1
|
Wolf JD, Sirrine MR, Cox RM, Plemper RK. Structural basis of paramyxo- and pneumovirus polymerase inhibition by non-nucleoside small-molecule antivirals. Antimicrob Agents Chemother 2024; 68:e0080024. [PMID: 39162479 PMCID: PMC11459973 DOI: 10.1128/aac.00800-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Small-molecule antivirals can be used as chemical probes to stabilize transitory conformational stages of viral target proteins, facilitating structural analyses. Here, we evaluate allosteric pneumo- and paramyxovirus polymerase inhibitors that have the potential to serve as chemical probes and aid the structural characterization of short-lived intermediate conformations of the polymerase complex. Of multiple inhibitor classes evaluated, we discuss in-depth distinct scaffolds that were selected based on well-understood structure-activity relationships, insight into resistance profiles, biochemical characterization of the mechanism of action, and photoaffinity-based target mapping. Each class is thought to block structural rearrangements of polymerase domains albeit target sites and docking poses are distinct. This review highlights validated druggable targets in the paramyxo- and pneumovirus polymerase proteins and discusses discrete structural stages of the polymerase complexes required for bioactivity.
Collapse
Affiliation(s)
- Josef D. Wolf
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Michael R. Sirrine
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Robert M. Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Felicetti T, Sarnari C, Gaito R, Tabarrini O, Manfroni G. Recent Progress toward the Discovery of Small Molecules as Novel Anti-Respiratory Syncytial Virus Agents. J Med Chem 2024; 67:11543-11579. [PMID: 38970494 DOI: 10.1021/acs.jmedchem.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Respiratory syncytial virus (RSV) stands as the foremost cause of infant hospitalization globally, ranking second only to malaria in terms of infant mortality. Although three vaccines have recently been approved for the prophylaxis of adults aged 60 and above, and pregnant women, there is currently no effective antiviral drug for treating RSV infections. The only preventive measure for infants at high risk of severe RSV disease is passive immunization through monoclonal antibodies. This Perspective offers an overview of the latest advancements in RSV drug discovery of small molecule antivirals, with particular focus on the promising findings from agents targeting the fusion and polymerase proteins. A comprehensive reflection on the current state of RSV research is also given, drawing inspiration from the lessons gleaned from HCV and HIV, while also considering the impact of the recent approval of the three vaccines.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Chiara Sarnari
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Roberta Gaito
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| |
Collapse
|
4
|
Avadhanula V, Agustinho DP, Menon VK, Chemaly RF, Shah DP, Qin X, Surathu A, Doddapaneni H, Muzny DM, Metcalf GA, Cregeen SJ, Gibbs RA, Petrosino JF, Sedlazeck FJ, Piedra PA. Inter and intra-host diversity of RSV in hematopoietic stem cell transplant adults with normal and delayed viral clearance. Virus Evol 2023; 10:vead086. [PMID: 38361816 PMCID: PMC10868550 DOI: 10.1093/ve/vead086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024] Open
Abstract
Respiratory syncytial virus (RSV) infection in immunocompromised individuals often leads to prolonged illness, progression to severe lower respiratory tract infection, and even death. How the host immune environment of the hematopoietic stem cell transplant (HCT) adults can affect viral genetic variation during an acute infection is not understood well. In the present study, we performed whole genome sequencing of RSV/A or RSV/B from samples collected longitudinally from HCT adults with normal (<14 days) and delayed (≥14 days) RSV clearance who were enrolled in a ribavirin trial. We determined the inter-host and intra-host genetic variation of RSV and the effect of mutations on putative glycosylation sites. The inter-host variation of RSV is centered in the attachment (G) and fusion (F) glycoprotein genes followed by polymerase (L) and matrix (M) genes. Interestingly, the overall genetic variation was constant between normal and delayed clearance groups for both RSV/A and RSV/B. Intra-host variation primarily occurred in the G gene followed by non-structural protein (NS1) and L genes; however, gain or loss of stop codons and frameshift mutations appeared only in the G gene and only in the delayed viral clearance group. Potential gain or loss of O-linked glycosylation sites in the G gene occurred both in RSV/A and RSV/B isolates. For RSV F gene, loss of N-linked glycosylation site occurred in three RSV/B isolates within an antigenic epitope. Both oral and aerosolized ribavirin did not cause any mutations in the L gene. In summary, prolonged viral shedding and immune deficiency resulted in RSV variation, especially in structural mutations in the G gene, possibly associated with immune evasion. Therefore, sequencing and monitoring of RSV isolates from immunocompromised patients are crucial as they can create escape mutants that can impact the effectiveness of upcoming vaccines and treatments.
Collapse
Affiliation(s)
| | | | - Vipin Kumar Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roy F Chemaly
- Departments of Infectious Diseases, Infection Control & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dimpy P Shah
- Department of Population Health Sciences, Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anil Surathu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Harshavardhan Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ginger A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Computer Science, Rice University, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Oey A, McClure M, Symons JA, Chanda S, Fry J, Smith PF, Luciani K, Fayon M, Chokephaibulkit K, Uppala R, Bernatoniene J, Furuno K, Stanley T, Huntjens D, Witek J. Lumicitabine, an orally administered nucleoside analog, in infants hospitalized with respiratory syncytial virus (RSV) infection: Safety, efficacy, and pharmacokinetic results. PLoS One 2023; 18:e0288271. [PMID: 37467213 PMCID: PMC10355467 DOI: 10.1371/journal.pone.0288271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2023] [Indexed: 07/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection is the leading cause of infant hospitalizations and mortality. Lumicitabine, an oral nucleoside analog was studied for the treatment of RSV. The phase 1b and phase 2b studies reported here assessed the safety, pharmacokinetics, and pharmacodynamics of lumicitabine in infants/neonates hospitalized with RSV. In the phase 1b study, infants (≥1 to ≤12 months) and neonates (<28 days) received a single-ascending or multiple-ascending doses (single loading dose [LD] then 9 maintenance doses [MD] of lumicitabine, or placebo [3:1]). In the phase 2b study, infants/children (28 days to ≤36 months old) received lumicitabine 40/20 mg/kg, 60/40 mg/kg LD/MD twice-daily or placebo (1:1:1) for 5 days. Safety, pharmacokinetics, and efficacy parameters were assessed over 28 days. Lumicitabine was associated with a dose-related increase in the incidence and severity of reversible neutropenia. Plasma levels of ALS-008112, the active nucleoside analog, were dose-proportional with comparable mean exposure levels at the highest doses in both studies. There were no significant differences between the lumicitabine groups and placebo in reducing viral load, time to viral non-detectability, and symptom resolution. No emergent resistance-associated substitutions were observed at the RSV L-gene positions of interest. In summary, lumicitabine was associated with a dose-related increase in the incidence and severity of reversible neutropenia and failed to demonstrate antiviral activity in RSV-infected hospitalized infants. This contrasts with the findings of the previous RSV-A adult challenge study where significant antiviral activity was noted, without incidence of neutropenia. Trial registration ClinicalTrials.gov Identifier: NCT02202356 (phase 1b); NCT03333317 (phase 2b).
Collapse
Affiliation(s)
- Abbie Oey
- Janssen Research & Development, LLC, South San Francisco, California, United States of America
| | - Matthew McClure
- Janssen Research & Development, LLC, South San Francisco, California, United States of America
| | - Julian A. Symons
- Janssen Research & Development, LLC, South San Francisco, California, United States of America
| | - Sushmita Chanda
- Janssen Research & Development, LLC, South San Francisco, California, United States of America
| | - John Fry
- Janssen Research & Development, LLC, South San Francisco, California, United States of America
| | - Patrick F. Smith
- Certara Strategic Consulting, Parsippany, New Jersey, United States of America
| | - Kathia Luciani
- Department of Infectious Diseases Hospital de Especialidades Pediátricas Omar Torrijos Herrera, Panama City, Panama
| | - Michael Fayon
- CHU de Bordeaux, Pneumologie pédiatrique, CIC 1401 (INSERM), Hôpital Pellegrin-Enfants, Bordeaux Cedex, France
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rattapon Uppala
- Department of Pediatrics, Khon Kaen University, Khon Kaen, Thailand
| | - Jolanta Bernatoniene
- Paediatric Infectious Disease and Immunology Department, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Kenji Furuno
- General Pediatrics & Interdisciplinary Medicine Fukuoka Children’s Hospital, Fukuoka, Japan
| | - Thorsten Stanley
- Department of Paediatrics, University of Otago, Wellington, New Zealand
| | | | - James Witek
- Janssen Research & Development, LLC, Titusville, New Jersey, United States of America
| | | |
Collapse
|
6
|
Shehzadi K, Saba A, Yu M, Liang J. Structure-Based Drug Design of RdRp Inhibitors against SARS-CoV-2. Top Curr Chem (Cham) 2023; 381:22. [PMID: 37318607 DOI: 10.1007/s41061-023-00432-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic since 2019, spreading rapidly and posing a significant threat to human health and life. With over 6 billion confirmed cases of the virus, the need for effective therapeutic drugs has become more urgent than ever before. RNA-dependent RNA polymerase (RdRp) is crucial in viral replication and transcription, catalysing viral RNA synthesis and serving as a promising therapeutic target for developing antiviral drugs. In this article, we explore the inhibition of RdRp as a potential treatment for viral diseases, analysing the structural information of RdRp in virus proliferation and summarizing the reported inhibitors' pharmacophore features and structure-activity relationship profiles. We hope that the information provided by this review will aid in structure-based drug design and aid in the global fight against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Afsheen Saba
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Mingjia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China.
| | - Jianhua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China.
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China.
| |
Collapse
|
7
|
Nandi R, Bhowmik D, Srivastava R, Prakash A, Kumar D. Discovering potential inhibitors against SARS-CoV-2 by targeting Nsp13 Helicase. J Biomol Struct Dyn 2022; 40:12062-12074. [PMID: 34455933 DOI: 10.1080/07391102.2021.1970024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rise in the incidence of COVID-19 as a result of SARS-CoV-2 infection has threatened public health globally. Till now, there have been no proper prophylactics available to fight COVID-19, necessitating the advancement and evolution of effective curative against SARS-CoV-2. This study aimed at the nonstructural protein 13 (nsp13) helicase as a promising target for drug development against COVID-19. A unique collection of nucleoside analogs was screened against the SARS-CoV-2 helicase protein, for which a molecular docking experiment was executed to depict the selected ligand's binding affinity with the SARS-CoV-2 helicase proteins. Simultaneously, molecular dynamic simulations were performed to examine the protein's binding site's conformational stability, flexibility, and interaction with the ligands. Key nucleoside ligands were selected for pharmacokinetic analysis based on their docking scores. Selected ligands (cordycepin and pritelivir) showed excellent pharmacokinetics and were well stabilized at the proteins' binding site throughout the MD simulation. We have also performed binding free energy analysis or the binding characteristics of ligands with Nsp13 by using MM-PBSA and MM-GBSA. Free energy calculation by MM-PBSA and MM-GBSA analysis suggests that pritelivir may work as viable therapeutics for efficient drug advancement against SARS-CoV-2 Nsp13 helicase, potentially arresting the SARS-CoV-2 replication.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajat Nandi
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Deep Bhowmik
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Rakesh Srivastava
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, Haryana, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, India
| |
Collapse
|
8
|
Soto JA, Galvez NMS, Rivera DB, Díaz FE, Riedel CA, Bueno SM, Kalergis AM. From animal studies into clinical trials: the relevance of animal models to develop vaccines and therapies to reduce disease severity and prevent hRSV infection. Expert Opin Drug Discov 2022; 17:1237-1259. [PMID: 36093605 DOI: 10.1080/17460441.2022.2123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is an important cause of lower respiratory tract infections in the pediatric and the geriatric population worldwide. There is a substantial economic burden resulting from hRSV disease during winter. Although no vaccines have been approved for human use, prophylactic therapies are available for high-risk populations. Choosing the proper animal models to evaluate different vaccine prototypes or pharmacological treatments is essential for developing efficient therapies against hRSV. AREAS COVERED This article describes the relevance of using different animal models to evaluate the effect of antiviral drugs, pharmacological molecules, vaccine prototypes, and antibodies in the protection against hRSV. The animal models covered are rodents, mustelids, bovines, and nonhuman primates. Animals included were chosen based on the available literature and their role in the development of the drugs discussed in this manuscript. EXPERT OPINION Choosing the correct animal model is critical for exploring and testing treatments that could decrease the impact of hRSV in high-risk populations. Mice will continue to be the most used preclinical model to evaluate this. However, researchers must also explore the use of other models such as nonhuman primates, as they are more similar to humans, prior to escalating into clinical trials.
Collapse
Affiliation(s)
- J A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - N M S Galvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D B Rivera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - S M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Respiratory Syncytial Virus Phosphoprotein Residue S156 Plays a Role in Regulating Genome Transcription and Replication. J Virol 2021; 95:e0120621. [PMID: 34613802 DOI: 10.1128/jvi.01206-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a single-stranded, negative-sense RNA virus in the family Pneumoviridae and genus Orthopneumovirus that can cause severe disease in infants, immunocompromised adults, and the elderly. The RSV viral RNA-dependent RNA polymerase (vRdRp) complex is composed of the phosphoprotein (P) and the large polymerase protein (L). The P protein is constitutively phosphorylated by host kinases and has 41 serine (S) and threonine (T) residues as potential phosphorylation sites. To identify important phosphorylation residues in the P protein, we systematically and individually mutated all S and T residues to alanine (A) and analyzed their effects on genome transcription and replication by using a minigenome system. We found that the mutation of eight residues resulted in minigenome activity significantly lower than that of wild-type (WT) P. We then incorporated these mutations (T210A, S203A, T151A, S156A, T160A, S23A, T188A, and T105A) into full-length genome cDNA to rescue recombinant RSV. We were able to recover four recombinant viruses (with T151A, S156A, T160A, or S23A), suggesting that RSV-P residues T210, S203, T188, and T105 are essential for viral RNA replication. Among the four recombinant viruses rescued, rRSV-T160A caused a minor growth defect relative to its parental virus while rRSV-S156A had severely restricted replication due to decreased levels of genomic RNA. During infection, P-S156A phosphorylation was decreased, and when passaged, the S156A virus acquired a known compensatory mutation in L (L795I) that enhanced both WT-P and P-S156A minigenome activity and was able to partially rescue the S156A viral growth defect. This work demonstrates that residues T210, S203, T188, and T105 are critical for RSV replication and that S156 plays a critical role in viral RNA synthesis. IMPORTANCE RSV-P is a heavily phosphorylated protein that is required for RSV replication. In this study, we identified several residues, including P-S156, as phosphorylation sites that play critical roles in efficient viral growth and genome replication. Future studies to identify the specific kinase(s) that phosphorylates these residues can lead to kinase inhibitors and antiviral drugs for this important human pathogen.
Collapse
|
10
|
Discovery of a Novel Respiratory Syncytial Virus Replication Inhibitor. Antimicrob Agents Chemother 2021; 65:AAC.02576-20. [PMID: 33782012 PMCID: PMC8316115 DOI: 10.1128/aac.02576-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/18/2021] [Indexed: 11/20/2022] Open
Abstract
A high-throughput screen of a Roche internal chemical library based on inhibition of the respiratory syncytial virus (RSV)-induced cytopathic effect (CPE) on HEp-2 cells was performed to identify RSV inhibitors. Over 2,000 hits were identified and confirmed to be efficacious against RSV infection in vitro Here, we report the discovery of a triazole-oxadiazole derivative, designated triazole-1, as an RSV replication inhibitor, and we characterize its mechanism of action. Triazole-1 inhibited the replication of both RSV A and B subtypes with 50% inhibitory concentration (IC50) values of approximately 1 μM, but it was not effective against other viruses, including influenza virus A, human enterovirus 71 (EV71), and vaccinia virus. Triazole-1 was shown to inhibit RSV replication when added at up to 8 h after viral entry, suggesting that it inhibits RSV after viral entry. In a minigenome reporter assay in which RSV transcription regulatory sequences flanking a luciferase gene were cotransfected with RSV N/P/L/M2-1 genes into HEp-2 cells, triazole-1 demonstrated specific and dose-dependent RSV transcription inhibitory effects. Consistent with these findings, deep sequencing of the genomes of triazole-1-resistant mutants revealed a single point mutation (A to G) at nucleotide 13546 of the RSV genome, leading to a T-to-A change at amino acid position 1684 of the L protein, which is the RSV RNA polymerase for both viral transcription and replication. The effect of triazole-1 on minigenome transcription, which was mediated by the L protein containing the T1684A mutation, was significantly reduced, suggesting that the T1684A mutation alone conferred viral resistance to triazole-1.
Collapse
|
11
|
Gao Y, Cao J, Xing P, Altmeyer R, Zhang Y. Evaluation of Small Molecule Combinations against Respiratory Syncytial Virus In Vitro. Molecules 2021; 26:molecules26092607. [PMID: 33946996 PMCID: PMC8125180 DOI: 10.3390/molecules26092607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major pathogen that causes severe lower respiratory tract infection in infants, the elderly and the immunocompromised worldwide. At present no approved specific drugs or vaccines are available to treat this pathogen. Recently, several promising candidates targeting RSV entry and multiplication steps are under investigation. However, it is possible to lead to drug resistance under the long-term treatment. Therapeutic combinations constitute an alternative to prevent resistance and reduce antiviral doses. Therefore, we tested in vitro two-drug combinations of fusion inhibitors (GS5806, Ziresovir and BMS433771) and RNA-dependent RNA polymerase complex (RdRp) inhibitors (ALS8176, RSV604, and Cyclopamine). The statistical program MacSynergy II was employed to determine synergism, additivity or antagonism between drugs. From the result, we found that combinations of ALS8176 and Ziresovir or GS5806 exhibit additive effects against RSV in vitro, with interaction volume of 50 µM2% and 31 µM2% at 95% confidence interval, respectively. On the other hand, all combinations between fusion inhibitors showed antagonistic effects against RSV in vitro, with volume of antagonism ranging from −50 µM2 % to −176 µM2 % at 95% confidence interval. Over all, our results suggest the potentially therapeutic combinations in combating RSV in vitro could be considered for further animal and clinical evaluations.
Collapse
|
12
|
Tian L, Qiang T, Liang C, Ren X, Jia M, Zhang J, Li J, Wan M, YuWen X, Li H, Cao W, Liu H. RNA-dependent RNA polymerase (RdRp) inhibitors: The current landscape and repurposing for the COVID-19 pandemic. Eur J Med Chem 2021; 213:113201. [PMID: 33524687 PMCID: PMC7826122 DOI: 10.1016/j.ejmech.2021.113201] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/14/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
The widespread nature of several viruses is greatly credited to their rapidly altering RNA genomes that enable the infection to persist despite challenges presented by host cells. Within the RNA genome of infections is RNA-dependent RNA polymerase (RdRp), which is an essential enzyme that helps in RNA synthesis by catalysing the RNA template-dependent development of phosphodiester bonds. Therefore, RdRp is an important therapeutic target in RNA virus-caused diseases, including SARS-CoV-2. In this review, we describe the promising RdRp inhibitors that have been launched or are currently in clinical studies for the treatment of RNA virus infections. Structurally, nucleoside inhibitors (NIs) bind to the RdRp protein at the enzyme active site, and nonnucleoside inhibitors (NNIs) bind to the RdRp protein at allosteric sites. By reviewing these inhibitors, more precise guidelines for the development of more promising anti-RNA virus drugs should be set, and due to the current health emergency, they will eventually be used for COVID-19 treatment.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, 550025, PR China.
| | - Minyi Jia
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jiayun Zhang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Minge Wan
- School of Medicine and Pharmacy, Shaanxi University of Business & Commerce, Xi'an, 712046, PR China
| | - Xin YuWen
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, 519030, PR China.
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, 519030, PR China.
| |
Collapse
|
13
|
Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzymes 2021; 49:315-354. [PMID: 34696837 PMCID: PMC8517576 DOI: 10.1016/bs.enz.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.
Collapse
Affiliation(s)
- Kieran Maheden
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Brendan Todd
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
In Vitro Primer-Based RNA Elongation and Promoter Fine Mapping of the Respiratory Syncytial Virus. J Virol 2020; 95:JVI.01897-20. [PMID: 33028717 PMCID: PMC7737744 DOI: 10.1128/jvi.01897-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a nonsegmented negative-sense (NNS) RNA virus and shares a similar RNA synthesis strategy with other members of NNS RNA viruses, such as measles, rabies virus, and Ebola virus. RSV RNA synthesis is catalyzed by a multifunctional RNA-dependent RNA polymerase (RdRP), which is composed of a large (L) protein that catalyzes three distinct enzymatic functions and an essential coenzyme phosphoprotein (P). Here, we successfully prepared highly pure, full-length, wild-type and mutant RSV polymerase (L-P) complexes. We demonstrated that the RSV polymerase could carry out both de novo and primer-based RNA synthesis. We defined the minimal length of the RNA template for in vitro de novo RNA synthesis using the purified RSV polymerase as 8 nucleotides (nt), shorter than previously reported. We showed that the RSV polymerase catalyzed primer-dependent RNA elongation with different lengths of primers on both short (10-nt) and long (25-nt) RNA templates. We compared the sequence specificity of different viral promoters and identified positions 3, 5, and 8 of the promoter sequence as essential to the in vitro RSV polymerase activity, consistent with the results previously mapped with the in vivo minigenome assay. Overall, these findings agree well with those of previous biochemical studies and extend our understanding of the promoter sequence and the mechanism of RSV RNA synthesis.IMPORTANCE As a major human pathogen, RSV affects 3.4 million children worldwide annually. However, no effective antivirals or vaccines are available. An in-depth mechanistic understanding of the RSV RNA synthesis machinery remains a high priority among the NNS RNA viruses. There is a strong public health need for research on this virus, due to major fundamental gaps in our understanding of NNS RNA virus replication. As the key enzyme executing transcription and replication of the virus, the RSV RdRP is a logical target for novel antiviral drugs. Therefore, exploring the primer-dependent RNA elongation extends our mechanistic understanding of the RSV RNA synthesis. Further fine mapping of the promoter sequence paves the way to better understand the function and structure of the RSV polymerase.
Collapse
|
15
|
Targeting the Respiratory Syncytial Virus N 0-P Complex with Constrained α-Helical Peptides in Cells and Mice. Antimicrob Agents Chemother 2020; 64:AAC.00717-20. [PMID: 32660994 PMCID: PMC7508628 DOI: 10.1128/aac.00717-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of severe respiratory infection in young children worldwide, and no therapies have been approved for the treatment of RSV infection. Data from recent clinical trials of fusion or L polymerase inhibitors for the treatment of RSV-infected patients revealed the emergence of escape mutants, highlighting the need for the discovery of inhibitors with novel mechanisms of action. Here we describe stapled peptides derived from the N terminus of the phosphoprotein (P) that act as replication inhibitors. Respiratory syncytial virus (RSV) is the main cause of severe respiratory infection in young children worldwide, and no therapies have been approved for the treatment of RSV infection. Data from recent clinical trials of fusion or L polymerase inhibitors for the treatment of RSV-infected patients revealed the emergence of escape mutants, highlighting the need for the discovery of inhibitors with novel mechanisms of action. Here we describe stapled peptides derived from the N terminus of the phosphoprotein (P) that act as replication inhibitors. We demonstrate that these peptides inhibit RSV replication in vitro and in vivo by preventing the formation of the N0-P complex. The present strategy provides a novel means of targeting RSV replication with constrained macrocyclic peptides or small molecules and is broadly applicable to other viruses of the Mononegavirales order.
Collapse
|
16
|
Cao D, Gao Y, Roesler C, Rice S, D'Cunha P, Zhuang L, Slack J, Domke M, Antonova A, Romanelli S, Keating S, Forero G, Juneja P, Liang B. Cryo-EM structure of the respiratory syncytial virus RNA polymerase. Nat Commun 2020; 11:368. [PMID: 31953395 PMCID: PMC6969064 DOI: 10.1038/s41467-019-14246-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
The respiratory syncytial virus (RSV) RNA polymerase, constituted of a 250 kDa large (L) protein and tetrameric phosphoprotein (P), catalyzes three distinct enzymatic activities — nucleotide polymerization, cap addition, and cap methylation. How RSV L and P coordinate these activities is poorly understood. Here, we present a 3.67 Å cryo-EM structure of the RSV polymerase (L:P) complex. The structure reveals that the RNA dependent RNA polymerase (RdRp) and capping (Cap) domains of L interact with the oligomerization domain (POD) and C-terminal domain (PCTD) of a tetramer of P. The density of the methyltransferase (MT) domain of L and the N-terminal domain of P (PNTD) is missing. Further analysis and comparison with other RNA polymerases at different stages suggest the structure we obtained is likely to be at an elongation-compatible stage. Together, these data provide enriched insights into the interrelationship, the inhibitors, and the evolutionary implications of the RSV polymerase. Respiratory syncytial virus (RSV) is a pathogenic non-segmented negative-sense RNA virus and active RSV polymerase is composed of a 250 kDa large (L) protein and tetrameric phosphoprotein (P). Here, the authors present the 3.67 Å cryo-EM structure of the RSV polymerase (L:P) complex.
Collapse
Affiliation(s)
- Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Claire Roesler
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Samantha Rice
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Paul D'Cunha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lisa Zhuang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Julia Slack
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mason Domke
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anna Antonova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sarah Romanelli
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shayon Keating
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gabriela Forero
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Puneet Juneja
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
17
|
Gilman MSA, Liu C, Fung A, Behera I, Jordan P, Rigaux P, Ysebaert N, Tcherniuk S, Sourimant J, Eléouët JF, Sutto-Ortiz P, Decroly E, Roymans D, Jin Z, McLellan JS. Structure of the Respiratory Syncytial Virus Polymerase Complex. Cell 2019; 179:193-204.e14. [PMID: 31495574 PMCID: PMC7111336 DOI: 10.1016/j.cell.2019.08.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/29/2023]
Abstract
Numerous interventions are in clinical development for respiratory syncytial virus (RSV) infection, including small molecules that target viral transcription and replication. These processes are catalyzed by a complex comprising the RNA-dependent RNA polymerase (L) and the tetrameric phosphoprotein (P). RSV P recruits multiple proteins to the polymerase complex and, with the exception of its oligomerization domain, is thought to be intrinsically disordered. Despite their critical roles in RSV transcription and replication, structures of L and P have remained elusive. Here, we describe the 3.2-Å cryo-EM structure of RSV L bound to tetrameric P. The structure reveals a striking tentacular arrangement of P, with each of the four monomers adopting a distinct conformation. The structure also rationalizes inhibitor escape mutants and mutations observed in live-attenuated vaccine candidates. These results provide a framework for determining the molecular underpinnings of RSV replication and transcription and should facilitate the design of effective RSV inhibitors.
Collapse
Affiliation(s)
- Morgan S A Gilman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Cheng Liu
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Amy Fung
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Ishani Behera
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Paul Jordan
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Peter Rigaux
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Nina Ysebaert
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Sergey Tcherniuk
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Julien Sourimant
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | | | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Dirk Roymans
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Zhinan Jin
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Ogino M, Gupta N, Green TJ, Ogino T. A dual-functional priming-capping loop of rhabdoviral RNA polymerases directs terminal de novo initiation and capping intermediate formation. Nucleic Acids Res 2019; 47:299-309. [PMID: 30395342 PMCID: PMC6326812 DOI: 10.1093/nar/gky1058] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
The L proteins of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus (RABV), possess an unconventional mRNA capping enzyme (GDP polyribonucleotidyltransferase, PRNTase) domain with a loop structure protruding into an active site cavity of the RNA-dependent RNA polymerase (RdRp) domain. Here, using complementary VSV and RABV systems, we show that the loop governs RNA synthesis and capping during the dynamic stop-start transcription cycle. A conserved tryptophan residue in the loop was identified as critical for terminal de novo initiation from the genomic promoter to synthesize the leader RNA and virus replication in host cells, but not for internal de novo initiation or elongation from the gene-start sequence for mRNA synthesis or pre-mRNA capping. The co-factor P protein was found to be essential for both terminal and internal initiation. A conserved TxΨ motif adjacent the tryptophan residue in the loop was required for pre-mRNA capping in the step of the covalent enzyme-pRNA intermediate formation, but not for either terminal or internal transcription initiation. These results provide insights into the regulation of stop-start transcription by the interplay between the RdRp active site and the dual-functional priming-capping loop of the PRNTase domain in non-segmented negative strand RNA viruses.
Collapse
Affiliation(s)
- Minako Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nirmala Gupta
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Norris MJ, Malhi M, Duan W, Ouyang H, Granados A, Cen Y, Tseng YC, Gubbay J, Maynes J, Moraes TJ. Targeting Intracellular Ion Homeostasis for the Control of Respiratory Syncytial Virus. Am J Respir Cell Mol Biol 2019; 59:733-744. [PMID: 30095982 DOI: 10.1165/rcmb.2017-0345oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of mortality in infants and young children. Despite the RSV disease burden, no vaccine is available, and treatment remains nonspecific. New drug candidates are needed to combat RSV. Toward this goal, we screened over 2,000 compounds to identify approved drugs with novel anti-RSV activity. Cardiac glycosides, inhibitors of the membrane-bound Na+/K+-ATPase, were identified to have anti-RSV activity. Cardiac glycosides diminished RSV infection in human epithelial type 2 cells and in primary human airway epithelial cells grown at an air-liquid interface. Digoxin, a U.S. Food and Drug Administration-approved cardiac glycoside, was also able to inhibit infection of primary nasal epithelial cells with community isolates of RSV. Our results suggest that the antiviral effects of cardiac glycosides may be dependent on changes in the intracellular Na+ and K+ composition. Consistent with this mechanism, we demonstrated that the ionophoric antibiotics salinomycin, valinomycin, and monensin inhibited RSV in human epithelial type 2 cells and primary nasal epithelial cells. Our data indicate that the K+/Na+-sensitive steps in the RSV life cycle occur within the initial 4 hours of viral infection but do not include virus binding/entry. Rather, our findings demonstrated a negative effect on the RSV transcription and/or replication process. Overall, this work suggests that targeting intracellular ion concentrations offers a novel antiviral strategy.
Collapse
Affiliation(s)
- Michael J Norris
- 1 Department of Laboratory Medicine and Pathobiology and.,2 Program in Translational Medicine
| | - Manpreet Malhi
- 3 Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,4 Program in Molecular Medicine
| | | | | | - Andrea Granados
- 1 Department of Laboratory Medicine and Pathobiology and.,5 Public Health Ontario, Toronto, Ontario, Canada
| | | | | | | | - Jason Maynes
- 4 Program in Molecular Medicine.,6 Department of Anesthesia and Pain Medicine, and
| | - Theo J Moraes
- 1 Department of Laboratory Medicine and Pathobiology and.,2 Program in Translational Medicine.,7 Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada; and
| |
Collapse
|
20
|
Pruijssers AJ, Denison MR. Nucleoside analogues for the treatment of coronavirus infections. Curr Opin Virol 2019; 35:57-62. [PMID: 31125806 PMCID: PMC7102703 DOI: 10.1016/j.coviro.2019.04.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022]
Abstract
Recent outbreaks of SARS-Coronavirus and MERS-Coronavirus (CoV) have heightened awareness about the lack of vaccines or antiviral compounds approved for prevention or treatment of human or potential zoonotic CoVs. Anti-CoV drug development has long been challenged by the activity of a 3' to 5' proofreading exoribonuclease unique to CoVs. Recently, a promising nucleoside analogue with broad-spectrum activity against CoVs has been identified. This review will discuss progress made in the development of antiviral nucleoside and nucleotide analogues targeting viral RNA synthesis as effective therapeutics against CoV infections and propose promising strategies for combination therapy.
Collapse
Affiliation(s)
- Andrea J Pruijssers
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Mark R Denison
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
21
|
Cockerill GS, Good JAD, Mathews N. State of the Art in Respiratory Syncytial Virus Drug Discovery and Development. J Med Chem 2018; 62:3206-3227. [DOI: 10.1021/acs.jmedchem.8b01361] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- G. Stuart Cockerill
- ReViral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, United Kingdom
| | - James A. D. Good
- ReViral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, United Kingdom
| | - Neil Mathews
- ReViral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, United Kingdom
| |
Collapse
|
22
|
Brookes DW, Coates M, Allen H, Daly L, Constant S, Huang S, Hows M, Davis A, Cass L, Ayrton J, Knowles I, Strong P, Rapeport G, Ito K. Late therapeutic intervention with a respiratory syncytial virus L-protein polymerase inhibitor, PC786, on respiratory syncytial virus infection in human airway epithelium. Br J Pharmacol 2018; 175:2520-2534. [PMID: 29579332 PMCID: PMC5980447 DOI: 10.1111/bph.14221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Effective anti-respiratory syncytial virus (RSV) agents are still not available for clinical use. Current major targets are virus surface proteins, such as a fusion protein involved in viral entry, but agents effective after RSV infection is established are required. Here we have investigated the effects of late therapeutic intervention with a novel inhaled RSV polymerase inhibitor, PC786, on RSV infection in human airway epithelium. EXPERIMENTAL APPROACH Air liquid interface-cultured bronchial or small airway epithelium was infected with RSVA2. PC786 was applied apically or basolaterally once daily following peak virus load on Day 3 post inoculation. Apical wash was collected daily for determination of viral burden by PCR and plaque assay (primary endpoints) and biomarker analyses. The effects were compared with those of ALS-8112, an anti-RSV nucleoside analogue, and GS-5806, a fusion-protein inhibitor, which were treated basolaterally. KEY RESULTS Late intervention with GS-5806 did not show significant anti-viral effects, but PC786 produced potent, concentration-dependent inhibition of viral replication with viral load falling below detectable limits 3 days after treatment commenced in airway epithelium. These effects were superior to those of ALS-8112. PC786 showed inhibitory activities against RSV-induced increases of CCL5, IL-6, double-strand DNA and mucin. The effects of PC786 were also confirmed in small airway epithelium. CONCLUSION AND IMPLICATIONS Late therapeutic intervention with the RSV polymerase inhibitor, PC786, reduced the viral burden quickly in human airway epithelium. Thus, PC786 demonstrates the potential to be an effective therapeutic agent to treat active RSV infection.
Collapse
|
23
|
Recombinant RNA-Dependent RNA Polymerase Complex of Ebola Virus. Sci Rep 2018; 8:3970. [PMID: 29507309 PMCID: PMC5838098 DOI: 10.1038/s41598-018-22328-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/21/2018] [Indexed: 12/18/2022] Open
Abstract
Here we report on the expression, purification and characterization of recombinant ebola virus RNA-dependent RNA polymerase (EBOV RdRp). Active protein complexes composed of the large L protein and viral protein VP35 were isolated from insect cells and analyzed using a short primer/template substrate that allowed benchmarking against related enzymes. RNA synthesis by multiprotein complexes of EBOV, influenza B, respiratory syncytial virus (RSV) and monomeric enzymes of hepatitis C and Zika (ZIKV) viruses required a 5′-phosporylated primer. The minimum length of the primer varied between two and three nucleotides in this system. The EBOV enzyme utilizes Mg2+ as a co-factor and the D742A substitution provides an active site mutant that likely affects binding of the catalytic metal ions. Selectivity measurements with nucleotide analogues translate our assay into quantitative terms and facilitate drug discovery efforts. The related EBOV and RSV enzymes are not able to efficiently discriminate against ara-cytidine-5′-triphosphate. We demonstrate that this compound acts like a non-obligate chain-terminator.
Collapse
|
24
|
Preclinical Characterization of PC786, an Inhaled Small-Molecule Respiratory Syncytial Virus L Protein Polymerase Inhibitor. Antimicrob Agents Chemother 2017; 61:AAC.00737-17. [PMID: 28652242 PMCID: PMC5571287 DOI: 10.1128/aac.00737-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Although respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in infants and young children, attempts to develop an effective therapy have so far proved unsuccessful. Here we report the preclinical profiles of PC786, a potent nonnucleoside RSV L protein polymerase inhibitor, designed for inhalation treatment of RSV infection. PC786 demonstrated a potent and selective antiviral activity against laboratory-adapted or clinical isolates of RSV-A (50% inhibitory concentration [IC50], <0.09 to 0.71 nM) and RSV-B (IC50, 1.3 to 50.6 nM), which were determined by inhibition of cytopathic effects in HEp-2 cells without causing detectable cytotoxicity. The underlying inhibition of virus replication was confirmed by PCR analysis. The effects of PC786 were largely unaffected by the multiplicity of infection (MOI) and were retained in the face of established RSV replication in a time-of-addition study. Persistent anti-RSV effects of PC786 were also demonstrated in human bronchial epithelial cells. In vivo intranasal once daily dosing with PC786 was able to reduce the virus load to undetectable levels in lung homogenates from RSV-infected mice and cotton rats. Treatment with escalating concentrations identified a dominant mutation in the L protein (Y1631H) in vitro. In addition, PC786 potently inhibited RSV RNA-dependent RNA polymerase (RdRp) activity in a cell-free enzyme assay and minigenome assay in HEp-2 cells (IC50, 2.1 and 0.5 nM, respectively). Thus, PC786 was shown to be a potent anti-RSV agent via inhibition of RdRp activity, making topical treatment with this compound a novel potential therapy for the treatment of human RSV infections.
Collapse
|
25
|
Jordan PC, Stevens SK, Tam Y, Pemberton RP, Chaudhuri S, Stoycheva AD, Dyatkina N, Wang G, Symons JA, Deval J, Beigelman L. Activation Pathway of a Nucleoside Analog Inhibiting Respiratory Syncytial Virus Polymerase. ACS Chem Biol 2017; 12:83-91. [PMID: 28103684 DOI: 10.1021/acschembio.6b00788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human respiratory syncytial virus (RSV) is a negative-sense RNA virus and a significant cause of respiratory infection in infants and the elderly. No effective vaccines or antiviral therapies are available for the treatment of RSV. ALS-8176 is a first-in-class nucleoside prodrug inhibitor of RSV replication currently under clinical evaluation. ALS-8112, the parent molecule of ALS-8176, undergoes intracellular phosphorylation, yielding the active 5'-triphosphate metabolite. The host kinases responsible for this conversion are not known. Therefore, elucidation of the ALS-8112 activation pathway is key to further understanding its conversion mechanism, particularly given its potent antiviral effects. Here, we have identified the activation pathway of ALS-8112 and show it is unlike other antiviral cytidine analogs. The first step, driven by deoxycytidine kinase (dCK), is highly efficient, while the second step limits the formation of the active 5'-triphosphate species. ALS-8112 is a 2'- and 4'-modified nucleoside analog, prompting us to investigate dCK recognition of other 2'- and 4'-modified nucleosides. Our biochemical approach along with computational modeling contributes to an enhanced structure-activity profile for dCK. These results highlight an exciting potential to optimize nucleoside analogs based on the second activation step and increased attention toward nucleoside diphosphate and triphosphate prodrugs in drug discovery.
Collapse
Affiliation(s)
- Paul C. Jordan
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Sarah K. Stevens
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Yuen Tam
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Ryan P. Pemberton
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Shuvam Chaudhuri
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Antitsa D. Stoycheva
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Natalia Dyatkina
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Guangyi Wang
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Julian A. Symons
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Jerome Deval
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Leo Beigelman
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| |
Collapse
|
26
|
Fearns R, Deval J. New antiviral approaches for respiratory syncytial virus and other mononegaviruses: Inhibiting the RNA polymerase. Antiviral Res 2016; 134:63-76. [PMID: 27575793 DOI: 10.1016/j.antiviral.2016.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/27/2016] [Accepted: 08/07/2016] [Indexed: 11/16/2022]
Abstract
Worldwide, respiratory syncytial virus (RSV) causes severe disease in infants, the elderly, and immunocompromised people. No vaccine or effective antiviral treatment is available. RSV is a member of the non-segmented, negative-strand (NNS) group of RNA viruses and relies on its RNA-dependent RNA polymerase to transcribe and replicate its genome. Because of its essential nature and unique properties, the RSV polymerase has proven to be a good target for antiviral drugs, with one compound, ALS-8176, having already achieved clinical proof-of-concept efficacy in a human challenge study. In this article, we first provide an overview of the role of the RSV polymerase in viral mRNA transcription and genome replication. We then review past and current approaches to inhibiting the RSV polymerase, including use of nucleoside analogs and non-nucleoside inhibitors. Finally, we consider polymerase inhibitors that hold promise for treating infections with other NNS RNA viruses, including measles and Ebola.
Collapse
Affiliation(s)
- Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA.
| | - Jerome Deval
- Alios BioPharma, Inc., Part of the Janssen Pharmaceutical Companies, South San Francisco, CA, USA.
| |
Collapse
|