1
|
Prajapati MR, Diksha D, Thapa P, Sharma SK, Gupta N, Baranwal VK. Identification of a novel mitovirus in grapevine through high-throughput sequencing. Int Microbiol 2024:10.1007/s10123-024-00572-0. [PMID: 39155336 DOI: 10.1007/s10123-024-00572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Transcriptome data from a plant sample frequently include numerous reads originating from RNA virus genomes that were concurrently isolated during RNA preparation. These high-throughput sequencing reads from the virus can be assembled to form a new sequence for the plant RNA genome. METHODS AND RESULTS Here, we identify putative novel mitovirus, grapevine mitovirus 1 (GMV1) through high-throughput sequencing (HTS) of grapevine rootstocks (Vitis spp.), and the identified virus was confirmed using virus-specific primers in RT-PCR assay. The genomic RNA of GMV1 encodes complete open reading frame (ORF) of 2,496 nucleotides (nts) in length. RNA-dependent RNA polymerase (RdRp) encoded by the viral genome contained one RdRp conserved domain. BLASTx analysis of GMV1 genome showed sequence identity of 33.18-56.75% with the existing mitovirus sequences. Phylogenetic analysis based on genome sequences showed that GMV1 clustered in a distinct clade to other mitoviruses. CONCLUSION Grapevine mitovirus 1 represents a newly discovered species within the Unuamitovirus genus of the Mitoviridae family, targeting fungal mitochondria. While the majority of recognized mitoviruses typically lack a functional RdRp as per the plant mitochondrial genetic code, GMV1 encodes a complete RdRp in accordance with both fungal and plant mitochondrial genetic codes.
Collapse
Affiliation(s)
- Malyaj R Prajapati
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India, 110012
| | - Damini Diksha
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India, 110012
| | - Pooja Thapa
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India, 110012
| | - Susheel Kumar Sharma
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India, 110012.
| | - Nitika Gupta
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India, 110012
| | - Virendra Kumar Baranwal
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India, 110012.
| |
Collapse
|
2
|
Umer M, Mubeen M, Shakeel Q, Ali S, Iftikhar Y, Bajwa RT, Anwar N, Rao MJ, He Y. Mycoviruses: Antagonistic Potential, Fungal Pathogenesis, and Their Interaction with Rhizoctonia solani. Microorganisms 2023; 11:2515. [PMID: 37894173 PMCID: PMC10609472 DOI: 10.3390/microorganisms11102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Mycoviruses, or fungal viruses, are prevalent in all significant fungal kingdoms and genera. These low-virulence viruses can be used as biocontrol agents to manage fungal diseases. These viruses are divided into 19 officially recognized families and 1 unclassified genus. Mycoviruses alter sexual reproduction, pigmentation, and development. Spores and fungal hypha spread mycoviruses. Isometric particles mostly encapsulate dsRNA mycoviruses. The widespread plant-pathogenic fungus Rhizoctonia solani, which has caused a rice sheath blight, has hosted many viruses with different morphologies. It causes significant crop diseases that adversely affect agriculture and the economy. Rice sheath blight threatens the 40% of the global population that relies on rice for food and nutrition. This article reviews mycovirology research on Rhizoctonia solani to demonstrate scientific advances. Mycoviruses control rice sheath blight. Hypovirulence-associated mycoviruses are needed to control R. solani since no cultivars are resistant. Mycoviruses are usually cryptic, but they can benefit the host fungus. Phytopathologists may use hypovirulent viruses as biological control agents. New tools are being developed based on host genome studies to overcome the intellectual challenge of comprehending the interactions between viruses and fungi and the practical challenge of influencing these interactions to develop biocontrol agents against significant plant pathogens.
Collapse
Affiliation(s)
- Muhammad Umer
- Forestry College, Research Centre of Forest Ecology, Guizhou University, Guiyang 550025, China;
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; (M.M.); (Y.I.)
| | - Qaiser Shakeel
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Q.S.); (R.T.B.)
| | - Sajjad Ali
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; (M.M.); (Y.I.)
| | - Rabia Tahir Bajwa
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Q.S.); (R.T.B.)
| | - Naureen Anwar
- Department of Biology, Virtual University of Pakistan, Lahore 54000, Pakistan;
| | - Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuejun He
- Forestry College, Research Centre of Forest Ecology, Guizhou University, Guiyang 550025, China;
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
4
|
Córdoba L, Ruiz-Padilla A, Rodríguez-Romero J, Ayllón MA. Construction and Characterization of a Botrytis Virus F Infectious Clone. J Fungi (Basel) 2022; 8:jof8050459. [PMID: 35628716 PMCID: PMC9146958 DOI: 10.3390/jof8050459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Botrytis virus F (BVF) is a positive-sense, single-stranded RNA (+ssRNA) virus within the Gammaflexiviridae family of the plant-pathogenic fungus Botrytis cinerea. In this study, the complete sequence of a BVF strain isolated from B. cinerea collected from grapevine fields in Spain was analyzed. This virus, in this work BVF-V448, has a genome of 6827 nt in length, excluding the poly(A) tail, with two open reading frames encoding an RNA dependent RNA polymerase (RdRP) and a coat protein (CP). The 5′- and 3′-terminal regions of the genome were determined by rapid amplification of cDNA ends (RACE). Furthermore, a yet undetected subgenomic RNA species in BVF-V448 was identified, indicating that the CP is expressed via 3′ coterminal subgenomic RNAs (sgRNAs). We also report the successful construction of the first BVF full-length cDNA clone and synthesized in vitro RNA transcripts using the T7 polymerase, which could efficiently transfect two different strains of B. cinerea, B05.10 and Pi258.9. The levels of growth in culture and virulence on plants of BVF-V448 transfected strains were comparable to BVF-free strains. The infectious clones generated in this work provide a useful tool for the future development of an efficient BVF foreign gene expression vector and a virus-induced gene silencing (VIGS) vector as a biological agent for the control of B. cinerea.
Collapse
Affiliation(s)
- Laura Córdoba
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
| | - Ana Ruiz-Padilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
| | - Julio Rodríguez-Romero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - María A. Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
5
|
The Threat of Pests and Pathogens and the Potential for Biological Control in Forest Ecosystems. FORESTS 2021. [DOI: 10.3390/f12111579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Forests are an essential component of the natural environment, as they support biodiversity, sequester carbon, and play a crucial role in biogeochemical cycles—in addition to producing organic matter that is necessary for the function of terrestrial organisms. Forests today are subject to threats ranging from natural occurrences, such as lightning-ignited fires, storms, and some forms of pollution, to those caused by human beings, such as land-use conversion (deforestation or intensive agriculture). In recent years, threats from pests and pathogens, particularly non-native species, have intensified in forests. The damage, decline, and mortality caused by insects, fungi, pathogens, and combinations of pests can lead to sizable ecological, economic, and social losses. To combat forest pests and pathogens, biocontrol may be an effective alternative to chemical pesticides and fertilizers. This review of forest pests and potential adversaries in the natural world highlights microbial inoculants, as well as research efforts to further develop biological control agents against forest pests and pathogens. Recent studies have shown promising results for the application of microbial inoculants as preventive measures. Other studies suggest that these species have potential as fertilizers.
Collapse
|
6
|
Rumbou A, Vainio EJ, Büttner C. Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems. Microorganisms 2021; 9:microorganisms9081730. [PMID: 34442809 PMCID: PMC8399312 DOI: 10.3390/microorganisms9081730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Thanks to the development of HTS technologies, a vast amount of genetic information on the virosphere of temperate forests has been gained in the last seven years. To estimate the qualitative/quantitative impact of HTS on forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of HTS methods is extremely significant for forest virology. Reviewed data on viral presence in holobionts allowed us a first attempt to address the role of virome in holobionts. Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont; symbiotic microbiota and pathogens engage in a permanent interplay, which influences the host. Through virus–virus interplays synergistic or antagonistic relations may evolve, which may drastically affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protection based on endophytes and mycovirus biocontrol agents. The current analysis is conceived in light of the prospect that novel viruses may initiate an emergent infectious disease and that measures for the avoidance of future outbreaks in forests should be considered.
Collapse
Affiliation(s)
- Artemis Rumbou
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany;
- Correspondence:
| | - Eeva J. Vainio
- Natural Resources Institute Finland, Forest Health and Biodiversity, Latokartanonkaari 9, 00790 Helsinki, Finland;
| | - Carmen Büttner
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany;
| |
Collapse
|
7
|
Viruses Infecting the Plant Pathogenic Fungus Rhizoctonia solani. Viruses 2019; 11:v11121113. [PMID: 31801308 PMCID: PMC6950361 DOI: 10.3390/v11121113] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
The cosmopolitan fungus Rhizoctonia solani has a wide host range and is the causal agent of numerous crop diseases, leading to significant economic losses. To date, no cultivars showing complete resistance to R. solani have been identified and it is imperative to develop a strategy to control the spread of the disease. Fungal viruses, or mycoviruses, are widespread in all major groups of fungi and next-generation sequencing (NGS) is currently the most efficient approach for their identification. An increasing number of novel mycoviruses are being reported, including double-stranded (ds) RNA, circular single-stranded (ss) DNA, negative sense (−)ssRNA, and positive sense (+)ssRNA viruses. The majority of mycovirus infections are cryptic with no obvious symptoms on the hosts; however, some mycoviruses may alter fungal host pathogenicity resulting in hypervirulence or hypovirulence and are therefore potential biological control agents that could be used to combat fungal diseases. R. solani harbors a range of dsRNA and ssRNA viruses, either belonging to established families, such as Endornaviridae, Tymoviridae, Partitiviridae, and Narnaviridae, or unclassified, and some of them have been associated with hypervirulence or hypovirulence. Here we discuss in depth the molecular features of known viruses infecting R. solani and their potential as biological control agents.
Collapse
|
8
|
Liu JJ, Xiang Y, Sniezko RA, Schoettle AW, Williams H, Zamany A. Characterization of Cronartium ribicola dsRNAs reveals novel members of the family Totiviridae and viral association with fungal virulence. Virol J 2019; 16:118. [PMID: 31623644 PMCID: PMC6796417 DOI: 10.1186/s12985-019-1226-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/23/2019] [Indexed: 01/13/2023] Open
Abstract
Background Mycoviruses were recently discovered in the white pine blister rust (WPBR) fungus Cronartium ribicola (J.C. Fisch.). Detection and characterization of their double stranded RNA (dsRNA) would facilitate understanding of pathogen virulence and disease pathogenesis in WPBR systems. Methods Full-length cDNAs were cloned from the dsRNAs purified from viral-infected C. ribicola, and their cDNA sequences were determined by DNA sequencing. Evolutionary relationships of the dsRNAs with related mycoviruses were determined by phylogenetic analysis. Dynamic distributions of the viral RNAs within samples of their fungal host C. ribicola were investigated by measurement of viral genome prevalence and viral gene expression. Results In this study we identified and characterized five novel dsRNAs from C. ribicola, designated as Cronartium ribicola totivirus 1–5 (CrTV1 to CrTV5). These dsRNA sequences encode capsid protein and RNA-dependent RNA polymerase with significant homologies to dsRNA viruses of the family Totiviridae. Phylogenetic analysis showed that the CrTVs were grouped into two distinct clades. CrTV2 through CrTV5 clustered within the genus Totivirus. CrTV1 along with a few un-assigned dsRNAs constituted a distinct phyletic clade that is genetically distant from presently known genera in the Totiviridae family, indicating that CrTV1 represents a novel genus in the Totiviridae family. The CrTVs were prevalent in fungal samples obtained from infected western white pine, whitebark pine, and limber pines. Viral RNAs were generally expressed at higher levels during in planta mycelium growth than in aeciospores and urediniospores. CrTV4 was significantly associated with C. ribicola virulent pathotype and specific C. ribicola host tree species, suggesting dsRNAs as potential tools for dissection of pathogenic mechanisms of C. ribicola and diagnosis of C. ribicola pathotypes. Conclusion Phylogenetic and expression analyses of viruses in the WPBR pathogen, C. ribicola, have enchanced our understanding of virus diversity in the family Totiviridae, and provided a potential strategy to utilize pathotype-associated mycoviruses to control fungal forest diseases.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, BC, V8Z 1M5, Canada.
| | - Yu Xiang
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Richard A Sniezko
- Dorena Genetic Resource Center, USDA Forest Service, Cottage Grove, Oregon, 97424, USA
| | - Anna W Schoettle
- USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO, 80526, USA
| | - Holly Williams
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, BC, V8Z 1M5, Canada
| | - Arezoo Zamany
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, BC, V8Z 1M5, Canada
| |
Collapse
|
9
|
Sutela S, Poimala A, Vainio EJ. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol Ecol 2019; 95:5542194. [DOI: 10.1093/femsec/fiz119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACTSoils support a myriad of organisms hosting highly diverse viromes. In this minireview, we focus on viruses hosted by true fungi and oomycetes (members of Stamenopila, Chromalveolata) inhabiting bulk soil, rhizosphere and litter layer, and representing different ecological guilds, including fungal saprotrophs, mycorrhizal fungi, mutualistic endophytes and pathogens. Viruses infecting fungi and oomycetes are characterized by persistent intracellular nonlytic lifestyles and transmission via spores and/or hyphal contacts. Almost all fungal and oomycete viruses have genomes composed of single-stranded or double-stranded RNA, and recent studies have revealed numerous novel viruses representing yet unclassified family-level groups. Depending on the virus–host combination, infections can be asymptomatic, beneficial or detrimental to the host. Thus, mycovirus infections may contribute to the multiplex interactions of hosts, therefore likely affecting the dynamics of fungal communities required for the functioning of soil ecosystems. However, the effects of fungal and oomycete viruses on soil ecological processes are still mostly unknown. Interestingly, new metagenomics data suggest an extensive level of horizontal virus transfer between plants, fungi and insects.
Collapse
Affiliation(s)
- Suvi Sutela
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Poimala
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
10
|
Nibert ML, Debat HJ, Manny AR, Grigoriev IV, De Fine Licht HH. Mitovirus and Mitochondrial Coding Sequences from Basal Fungus Entomophthora muscae. Viruses 2019; 11:E351. [PMID: 30999558 PMCID: PMC6520771 DOI: 10.3390/v11040351] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
Fungi constituting the Entomophthora muscae species complex (members of subphylum Entomophthoromycotina, phylum Zoopagamycota) commonly kill their insect hosts and manipulate host behaviors in the process. In this study, we made use of public transcriptome data to identify and characterize eight new species of mitoviruses associated with several different E. muscae isolates. Mitoviruses are simple RNA viruses that replicate in host mitochondria and are frequently found in more phylogenetically apical fungi (members of subphylum Glomeromyoctina, phylum Mucoromycota, phylum Basidiomycota and phylum Ascomycota) as well as in plants. E. muscae is the first fungus from phylum Zoopagomycota, and thereby the most phylogenetically basal fungus, found to harbor mitoviruses to date. Multiple UGA (Trp) codons are found not only in each of the new mitovirus sequences from E. muscae but also in mitochondrial core-gene coding sequences newly assembled from E. muscae transcriptome data, suggesting that UGA (Trp) is not a rarely used codon in the mitochondria of this fungus. The presence of mitoviruses in these basal fungi has possible implications for the evolution of these viruses.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology and Program in Virology, Harvard Medical School, Boston, MA 02115, USA.
| | - Humberto J Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba X5020ICA, Argentina.
| | - Austin R Manny
- Department of Microbiology and Program in Virology, Harvard Medical School, Boston, MA 02115, USA.
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark.
| |
Collapse
|
11
|
Complete genome sequence of a novel mitovirus from the wheat stripe rust fungus Puccinia striiformis. Arch Virol 2019; 164:897-901. [PMID: 30600350 DOI: 10.1007/s00705-018-04134-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
The complete genome of a novel mycovirus, Puccinia striiformis mitovirus 1 (PsMV1), derived from the wheat stripe rust fungus Puccinia striiformis strain SCSN-10, was sequenced and analyzed. The full-length cDNA sequence is 2496 bp in length with a predicted AU content of 57.65% in the genomic RNA. Sequence analysis indicated that a single large open reading frame (ORF) is present on the positive strand when the fungal mitochondrial genetic code is used. The single ORF encodes a putative RNA-dependent RNA polymerase of 743 amino acids with a molecular mass of 84.9 kDa that shares the closest similarity with the corresponding proteins of Cronartium ribicola mitovirus 5 and Helicobasidium mompa mitovirus 1-18 (34% and 35% aa sequence identity, respectively). Phylogenetic analysis further indicated that PsMV1 is a new member of the genus Mitovirus within the family Narnaviridae. This is the first report of the full-length nucleotide sequence of a novel mitovirus, PsMV1, from the causal agent of wheat stripe rust.
Collapse
|
12
|
Zhu JZ, Zhu HJ, Gao BD, Zhou Q, Zhong J. Diverse, Novel Mycoviruses From the Virome of a Hypovirulent Sclerotium rolfsii Strain. FRONTIERS IN PLANT SCIENCE 2018; 9:1738. [PMID: 30542362 PMCID: PMC6277794 DOI: 10.3389/fpls.2018.01738] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 05/10/2023]
Abstract
Sclerotium rolfsii, which causes southern blight in a wide variety of crops, is a devastating plant pathogen worldwide. Mycoviruses that induce hypovirulence in phytopathogenic fungi are potential biological control resources against fungal plant diseases. However, in S. rolfsii, mycoviruses are rarely reported. In a previous study, we found a hypovirulent strain carrying a diverse pattern of dsRNAs. Here, we utilized the RNA_Seq technique to detect viral sequences. Deep sequencing, RT-PCR and Sanger sequencing validation analyses revealed that this strain harbors various new viral species that show affinity to the distinctly established and proposed families Benyviridae, Endornaviridae, Fusariviridae, Hypoviridae, and Fusagraviridae. Moreover, some viral sequences that could not be assigned to any of the existing families or orders were also identified and showed similarities to the Alphavirus, Ourmiavirus, phlegivirus-like and Curvularia thermal tolerance virus-like groups. In addition, we also conducted deep sequencing analysis of small RNAs in the virus-infecting fugal strain. The results indicated that the Dicer-mediated gene silencing mechanism was present in S. rolfsii. This is the first report of viral diversity in a single S. rolfsii fungal strain, and the results presented herein might provide insight into the taxonomy and evolution of mycoviruses and be useful for the exploration of mycoviruses as biocontrol agents.
Collapse
Affiliation(s)
| | | | | | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| |
Collapse
|
13
|
Pandey B, Naidu RA, Grove GG. Detection and analysis of mycovirus-related RNA viruses from grape powdery mildew fungus Erysiphe necator. Arch Virol 2018; 163:1019-1030. [PMID: 29356991 DOI: 10.1007/s00705-018-3714-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
Abstract
The fungus, Erysiphe necator Schw., is an important plant pathogen causing powdery mildew disease in grapevines worldwide. In this study, high-throughput sequencing of double-stranded RNA extracted from the fungal tissue combined with bioinformatics was used to examine mycovirus-related sequences associated with E. necator. The results showed the presence of eight mycovirus-related sequences. Five of these sequences representing three new mycoviruses showed alignment with sequences of viruses classified in the genus Alphapartitivirus in the family Partitiviridae. Another three sequences representing three new mycoviruses showed similarity to classifiable members of the genus Mitovirus in the family Narnaviridae. These mycovirus isolates were named Erysiphe necator partitivirus 1, 2, and 3 (EnPV 1-3) and Erysiphe necator mitovirus 1, 2, and 3 (EnMV 1-3) reflecting their E. necator origin and their phylogenetic affiliation with other mycoviruses.
Collapse
Affiliation(s)
- B Pandey
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, 99350, USA. .,Department of Plant Pathology, North Dakota State University, 306 Walster Hall, Fargo, ND, 58102, USA.
| | - R A Naidu
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, 99350, USA
| | - G G Grove
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, 99350, USA
| |
Collapse
|
14
|
Marais A, Nivault A, Faure C, Theil S, Comont G, Candresse T, Corio-Costet MF. Determination of the complete genomic sequence of Neofusicoccum luteum mitovirus 1 (NLMV1), a novel mitovirus associated with a phytopathogenic Botryosphaeriaceae. Arch Virol 2017; 162:2477-2480. [PMID: 28451899 PMCID: PMC5506512 DOI: 10.1007/s00705-017-3338-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/13/2017] [Indexed: 01/24/2023]
Abstract
Neofusicoccum luteum species belongs to the Botryosphaeriaceae family and is involved in grapevine wood decay diseases. The present study reports the discovery and the molecular characterization of a novel mitovirus infecting this fungus. Double-stranded RNAs were purified from cultivated N. luteum and analysed by next generation sequencing. Using contigs showing BlastX homology with the RNA-dependent RNA polymerase (RdRp) gene of various members of the family Narnaviridae, a single contig of approximately 1.2 kb was constructed. The genomic sequence was completed and phylogenetic analyses indicated that this virus represents a new member of the genus Mitovirus, for which the name of "Neofusicoccum luteum mitovirus 1" is proposed. The genome is 2,389 nucleotides long and, based on the fungal mitochondrial genetic code, it encodes a putative protein of 710 amino acids, homologous to the RdRps of members of the Narnaviridae family. The neofusicoccum luteus mitovirus 1 (NLMV1) RdRp contains the six conserved motifs previously reported for mitoviral RdRps. Our findings represent the first evidence that a mycovirus can infect N. luteum, an important pathogenic fungus of grapevine.
Collapse
Affiliation(s)
- Armelle Marais
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS 20032, 33882, Villenave d'Ornon Cedex, France.
| | - Aurélia Nivault
- UMR 1035 Santé et Agroécologie du Vignoble, INRA, Bordeaux Sciences Agro, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Chantal Faure
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Sébastien Theil
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Gwenaëlle Comont
- UMR 1035 Santé et Agroécologie du Vignoble, INRA, Bordeaux Sciences Agro, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Marie-France Corio-Costet
- UMR 1035 Santé et Agroécologie du Vignoble, INRA, Bordeaux Sciences Agro, CS 20032, 33882, Villenave d'Ornon Cedex, France
| |
Collapse
|
15
|
Complete genome sequence of a novel mitovirus from the phytopathogenic fungus Rhizoctonia oryzae-sativae. Arch Virol 2017; 162:1409-1412. [PMID: 28124142 DOI: 10.1007/s00705-017-3229-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
A double-stranded RNA (dsRNA) segment was isolated from the filamentous phytopathogenic fungus Rhizoctonia oryzae-sativae and its full-length cDNA sequence (3038 nucleotides) was determined. Sequence analysis revealed that a large open reading frame (ORF) is present on the positive strand of this dsRNA segment when the mitochondrial genetic code was applied. The ORF encodes a putative RNA-dependent RNA polymerase, which shares the closest similarity with Rhizoctonia mitovirus 1 and Rhizophagus sp. RF1 mitovirus, with 43% and 29% identity, respectively. This dsRNA segment represents the replication form of a novel mitovirus that was temporarily designated Rhizoctonia oryzae-sativae mitovirus 1 (RoMV1). Phylogenetic analysis further suggested that RoMV1 belongs to the family Narnaviridae. This is the first study to report a mitovirus genome sequence in the phytopathogenic fungus R. oryzae-sativae.
Collapse
|