Raul Sebastian
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Bibhuti Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine George Washington University Washington DC
| | - Jon White
- Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Chuxia Deng
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Health Sciences University of Macau Taipa Macau China
| | - Richard Amdur
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Shulin Li
- Department of Pediatrics The University of Texas MD Anderson Cancer Center Houston TX
| | - Lopa Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| |
Collapse
|
17
|
Aka AA, Rappaport JA, Pattison AM, Sato T, Snook AE, Waldman SA. Guanylate cyclase C as a target for prevention, detection, and therapy in colorectal cancer. Expert Rev Clin Pharmacol 2017; 10:549-557. [PMID: 28162021 DOI: 10.1080/17512433.2017.1292124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Colorectal cancer remains the second leading cause of cancer death in the United States, and new strategies to prevent, detect, and treat the disease are needed. The receptor, guanylate cyclase C (GUCY2C), a tumor suppressor expressed by the intestinal epithelium, has emerged as a promising target. Areas covered: This review outlines the role of GUCY2C in tumorigenesis, and steps to translate GUCY2C-targeting schemes to the clinic. Endogenous GUCY2C-activating ligands disappear early in tumorigenesis, silencing its signaling axis and enabling transformation. Pre-clinical models support GUCY2C ligand supplementation as a novel disease prevention paradigm. With the recent FDA approval of the GUCY2C ligand, linaclotide, and two more synthetic ligands in the pipeline, this strategy can be tested in human trials. In addition to primary tumor prevention, we also review immunotherapies targeting GUCY2C expressed by metastatic lesions, and platforms using GUCY2C as a biomarker for detection and patient staging. Expert commentary: Results of the first GUCY2C targeting schemes in patients will become available in the coming years. The identification of GUCY2C ligand loss as a requirement for colorectal tumorigenesis has the potential to change the treatment paradigm from an irreversible disease of genetic mutation, to a treatable disease of ligand insufficiency.
Collapse
Affiliation(s)
- Allison A Aka
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA.,b Department of Surgery , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Jeff A Rappaport
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Amanda M Pattison
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Takami Sato
- c Department of Medical Oncology , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Adam E Snook
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Scott A Waldman
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|