1
|
Stejskalova K, Janova E, Splichalova P, Futas J, Oppelt J, Vodicka R, Horin P. Twelve toll-like receptor (TLR) genes in the family Equidae - comparative genomics, selection and evolution. Vet Res Commun 2024; 48:725-741. [PMID: 37874499 PMCID: PMC10998774 DOI: 10.1007/s11259-023-10245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Toll-like receptors (TLRs) represent an important part of the innate immune system. While human and murine TLRs have been intensively studied, little is known about TLRs in non-model species. The order Perissodactyla comprises a variety of free-living and domesticated species exposed to different pathogens in different habitats and is therefore suitable for analyzing the diversity and evolution of immunity-related genes. We analyzed TLR genes in the order Perissodactyla with a focus on the family Equidae. Twelve TLRs were identified by bioinformatic analyses of online genomic resources; their sequences were confirmed in equids by genomic DNA re-sequencing of a panel of nine species. The expression of TLR11 and TLR12 was confirmed in the domestic horse by cDNA sequencing. Phylogenetic reconstruction of the TLR gene family in Perissodactyla identified six sub-families. TLR4 clustered together with TLR5; the TLR1-6-10 subfamily showed a high degree of sequence identity. The average estimated evolutionary divergence of all twelve TLRs studied was 0.3% among the Equidae; the most divergent CDS were those of Equus caballus and Equus hemionus kulan (1.34%) in the TLR3, and Equus africanus somaliensis and Equus quagga antiquorum (2.1%) in the TLR1 protein. In each TLR gene, there were haplotypes shared between equid species, most extensively in TLR3 and TLR9 CDS, and TLR6 amino acid sequence. All twelve TLR genes were under strong negative overall selection. Signatures of diversifying selection in specific codon sites were detected in all TLRs except TLR8. Differences in the selection patterns between virus-sensing and non-viral TLRs were observed.
Collapse
Affiliation(s)
- K Stejskalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
| | - E Janova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - P Splichalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
| | - J Futas
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - J Oppelt
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
| | | | - P Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic.
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic.
| |
Collapse
|
2
|
Hu W, Xu K. Research progress on genetic control of host susceptibility to tuberculosis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:679-690. [PMID: 36915969 PMCID: PMC10262011 DOI: 10.3724/zdxbyxb-2022-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 02/16/2023]
Abstract
The "Lübeck disaster", twins studies, adoptees studies, and other epidemiological observational studies have shown that host genetic factors play a significant role in determining the host susceptibility to Mycobacterium tuberculosis infection and pathogenesis of tuberculosis. From linkage analyses to genome-wide association studies, it has been discovered that human leucocyte antigen (HLA) genes as well as non-HLA genes (such as SLC11A1, VDR, ASAP1 as well as genes encoding cytokines and pattern recognition receptors) are associated with tuberculosis susceptibility. To provide ideas for subsequent studies about risk prediction of MTB infection and the diagnosis and treatment of tuberculosis, we review the research progress on tuberculosis susceptibility related genes in recent years, focusing on the correlation of HLA genes and non-HLA genes with the pathogenesis of tuberculosis. We also report the results of an enrichment analysis of the genes mentioned in the article. Most of these genes appear to be involved in the regulation of immune system and inflammation, and are also closely related to autoimmune diseases.
Collapse
|
3
|
Ramirez Ramirez AD, de Jesus MCS, Rossit J, Reis NF, Santos-Filho MC, Sudré AP, de Oliveira-Ferreira J, Baptista ARDS, Storti-Melo LM, Machado RLD. Association of toll-like receptors in malaria susceptibility and immunopathogenesis: A meta-analysis. Heliyon 2022; 8:e09318. [PMID: 35520620 PMCID: PMC9065626 DOI: 10.1016/j.heliyon.2022.e09318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/15/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Toll-like receptors (TLRs) play a key role in the induced immune response in malaria. Although the potential roles of TLRs have been described, it is necessary to elucidate which of these receptors may actually have an impact on the immunopathogenesis of the disease. This article performed a meta-analysis adhered to the PRISMA statement on TLRs studied in malaria by Plasmodium falciparum and Plasmodium vivax and its impact on susceptibility and pathogenesis during malaria. A search of the literature was undertaken in PubMed, LILACS and SciELO published until June 30th, 2020. The risk of bias was calculated using the Joanna Briggs Institute's Critical Review Checklist. Later, based on the inclusion and/or exclusion criteria, 17 out of 296 articles were harvested for this systematic review, the meta-analysis included studies incorporating 6,747 cases and 8,983 controls. The results showed that only TLR1, TLR9 and TLR4 receptors were associated with parasitemia, TLR2 and TLR6 were related with severity and none TLR was correlated with susceptibility. The data described here should be taken with caution, since the current evidence is limited and inconsistent. More studies are needed given that the results may change depending on the region and genetic background of the populations.
Collapse
Affiliation(s)
- Aína Danaisa Ramirez Ramirez
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Myrela Conceição Santos de Jesus
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Júlia Rossit
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Nathália Faria Reis
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcelo Cerilo Santos-Filho
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Adriana Pittella Sudré
- Laboratory of Parasites Molecular Biology, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | | - Andrea Regina de Souza Baptista
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Luciane Moreno Storti-Melo
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Ricardo Luiz Dantas Machado
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Variants of Toll-like receptor 6 associated with tuberculosis susceptibility in the Chinese Tibetan population. Microb Pathog 2021; 162:105208. [PMID: 34563610 DOI: 10.1016/j.micpath.2021.105208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/07/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Our investigation attempted to understand the role of innate immunity related genes played in tuberculosis. The relationship between single-nucleotide polymorphisms (SNPs) of three innate immunity-related genes (TLR6, MyD88, and TIRAP) and tuberculosis (TB) risk in two Chinese populations were explored. METHODS Totally 1185 Chinese Han, consisting of 580 active TB cases and 605 healthy controls (HCs), and 1216 Chinese Tibetan individuals including 613 TB patients and 603 HCs were enrolled to conduct two case-control studies. TagSNPs of the three genes were selected based on the HapMap database and genotyped by the SNPscan™ Kit. Haploview software 4.2 was applied to perform linkage disequilibrium (LD) analysis and online software SHEsis was used to discover significant haplotype block. RegulomeDB and HaploReg were applied to predict potential functional SNPs of the three genes. RESULTS The results showed that minor alleles of rs5743808 and rs5743827 of TLR6 were related with increased TB risk (p = 0.001, OR 95%CI = 1.51 (1.18-1.95) and p = 0.002, OR 95%CI = 1.42 (1.14-1.77)), and significant association was also observed between rs5743827 and TB risk in male subgroup (p = 0.003, OR 95%CI = 1.67 (1.91-2.35)) in the Tibetan population. For the Tibetan population, frequency of haplotype ACGT of rs1039559-rs3775073-rs5743808-rs5743827 of TLR6 was significantly higher in the TB group (p = 0.0008), while haplotype ATAC was significantly higher in the control group (p = 0.0002). The above associations remained after permutation and Bonferroni correction. No significant association was found in the Han population. Probable functions of tagSNPs of TLR6 and some other linked variants were discovered after bioinformatic analysis. CONCLUSIONS This study suggested that variants of TLR6 might be associated with TB risk in the Tibetan population, while not in the Han population. The difference between Chinese Han and Tibetan people will provide better understanding of tuberculosis.
Collapse
|
5
|
Genome-Wide Linkage Analysis of the Risk of Contracting a Bloodstream Infection in 47 Pedigrees Followed for 23 Years Assembled From a Population-Based Cohort (the HUNT Study). Crit Care Med 2021; 48:1580-1586. [PMID: 32885941 DOI: 10.1097/ccm.0000000000004520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Bloodstream infection is an important cause of death worldwide. The main objective of this study was to identify genetic loci linked to risk of contracting a bloodstream infection. DESIGN Genome-wide linkage analysis. SETTING Population-based, Norwegian cohort, followed between 1995 and 2017. SUBJECTS Among 69,423 genotyped subjects, there were 47 families with two or more second-degree relatives with bloodstream infection in the follow-up period. There were 365 subjects in these families, of which 110 were affected. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The cohort was genotyped using Illumina HumanCoreExome (Illumina, San Diego, CA) arrays. Before linkage analysis, single-nucleotide polymorphisms were pruned and clumped. In nonparametric linkage analysis using an exponential model, we found three loci with a suggestive linkage to bloodstream infection, all on chromosome 4, at 46.6 centimorgan (logarithm of odds, 2.3), 57.7 centimorgan (logarithm of odds, 3.2), and 70.0 centimorgan (logarithm of odds, 2.1). At the peak of the lead region are three genes: TLR10, TLR1, and TLR6. CONCLUSIONS Variations in the TLR10/1/6 locus appear to be linked with the risk of contracting a bloodstream infection.
Collapse
|
6
|
Wani BA, Shehjar F, Shah S, Koul A, Yusuf A, Farooq M, Mir MI, Singh R, Afroze D. Role of genetic variants of Vitamin D receptor, Toll-like receptor 2 and Toll-like receptor 4 in extrapulmonary tuberculosis. Microb Pathog 2021; 156:104911. [PMID: 33991642 DOI: 10.1016/j.micpath.2021.104911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB). Vitamin D deficiency and vitamin D receptor (VDR) gene abnormalities confer susceptibility to tuberculosis. Toll-like receptors (TLRs), such as TLR-2, are also important mediators of inflammatory response against Mycobacterium tuberculosis. We evaluated VDR, TLR-2 and TLR-4 gene polymorphisms in patients with extrapulmonary tuberculosis (EPTB). OBJECTIVES To find out a possible association of Vitamin D receptor (VDR) (rs731236), TLR-2 (196-174 Ins > Del) and TLR-4 (Thr399Ile) gene polymorphisms with extrapulmonary tuberculosis in ethnic Kashmiri population. METHODS A total of 100 extrapulmunary tuberculosis cases and 102 healthy controls were analyzed for Vitamin D receptor (VDR) (rs731236), TLR-2 (196-174 ins > del) and TLR-4 (Thr399Ile) gene polymorphisms using PCR-RFLP and Allele-Specific PCR methods. RESULTS We found increased frequency of TLR-4 Thr/Ile heterozygous genotype in cases as compared with healthy controls (22% vs 5.8%). Thus acting as a risk factor for extrapulmonary tuberculosis, as was elucidated from statistical analysis [OR, 4.5; 95% CI (1.74-11.68); P < 0.001]. In case of TLR-2 (196-174 ins > del) we observed significant differences in the homozygous variant (Del/Del) genotype of cases and controls (28% in cases & 2.94% in controls). Thus, TLR-2 (Del/Del) genotype acts as a strong risk factor for extrapulmonary tuberculosis predisposition [OR, 12.2; 95% CI (3.5-42.69); P < 0.001]. We did not find any significant differences in the genotypic distribution of (VDR) (rs731236) T > C SNP between cases and controls (P > 0.05). CONCLUSION TLR-4 (Thr/Ile) and TLR-2 (Del/Del) act as significant risk factors for extrapulmonary tuberculosis predisposition in ethnic Kashmiri population.
Collapse
Affiliation(s)
- Bilal Ahmad Wani
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India; Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - Faheem Shehjar
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Sonaullah Shah
- Department of Internal & Pulmonary Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Ajaz Koul
- Department of Internal & Pulmonary Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Adfar Yusuf
- Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Muzamil Farooq
- Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Mohmad Iqbal Mir
- Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India.
| | - Dil Afroze
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India.
| |
Collapse
|
7
|
Messina NL, Netea MG, Curtis N. The impact of human single nucleotide polymorphisms on Bacillus Calmette-Guérin responses. Vaccine 2020; 38:6224-6235. [PMID: 32826104 DOI: 10.1016/j.vaccine.2020.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
The influence of genetic variability on human immune responses has major implications for the understanding of disease mechanisms and host-pathogen interactions. Bacillus Calmette-Guérin (BCG) vaccine, which is given globally to protect against tuberculosis, has high variability in its protective efficacy against mycobacteria and its beneficial off-target (heterologous) effects. Single nucleotide polymorphisms (SNPs) are major cause of genetic variation and have been strongly associated with susceptibility to tuberculosis and outcomes following BCG immunotherapy for cancer. This review discusses the contribution of SNPs to the variability in mycobacterial-specific and off-target BCG responses, and the implications for this on development of novel TB vaccines and strategies to harness the beneficial off-target effects of BCG.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases & Microbiology Research Group, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Nigel Curtis
- Infectious Diseases & Microbiology Research Group, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
| |
Collapse
|
8
|
McHenry ML, Williams SM, Stein CM. Genetics and evolution of tuberculosis pathogenesis: New perspectives and approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104204. [PMID: 31981609 PMCID: PMC7192760 DOI: 10.1016/j.meegid.2020.104204] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Tuberculosis is the most lethal infectious disease globally, but the vast majority of people who are exposed to the primary causative pathogen, Mycobacterium tuberculosis (MTB), do not develop active disease. Most people do, however, show signs of infection that remain throughout their lifetimes. In this review, we develop a framework that describes several possible transitions from pathogen exposure to TB disease and reflect on the genetics studies to address many of these. The evidence strongly supports a human genetic component for both infection and active disease, but many of the existing studies, including some of our own, do not clearly delineate what transition(s) is being explicitly examined. This can make interpretation difficult in terms of why only some people develop active disease. Nonetheless, both linkage peaks and associations with either active disease or latent infection have been identified. For transition to active disease, pathways defined as active TB altered T and B cell signaling in rheumatoid arthritis and T helper cell differentiation are significantly associated. Pathways that affect transition from exposure to infection are less clear-cut, as studies of this phenotype are less common, and a primary response, if it exists, is not yet well defined. Lastly, we discuss the role that interaction between the MTB lineage and human genetics can play in TB disease, especially severity. Severity of TB is at present the only way to study putative co-evolution between MTB and humans as it is impossible in the absence of disease to know the MTB lineage(s) to which an individual has been exposed. In addition, even though severity has been defined in multiple heterogeneous ways, it appears that MTB-human co-evolution may shape pathogenicity. Further analysis of co-evolution, requiring careful analysis of paired samples, may be the best way to completely assess the genetic basis of TB.
Collapse
Affiliation(s)
- Michael L McHenry
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
9
|
Leite FRM, Enevold C, Bendtzen K, Baelum V, López R. Pattern recognition receptor polymorphisms in early periodontitis. J Periodontol 2018; 90:647-654. [DOI: 10.1002/jper.18-0547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/06/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Fábio R. M. Leite
- Section of PeriodontologyDepartment of Dentistry and Oral HealthFaculty of Health SciencesAarhus University Aarhus Denmark
| | - Christian Enevold
- Institute for Inflammation ResearchCenter for Rheumatology and Spine DiseasesCopenhagen University Hospital Rigshospitalet Copenhagen Denmark
| | - Klaus Bendtzen
- Institute for Inflammation ResearchCenter for Rheumatology and Spine DiseasesCopenhagen University Hospital Rigshospitalet Copenhagen Denmark
| | - Vibeke Baelum
- Section of Epidemiology and Public HealthDepartment of Dentistry and Oral Health, Faculty of Health SciencesAarhus University Aarhus Denmark
| | - Rodrigo López
- Section of PeriodontologyDepartment of Dentistry and Oral HealthFaculty of Health SciencesAarhus University Aarhus Denmark
| |
Collapse
|
10
|
Simmons JD, Stein CM, Seshadri C, Campo M, Alter G, Fortune S, Schurr E, Wallis RS, Churchyard G, Mayanja-Kizza H, Boom WH, Hawn TR. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol 2018; 18:575-589. [PMID: 29895826 PMCID: PMC6278832 DOI: 10.1038/s41577-018-0025-3] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis is a leading cause of mortality worldwide and establishes a long-lived latent infection in a substantial proportion of the human population. Multiple lines of evidence suggest that some individuals are resistant to latent M. tuberculosis infection despite long-term and intense exposure, and we term these individuals 'resisters'. In this Review, we discuss the epidemiological and genetic data that support the existence of resisters and propose criteria to optimally define and characterize the resister phenotype. We review recent insights into the immune mechanisms of M. tuberculosis clearance, including responses mediated by macrophages, T cells and B cells. Understanding the cellular mechanisms that underlie resistance to M. tuberculosis infection may reveal immune correlates of protection that could be utilized for improved diagnostics, vaccine development and novel host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Jason D Simmons
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Catherine M Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Monica Campo
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Robert S Wallis
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Aurum Institute, Parktown, South Africa
| | | | | | - W Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Harishankar M, Selvaraj P, Bethunaickan R. Influence of Genetic Polymorphism Towards Pulmonary Tuberculosis Susceptibility. Front Med (Lausanne) 2018; 5:213. [PMID: 30167433 PMCID: PMC6106802 DOI: 10.3389/fmed.2018.00213] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is still remains the major threat for human health worldwide. Several case-control, candidate-gene, family studies and genome-wide association studies (GWAS) suggested the association of host genetic factors to TB susceptibility or resistance in various ethnic populations. Moreover, these factors modulate the host immune responses to tuberculosis. Studies have reported genetic markers to predict TB development in human leukocyte antigen (HLA) and non-HLA genes like killer immunoglobulin-like receptor (KIR), toll-like receptors (TLRs), cytokine/chemokines and their receptors, vitamin D receptor (VDR) and SLC11A1 etc. Highly polymorphic HLA loci may influence antigen presentation specificities by modifying peptide binding motifs. The recent meta-analysis studies revealed the association of several HLA alleles in particular class II HLA-DRB1 with TB susceptibility and valuable marker for disease development especially in Asian populations. Case-control studies have found the association of HLA-DR2 in some populations, but not in other populations, this could be due to an ethnic specific association of gene variants. Recently, GWAS conducted in case-control and family based studies in Russia, Chinese Han, Morocco, Uganda and Tanzania revealed the association of genes such as ASAP1, Alkylglycerol monooxygenase (AGMO), Forkhead BoxP1 (FOXP1), C-terminal domain phosphatase 1 (UBLCP1) and intergenic SNP rs932347C/T with TB. Whereas, SNP rs10956514A/G were not associated with TB in western Chinese Han and Tibetan population. In this review, we summarize the recent findings of genetic variants with susceptibility/resistance to TB.
Collapse
Affiliation(s)
- Murugesan Harishankar
- Department of Immunology, National Institute of Research in Tuberculosis, Chennai, India
| | - Paramasivam Selvaraj
- Department of Immunology, National Institute of Research in Tuberculosis, Chennai, India
| | | |
Collapse
|
12
|
Variants of TLR1 associated with tuberculosis susceptibility in the Chinese Tibetan population but not in Han Chinese. INFECTION GENETICS AND EVOLUTION 2018; 61:53-59. [DOI: 10.1016/j.meegid.2018.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
|
13
|
Li C, Yu Y, Li W, Liu B, Jiao X, Song X, Lv C, Qin S. Phycocyanin attenuates pulmonary fibrosis via the TLR2-MyD88-NF-κB signaling pathway. Sci Rep 2017; 7:5843. [PMID: 28725012 PMCID: PMC5517415 DOI: 10.1038/s41598-017-06021-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 06/07/2017] [Indexed: 12/21/2022] Open
Abstract
Our aim was to investigate the effects of phycocyanin (PC) on bleomycin (BLM)-induced pulmonary fibrosis (PF). In this study, C57 BL/6 wild-type (WT) mice and toll-like receptor (TLR) 2 deficient mice were treated with PC for 28 days following BLM exposure. Serum and lung tissues were collected on days 3, 7 and 28. Data shows PC significantly decreased the levels of hydroxyproline (HYP), vimentin, surfactant-associated protein C (SP-C), fibroblast specific protein-1 (S100A4) and α-smooth muscle actin (α-SMA) but dramatically increased E-cadherin and podoplanin (PDPN) expression on day 28. Moreover, PC greatly decreased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO) at the earlier time. Reduced expression of key genes in the TLR2 pathway was also detected. Compared with WT mice, TLR2-deficient mice exhibited less injury, and the protective effect of PC was partly diminished in this background. These data indicate the anti-fibrotic effects of PC may be mediated by reducing W/D ratio, MPO, IL-6, TNF-α, protecting type I alveolar epithelial cells, inhibiting fibroblast proliferation, attenuating epithelial-mesenchymal transitions (EMT) and reducing oxidative stress. The TLR2-MyD88-NF-κB pathway plays an important role in PC-mediated reduction in pulmonary fibrosis.
Collapse
Affiliation(s)
- Chengcheng Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Yan Yu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Bo Liu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Xudong Jiao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xinyu Song
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Changjun Lv
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|
14
|
van Tong H, Velavan TP, Thye T, Meyer CG. Human genetic factors in tuberculosis: an update. Trop Med Int Health 2017; 22:1063-1071. [PMID: 28685916 DOI: 10.1111/tmi.12923] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tuberculosis (TB) is a major threat to human health, especially in many developing countries. Human genetic variability has been recognised to be of great relevance in host responses to Mycobacterium tuberculosis infection and in regulating both the establishment and the progression of the disease. An increasing number of candidate gene and genome-wide association studies (GWAS) have focused on human genetic factors contributing to susceptibility or resistance to TB. To update previous reviews on human genetic factors in TB we searched the MEDLINE database and PubMed for articles from 1 January 2014 through 31 March 2017 and reviewed the role of human genetic variability in TB. Search terms applied in various combinations were 'tuberculosis', 'human genetics', 'candidate gene studies', 'genome-wide association studies' and 'Mycobacterium tuberculosis'. Articles in English retrieved and relevant references cited in these articles were reviewed. Abstracts and reports from meetings were also included. This review provides a recent summary of associations of polymorphisms of human genes with susceptibility/resistance to TB.
Collapse
Affiliation(s)
- Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Biomedical and Pharmaceutical Applied Research Center, Vietnam Military Medical University, Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Thorsten Thye
- Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
15
|
Rapid detection of functional gene polymorphisms of TLRs and IL-17 using high resolution melting analysis. Sci Rep 2017; 7:41522. [PMID: 28148965 PMCID: PMC5288650 DOI: 10.1038/srep41522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Genetic variations in toll-like receptors (TLRs) and IL-17A have been widely connected to different diseases. Associations between susceptibility and resistance to different infections and single nucleotide polymorphisms (SNPs) in TLR1 to TLR4 and IL17A have been found. In this study, we aimed to develop a rapid and high throughput method to detect functional SNPs of above mentioned proteins. The following most studied and clinically important SNPs: TLR1 (rs5743618), TLR2 (rs5743708), TLR3 (rs3775291), TLR4 (rs4986790) and IL17 (rs2275913) were tested. High resolution melting analysis (HRMA) based on real-time PCR combined with melting analysis of a saturating double stranded-DNA binding dye was developed and used. The obtained results were compared to the "standard" sequencing method. A total of 113 DNA samples with known genotypes were included. The HRMA method correctly identified all genotypes of these five SNPs. Co-efficient values of variation of intra- and inter-run precision repeatability ranged from 0.04 to 0.23%. The determined limit of qualification for testing samples was from 0.5 to 8.0 ng/μl. The identical genotyping result was obtained from the same sample with these concentrations. Compared to "standard" sequencing methods HRMA is cost-effective, rapid and simple. All the five SNPs can be analyzed separately or in combination.
Collapse
|