1
|
Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, Yousefi AM, Ghaffari SH, Bashash D. The PI3K signaling pathway; from normal lymphopoiesis to lymphoid malignancies. Expert Rev Anticancer Ther 2024; 24:493-512. [PMID: 38690706 DOI: 10.1080/14737140.2024.2350629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION As a vital mechanism of survival, lymphopoiesis requires the collaboration of different signaling molecules to orchestrate each step of cell development and maturation. The PI3K pathway is considerably involved in the maturation of lymphatic cells and therefore, its dysregulation can immensely affect human well-being and cause some of the most prevalent malignancies. As a result, studies that investigate this pathway could pave the way for a better understanding of the lymphopoiesis mechanisms, the undesired changes that lead to cancer progression, and how to design drugs to solve this issue. AREAS COVERED The present review addresses the aforementioned aspects of the PI3K pathway and helps pave the way for future therapeutic approaches. In order to access the articles, databases such as Medicine Medline/PubMed, Scopus, Google Scholar, and Science Direct were utilized. The search formula was established by identifying main keywords including PI3K/Akt/mTOR pathway, Lymphopoiesis, Lymphoid malignancies, and inhibitors. EXPERT OPINION The PI3K pathway is crucial for lymphocyte development and differentiation, making it a potential target for therapeutic intervention in lymphoid cancers. Studies are focused on developing PI3K inhibitors to impede the progression of hematologic malignancies, highlighting the pathway's significance in lymphoma and lymphoid leukemia.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lin ZY, Yun QZ, Wu L, Zhang TW, Yao TZ. Pharmacological basis and new insights of deguelin concerning its anticancer effects. Pharmacol Res 2021; 174:105935. [PMID: 34644595 DOI: 10.1016/j.phrs.2021.105935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Deguelin is a rotenoid of the flavonoid family, which can be extracted from Lonchocarpus, Derris, or Tephrosia. It possesses the inhibition of cancer cell proliferation by inducing apoptosis through regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, the NF-κB signaling pathway, the Wnt signaling pathway, the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway and epidermal growth factor receptor (EGFR) signaling, activating the p38 mitogen-activated protein kinase (MAPK) pathway, repression of Bmi1, targeting cyclooxygenase-2 (COX-2), targeting galectin-1, promotion of glycogen synthase kinase-3β (GSK3β)/FBW7-mediated Mcl-1 destabilization and targeting mitochondria via down-regulating Hexokinases II-mediated glycolysis, PUMA-mediation, which are some crucial molecules which modulate closely cancer cell growth and metastasis. Deguelin inhibits tumor cell propagation and malignant transformation through targeting angiogenesis, targeting lymphangiogenesis, targeting focal adhesion kinase (FAK), inhibiting the CtsZ/FAK signaling pathway, targeting epithelial-mesenchymal transition (EMT), the NF-κB signaling pathway, regulating NIMA-related kinase 2 (NEK2). In addition, deguelin possesses other biological activities, such as targeting cell cycle arrest, modulation of autophagy, inhibition of hedgehog pathway, inducing differentiation of mutated NPM1 acute myeloid leukemia etc. Therefore, deguelin is a promising chemopreventive agent for cancer therapy.
Collapse
Affiliation(s)
- Zhu Yue Lin
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Qu Zhen Yun
- Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Liu Wu
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tian Wen Zhang
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tang Ze Yao
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
3
|
Tuli HS, Mittal S, Loka M, Aggarwal V, Aggarwal D, Masurkar A, Kaur G, Varol M, Sak K, Kumar M, Sethi G, Bishayee A. Deguelin targets multiple oncogenic signaling pathways to combat human malignancies. Pharmacol Res 2021; 166:105487. [PMID: 33581287 DOI: 10.1016/j.phrs.2021.105487] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
Cancer is an anomalous growth and differentiation of cells known to be governed by oncogenic factors. Plant-based natural metabolites have been well recognized to possess chemopreventive properties. Deguelin, a natural rotenoid, is among the class of bioactive phytoconstituents from a diverse range of plants with potential antineoplastic effects in different cancer subtypes. However, the precise mechanisms of how deguelin inhibits tumor progression remains elusive. Deguelin has shown promising results in targeting the hallmarks of tumor progression via inducing tumor apoptosis, cell cycle arrest, and inhibition of angiogenesis and metastasis. Based on initial scientific excerpts, deguelin has been reported to inhibit tumor growth via different signaling pathways, including mitogen-activated protein kinase, phosphoinositide 3-kinase, serine/threonine protein kinase B (also known as Akt), mammalian target of rapamycin, nuclear factor-κB, matrix metalloproteinase (MMP)-2, MMP-9 and caspase-3, caspase-8, and caspase-9. This review summarizes the mechanistic insights of antineoplastic action of deguelin to gain a clear understanding of its therapeutic effects in cancer. The anticancer potential of deguelin with respect to its efficacy in targeting tumorigenesis via nanotechnological approaches is also investigated. The initial scientific findings have presented deguelin as a promising antitumorigenic agent which can be used for monotherapy as well as synergistically to augment efficacy of chemotherapeutic treatment regimes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mariam Loka
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Akshara Masurkar
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies University, Mumbai 400 056, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies University, Mumbai 400 056, Maharashtra, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Sadopur 134007, Haryana, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
4
|
Carpenter EL, Chagani S, Nelson D, Cassidy PB, Laws M, Ganguli-Indra G, Indra AK. Mitochondrial complex I inhibitor deguelin induces metabolic reprogramming and sensitizes vemurafenib-resistant BRAF V600E mutation bearing metastatic melanoma cells. Mol Carcinog 2019; 58:1680-1690. [PMID: 31211467 DOI: 10.1002/mc.23068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
Treatment with vemurafenib, a potent and selective inhibitor of mitogen-activated protein kinase signaling downstream of the BRAFV600E oncogene, elicits dramatic clinical responses in patients with metastatic melanoma. Unfortunately, the clinical utility of this drug is limited by a high incidence of drug resistance. Thus, there is an unmet need for alternative therapeutic strategies to treat vemurafenib-resistant metastatic melanomas. We have conducted high-throughput screening of two bioactive compound libraries (Siga and Spectrum libraries) against a metastatic melanoma cell line (A2058) and identified two structurally analogous compounds, deguelin and rotenone, from a cell viability assay. Vemurafenib-resistant melanoma cell lines, A2058R and A375R (containing the BRAFV600E mutation), also showed reduced proliferation when treated with these two compounds. Deguelin, a mitochondrial complex I inhibitor, was noted to significantly inhibit oxygen consumption in cellular metabolism assays. Mechanistically, deguelin treatment rapidly activates AMPK signaling, which results in inhibition of mTORC1 signaling and differential phosphorylation of mTORC1's downstream effectors, 4E-BP1 and p70S6 kinase. Deguelin also significantly inhibited ERK activation and Ki67 expression without altering Akt activation in the same timeframe in the vemurafenib-resistant melanoma cells. These data posit that treatment with metabolic regulators, such as deguelin, can lead to energy starvation, thereby modulating the intracellular metabolic environment and reducing survival of drug-resistant melanomas harboring BRAF V600E mutations.
Collapse
Affiliation(s)
- Evan L Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon.,Department of Dermatology, Oregon Health & Science University, Portland, Oregon
| | - Sharmeen Chagani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Dylan Nelson
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Pamela B Cassidy
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Madeleine Laws
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon.,Department of Dermatology, Oregon Health & Science University, Portland, Oregon.,Department of Biochemistry and Biophysics, OSU, Corvallis, Oregon.,Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
5
|
Varughese RS, Lam WST, Marican AABH, Viganeshwari SH, Bhave AS, Syn NL, Wang J, Wong ALA, Kumar AP, Lobie PE, Lee SC, Sethi G, Goh BC, Wang L. Biopharmacological considerations for accelerating drug development of deguelin, a rotenoid with potent chemotherapeutic and chemopreventive potential. Cancer 2019; 125:1789-1798. [PMID: 30933320 DOI: 10.1002/cncr.32069] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/13/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022]
Abstract
Deguelin is a rotenoid compound that exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants. An analysis of evidence from both in vitro and in vivo studies suggests that deguelin displays potent anticancer activity against multiple cancer types and exhibits chemopreventive potential in Akt-inducible transgenic mouse models. Deguelin appears to impede carcinogenesis by enhancing cell apoptosis and hindering malignant transformation and tumor cell propagation. Crucial oncogenic pathways likely targeted by deguelin include the epithelial-to-mesenchymal transition; angiogenesis-related pathways; and the phosphoinositide 3-kinase/Akt, Wnt, epidermal growth factor receptor, c-Met, and hedgehog signal transduction cascades. This review article provides a comprehensive summary of current preclinical research featuring deguelin as a leading chemotherapeutic and chemopreventive compound, and it highlights the importance of identifying companion molecular biomarkers and performing systemic pharmacokinetic studies for accelerating the process of developing deguelin as a clinical anticancer agent.
Collapse
Affiliation(s)
- Rahel Sarah Varughese
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Walter Sze-Tung Lam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Ahmad Abdurrahman Bin Hanifah Marican
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - S Hema Viganeshwari
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Anuja Satish Bhave
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Nicholas L Syn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Jigang Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Health System, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Peter E Lobie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Health System, Singapore
| | - Gautam Sethi
- Department of Pharmacology, National University Health System, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore.,Department of Haematology-Oncology, National University Health System, Singapore.,Department of Medicine, National University Health System, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| |
Collapse
|
6
|
Deguelin induced differentiation of mutated NPM1 acute myeloid leukemia in vivo and in vitro. Anticancer Drugs 2017; 28:723-738. [PMID: 28471807 DOI: 10.1097/cad.0000000000000494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nucleophosmin (NPM1), a restricted nucleolar localization protein, shuttles between the nucleus and the cytoplasm. Mutated (Mt)-NPM1 protein, which has aberrant cytoplasmic dislocation of nucleophosmin, occurs in approximately one-third of acute myeloid leukemia cases. Deguelin, a rotenoid isolated from several plant species, is a strong antitumor agent. NOD/SCID mice xenografted with human Mt-NPM1 OCI/AML3 cell lines served as in-vivo models. Wright-Giemsa staining and flow cytometry analysis were used for differentiation assays. Associated molecular events were assessed by western blot and histological analyses. Kaplan-Meier estimates were used to calculate survival. Deguelin toxicity in mice was assessed by immunohistochemistry staining and serum markers. Clinical samples were differentiated by flow cytometry analysis. Deguelin induced differentiation by downregulating the Mt-NPM1 protein levels, which was accompanied by a decrease in SIRT1, p21, and HDAC1 and an increase in CEBPβ and granulocyte colony-stimulating factor receptor protein expression levels. A low-deguelin dose prolonged survival compared with the control group, and there were no apparent lesions to the brain, liver, heart, and kidney in vivo. In clinical samples, deguelin induced the differentiation of fresh blasts with Mt-NPM1 protein, but not with the wild-type NPM1 protein. Taken together, these findings further provide new evidence that the Mt-NPM1 protein plays an important role in inducing differentiation in vivo and in vitro. Mutated NPM1 protein may be a therapeutic target of deguelin in acute myeloid leukemia with the NPM1 mutation.
Collapse
|