1
|
Wang J, Tian E, Zhang Y, Guo Z, Chen J, Kong W, Lu Y, Zhang S. The Effects of Unilateral Labyrinthectomy on Monoamine Neurotransmitters in the Medial Vestibular Nucleus of Rats. Biomolecules 2023; 13:1637. [PMID: 38002319 PMCID: PMC10669524 DOI: 10.3390/biom13111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effects of unilateral labyrinthectomy (UL) on monoamine neurotransmitters in the medial vestibular nucleus (MVN) of rats. METHODS Adult Sprague-Dawley rats were utilized for the vestibular impaired animal model through UL. The success of the model establishment and the recovery process were evaluated using vestibular behavioral tests, including spontaneous nystagmus, postural asymmetry, and balance beam test. Additionally, the expression levels of c-Fos protein in the MVN were assessed by immunofluorescence. Furthermore, changes in the expression levels of monoamine neurotransmitters, including 5-hydroxytryptamine (5-HT), norepinephrine (NE), dopamine (DA), and histamine in the MVN, were analyzed using high-performance liquid chromatography (HPLC) at different time points after UL (4 h, 8 h, 1 day, 2 days, 4 days, and 7 days). RESULTS Compared to the sham control group, the UL group exhibited the most pronounced vestibular impairment symptoms at 4 h post-UL, which significantly decreased at 4 days and almost fully recovered by 7 days. Immunofluorescence results showed a notable upregulation of c-Fos expression in the MVN subsequent to the UL-4 h, serving as a reliable indicator of heightened neuronal activity. In comparison with the sham group, HPLC analysis showed that the levels of 5-HT and NE in the ipsilesional MVN of the UL group were significantly elevated within 4 days after UL, and peaked on 1 day and 2 days, respectively. DA showed an increasing trend at different time points up to 7 days post-UL, while histamine levels significantly increased only at 1 day post-UL. CONCLUSIONS UL-induced dynamic changes in monoamine neurotransmitters during the early compensation period in the rat MVN may be associated with the regulation of the central vestibular compensation mechanism by the MVN.
Collapse
Affiliation(s)
- Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (E.T.); (Z.G.); (J.C.); (W.K.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (E.T.); (Z.G.); (J.C.); (W.K.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (E.T.); (Z.G.); (J.C.); (W.K.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (E.T.); (Z.G.); (J.C.); (W.K.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (E.T.); (Z.G.); (J.C.); (W.K.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (E.T.); (Z.G.); (J.C.); (W.K.)
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Neurotransmitters: Potential Targets in Glioblastoma. Cancers (Basel) 2022; 14:cancers14163970. [PMID: 36010960 PMCID: PMC9406056 DOI: 10.3390/cancers14163970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aiming to discover potential treatments for GBM, this review connects emerging research on the roles of neurotransmitters in the normal neural and the GBM microenvironments and sheds light on the prospects of their application in the neuropharmacology of GBM. Conventional therapy is blamed for its poor effect, especially in inhibiting tumor recurrence and invasion. Facing this dilemma, we focus on neurotransmitters that modulate GBM initiation, progression and invasion, hoping to provide novel therapy targeting GBM. By analyzing research concerning GBM therapy systematically and scientifically, we discover increasing insights into the regulatory effects of neurotransmitters, some of which have already shown great potential in research in vivo or in vitro. After that, we further summarize the potential drugs in correlation with previously published research. In summary, it is worth expecting that targeting neurotransmitters could be a promising novel pharmacological approach for GBM treatment. Abstract For decades, glioblastoma multiforme (GBM), a type of the most lethal brain tumor, has remained a formidable challenge in terms of its treatment. Recently, many novel discoveries have underlined the regulatory roles of neurotransmitters in the microenvironment both physiologically and pathologically. By targeting the receptors synaptically or non-synaptically, neurotransmitters activate multiple signaling pathways. Significantly, many ligands acting on neurotransmitter receptors have shown great potential for inhibiting GBM growth and development, requiring further research. Here, we provide an overview of the most novel advances concerning the role of neurotransmitters in the normal neural and the GBM microenvironments, and discuss potential targeted drugs used for GBM treatment.
Collapse
|
3
|
Benefits of a ketogenic diet on repetitive motor behavior in mice. Behav Brain Res 2022; 422:113748. [PMID: 35038463 DOI: 10.1016/j.bbr.2022.113748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022]
Abstract
Repetitive motor behaviors are repetitive and invariant movements with no apparent function, and are common in several neurological and neurodevelopmental disorders, including autism spectrum disorders (ASD). However, the neuropathology associated with the expression of these abnormal stereotypic movements is not well understood, and effective treatments are lacking. The ketogenic diet (KD) has been used for almost a century to treat intractable epilepsy and, more recently, disorders associated with inflexibility of behavioral routines. Here, we show a novel application for KD to reduce an abnormal repetitive circling behavior in a rodent model. We then explore potential mediation through the striatum, as dysregulation of cortico-basal ganglia circuitry has previously been implicated in repetitive motor behavior. In Experiments 1 and 2, adult FVB mice were assessed for levels of repetitive circling across a 3-week baseline period. Mice were then switched to KD and repetitive circling was assessed for an additional 3 weeks. In Experiment 1, time on KD was associated with reduced repetitive behavior. In Experiment 2, we replicated these benefits of KD and assessed dendritic spine density in the striatum as one potential mechanism for reducing repetitive behavior, which yielded no differences. In Experiment 3, adult female circling mice were given a single administration of a dopamine D2 receptor antagonist (L-741,646) that was associated with reduced repetitive behavior over time. Future research will explore the relationship between KD and dopamine within basal ganglia nuclei that may be influencing the benefits of KD on repetitive behavior.
Collapse
|
4
|
Hor SL, Teoh SL, Lim WL. Plant Polyphenols as Neuroprotective Agents in Parkinson's Disease Targeting Oxidative Stress. Curr Drug Targets 2021; 21:458-476. [PMID: 31625473 DOI: 10.2174/1389450120666191017120505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent progressive neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the human midbrain. Various ongoing research studies are competing to understand the pathology of PD and elucidate the mechanisms underlying neurodegeneration. Current pharmacological treatments primarily focused on improving dopamine metabolism in PD patients, despite the side effects of long-term usage. In recent years, it is recognized that oxidative stress-mediated pathways lead to neurodegeneration in the brain, which is associated with the pathophysiology of PD. The importance of oxidative stress is often less emphasized when developing potential therapeutic approaches. Natural plant antioxidants have been shown to mediate the oxidative stress-induced effects in PD, which has gained considerable attention in both in vitro and in vivo studies. Yet, clinical trials on natural polyphenol compounds are limited, restricting the potential use of these compounds as an alternative treatment for PD. Therefore, this review provides an understanding of the oxidative stress-induced effects in PD by elucidating the underlying events contributing to oxidative stress and explore the potential use of polyphenols in improving the oxidative status in PD. Preclinical findings have supported the potential of polyphenols in providing neuroprotection against oxidative stress-induced toxicity in PD. However, limiting factors, such as safety and bioavailability of polyphenols, warrant further investigations so as to make them the potential target for clinical applications in the treatment and management of PD.
Collapse
Affiliation(s)
- Suet Lee Hor
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| |
Collapse
|
5
|
Tsuda S, Golam M, Hou J, Nelson R, Bernavil P, Richardson K, Wang KKW, Thompson F, Bose P. Altered monoaminergic levels, spasticity, and balance disability following repetitive blast-induced traumatic brain injury in rats. Brain Res 2020; 1747:147060. [PMID: 32828734 PMCID: PMC10424094 DOI: 10.1016/j.brainres.2020.147060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Spasticity and balance disability are major complications following traumatic brain injury (TBI). Although monoaminergic inputs provide critical adaptive neuromodulations to the motor system, data are not available regarding the levels of monoamines in the brain regions related to motor functions following repetitive blast TBI (bTBI). The objective of this study was to determine if mild, repetitive bTBI results in spasticity/balance deficits and if these are correlated with altered levels of norepinephrine, dopamine, and serotonin in the brain regions related to the motor system. Repetitive bTBI was induced by a blast overpressure wave in male rats on days 1, 4, and 7. Following bTBI, physiological/behavioral tests were conducted and tissues in the central motor system (i.e., motor cortex, locus coeruleus, vestibular nuclei, and lumbar spinal cord) were collected for electrochemical detection of norepinephrine, dopamine, and serotonin by high-performance liquid chromatography. The results showed that norepinephrine was significantly increased in the locus coeruleus and decreased in the vestibular nuclei, while dopamine was significantly decreased in the vestibular nuclei. On the other hand, serotonin was significantly increased in the motor cortex and the lumbar spinal cord. Because these monoamines play important roles in regulating the excitability of neurons, these results suggest that mild, repetitive bTBI-induced dysregulation of monoaminergic inputs in the central motor system could contribute to spasticity and balance disability. This is the first study to report altered levels of multiple monoamines in the central motor system following acute mild, repetitive bTBI.
Collapse
Affiliation(s)
- Shigeharu Tsuda
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA; Department of Anesthesiology, College of Medicine, University of Florida, 1600 SW Archer Rd m509, Gainesville, FL 32610-0254, USA
| | - Mustafa Golam
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA; Department of Physiological Sciences, University of Florida, 1333 Center Dr, Gainesville, FL 32603, USA
| | - Jiamei Hou
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA; Department of Anesthesiology, College of Medicine, University of Florida, 1600 SW Archer Rd m509, Gainesville, FL 32610-0254, USA
| | - Rachel Nelson
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA
| | - Phillip Bernavil
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA
| | - Kenneth Richardson
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA
| | - Kevin K W Wang
- Department of Emergency Medicine, University of Florida, 1329 SW 16th Street, Suite 5270, Gainesville, FL 32610, USA
| | - Floyd Thompson
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA; Department of Physiological Sciences, University of Florida, 1333 Center Dr, Gainesville, FL 32603, USA; Department of Neuroscience, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, USA
| | - Prodip Bose
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA; Department of Anesthesiology, College of Medicine, University of Florida, 1600 SW Archer Rd m509, Gainesville, FL 32610-0254, USA; Department of Neurology, University of Florida, 1149 Newell Dr, Gainesville, FL 32611, USA.
| |
Collapse
|
6
|
Mantilla J, Wang D, Bargiotas I, Wang J, Cao J, Oudre L, Vidal PP. Motor style at rest and during locomotion in human. J Neurophysiol 2020; 123:2269-2284. [PMID: 32319842 DOI: 10.1152/jn.00019.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Humans exhibit various motor styles that reflect their intra- and interindividual variability when implementing sensorimotor transformations. This opens important questions, such as, At what point should they be readjusted to maintain optimal motor control? Do changes in motor style reveal the onset of a pathological process and can these changes help rehabilitation and recovery? To further investigate the concept of motor style, tests were carried out to quantify posture at rest and motor control in 18 healthy subjects under four conditions: walking at three velocities (comfortable walking, walking at 4 km/h, and race walking) and running at maximum velocity. The results suggest that motor control can be conveniently decomposed into a static component (a stable configuration of the head and column with respect to the gravitational vertical) and dynamic components (head, trunk, and limb movements) in humans, as in quadrupeds, and both at rest and during locomotion. These skeletal configurations provide static markers to quantify the motor style of individuals because they exhibit large variability among subjects. Also, using four measurements (jerk, root mean square, sample entropy, and the two-thirds power law), it was shown that the dynamics were variable at both intra- and interindividual levels during locomotion. Variability increased following a head-to -toe gradient. These findings led us to select dynamic markers that could define, together with static markers, the motor style of a subject. Finally, our results support the view that postural and motor control are subserved by different neuronal networks in frontal, sagittal, and transversal planes.NEW & NOTEWORTHY During human locomotion, motor control can be conveniently decomposed into a static and dynamic components. Variable dynamics were observed at both the intra- and interindividual levels during locomotion. Variability increased following a head-to-toe gradient. Finally, our results support the view that postural and motor control are subserved by different neuronal networks in the frontal, sagittal, and transversal planes.
Collapse
Affiliation(s)
- Juan Mantilla
- Université de Paris, CNRS, SSA, École Normale Supérieure Paris-Saclay, Centre Borelli, Paris, France
| | - Danping Wang
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China.,Plateforme Sensorimotricité, CNRS, INSERM, Paris, France
| | - Ioannis Bargiotas
- Université de Paris, CNRS, SSA, École Normale Supérieure Paris-Saclay, Centre Borelli, Paris, France
| | - Junhong Wang
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
| | - Jiuwen Cao
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
| | - Laurent Oudre
- L2TI, Sorbonne Paris Nord University, Villetaneuse, France
| | - Pierre-Paul Vidal
- Université de Paris, CNRS, SSA, École Normale Supérieure Paris-Saclay, Centre Borelli, Paris, France.,Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
7
|
Caragher SP, Hall RR, Ahsan R, Ahmed AU. Monoamines in glioblastoma: complex biology with therapeutic potential. Neuro Oncol 2019; 20:1014-1025. [PMID: 29126252 DOI: 10.1093/neuonc/nox210] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is characterized by extremely poor prognoses, despite the use of gross surgical resection, alkylating chemotherapeutic agents, and radiotherapy. Evidence increasingly highlights the role of the tumor microenvironment in enabling this aggressive phenotype. Despite this interest, the role of neurotransmitters, brain-specific messengers underlying synaptic transmission, remains murky. These signaling molecules influence a complex network of molecular pathways and cellular behaviors in many CNS-resident cells, including neural stem cells and progenitor cells, neurons, and glia cells. Critically, available data convincingly demonstrate that neurotransmitters can influence proliferation, quiescence, and differentiation status of these cells. This ability to affect progenitors and glia-GBM-initiating cells-and their availability in the CNS strongly support the notion that neurotransmitters participate in the onset and progression of GBM. This review will focus on dopamine and serotonin, as studies indicate they contribute to gliomagenesis. Particular attention will be paid to how these neurotransmitters and their receptors can be utilized as novel therapeutic targets. Overall, this review will analyze the complex biology governing the interaction of GBM with neurotransmitter signaling and highlight how this interplay shapes the aggressive nature of GBM.
Collapse
Affiliation(s)
- Seamus Patrick Caragher
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Riasat Ahsan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
8
|
Watkins DS, True JD, Mosley AL, Baucum AJ. Proteomic Analysis of the Spinophilin Interactome in Rodent Striatum Following Psychostimulant Sensitization. Proteomes 2018; 6:proteomes6040053. [PMID: 30562941 PMCID: PMC6313900 DOI: 10.3390/proteomes6040053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
Glutamatergic projections from the cortex and dopaminergic projections from the substantia nigra or ventral tegmental area synapse on dendritic spines of specific GABAergic medium spiny neurons (MSNs) in the striatum. Direct pathway MSNs (dMSNs) are positively coupled to protein kinase A (PKA) signaling and activation of these neurons enhance specific motor programs whereas indirect pathway MSNs (iMSNs) are negatively coupled to PKA and inhibit competing motor programs. An imbalance in the activity of these two programs is observed following increased dopamine signaling associated with exposure to psychostimulant drugs of abuse. Alterations in MSN signaling are mediated by changes in MSN protein post-translational modifications, including phosphorylation. Whereas direct changes in specific kinases, such as PKA, regulate different effects observed in the two MSN populations, alterations in the specific activity of serine/threonine phosphatases, such as protein phosphatase 1 (PP1) are less well known. This lack of knowledge is due, in part, to unknown, cell-specific changes in PP1 targeting proteins. Spinophilin is the major PP1-targeting protein in striatal postsynaptic densities. Using proteomics and immunoblotting approaches along with a novel transgenic mouse expressing hemagglutainin (HA)-tagged spinophilin in dMSNs and iMSNs, we have uncovered cell-specific regulation of the spinophilin interactome following a sensitizing regimen of amphetamine. These data suggest regulation of spinophilin interactions in specific MSN cell types and may give novel insight into putative cell-specific, phosphatase-dependent signaling pathways associated with psychostimulants.
Collapse
Affiliation(s)
- Darryl S Watkins
- Stark Neurosciences Research Institute, Indiana University School of Medicine Medical Neuroscience Graduate Program, Indianapolis, IN 46278, USA.
| | - Jason D True
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46278, USA.
- Department of Biology, Ball State University, Muncie, IN 47306, USA.
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46278, USA.
| | - Anthony J Baucum
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
- Stark Neurosciences Research Institute Indianapolis, Indianapolis, IN 46202, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Décamps T, Herrel A, Ballesta L, Holon F, Rauby T, Gentil Y, Gentil C, Dutel H, Debruyne R, Charrassin J, Eveillard G, Clément G, Herbin M. The third dimension: a novel set‐up for filming coelacanths in their natural environment. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Thierry Décamps
- UMR7179 MNHN/CNRS Mécanismes Adaptatifs des Organismes aux Communautés Equipe FUNEVOL Muséum National d'Histoire Naturelle CP55 57 Rue Cuvier Paris Cedex 05 75231 France
| | - Anthony Herrel
- UMR7179 MNHN/CNRS Mécanismes Adaptatifs des Organismes aux Communautés Equipe FUNEVOL Muséum National d'Histoire Naturelle CP55 57 Rue Cuvier Paris Cedex 05 75231 France
- Evolutionary Morphology of Vertebrates Ghent University K.L. Ledeganckstraat 35 Gent B‐9000 Belgium
| | - Laurent Ballesta
- Andromède Océanologie Quai des Pêcheurs 7 Place Cassan Carnon plage 34280 France
| | - Florian Holon
- Andromède Océanologie Quai des Pêcheurs 7 Place Cassan Carnon plage 34280 France
| | - Thibault Rauby
- Andromède Océanologie Quai des Pêcheurs 7 Place Cassan Carnon plage 34280 France
| | - Yannick Gentil
- Andromède Océanologie Quai des Pêcheurs 7 Place Cassan Carnon plage 34280 France
| | - Cédric Gentil
- Andromède Océanologie Quai des Pêcheurs 7 Place Cassan Carnon plage 34280 France
| | - Hugo Dutel
- Medical and Biological Engineering Scholl of Engineering University of Hull Hull HU6 7RX UK
| | - Régis Debruyne
- UMS2700 OMSI MNHN/CNRS CP26 57 Rue Cuvier Paris Cedex 05 75231 France
| | - Jean‐Benoit Charrassin
- Sorbonne Universités UPMC Université Paris 06 UMR 7159 CNRS‐IRD‐MNHN LOCEAN‐IPSL Paris 75005 France
| | | | - Gaël Clément
- UMR7207 MNHN Sorbonne Universités/MNHN/CNRS/UPMC Paris 6 Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements Muséum national d'Histoire naturelle 57 rue Cuvier Paris cedex 05 75231 France
| | - Marc Herbin
- UMR7179 MNHN/CNRS Mécanismes Adaptatifs des Organismes aux Communautés Equipe FUNEVOL Muséum National d'Histoire Naturelle CP55 57 Rue Cuvier Paris Cedex 05 75231 France
| |
Collapse
|