1
|
Singh C, Yadav S, Khare V, Gupta V, Kamble UR, Gupta OP, Kumar R, Saini P, Bairwa RK, Khobra R, Sheoran S, Kumar S, Kurhade AK, Mishra CN, Gupta A, Tyagi BS, Ahlawat OP, Singh G, Tiwari R. Unraveling the Secrets of Early-Maturity and Short-Duration Bread Wheat in Unpredictable Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2855. [PMID: 39458802 PMCID: PMC11511103 DOI: 10.3390/plants13202855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
In response to the escalating challenges posed by unpredictable environmental conditions, the pursuit of early maturation in bread wheat has emerged as a paramount research endeavor. This comprehensive review delves into the multifaceted landscape of strategies and implications surrounding the unlocking of early maturation in bread wheat varieties. Drawing upon a synthesis of cutting-edge research in genetics, physiology, and environmental science, this review elucidates the intricate mechanisms underlying early maturation and its potential ramifications for wheat cultivation in dynamic environments. By meticulously analyzing the genetic determinants, physiological processes, and environmental interactions shaping early maturation, this review offers valuable insights into the complexities of this trait and its relevance in contemporary wheat breeding programs. Furthermore, this review critically evaluates the trade-offs inherent in pursuing early maturation, navigating the delicate balance between accelerated development and optimal yield potential. Through a meticulous examination of both challenges and opportunities, this review provides a comprehensive framework for researchers, breeders, and agricultural stakeholders to advance our understanding and utilization of early maturation in bread wheat cultivars, ultimately fostering resilience and sustainability in wheat production systems worldwide.
Collapse
Affiliation(s)
- Charan Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sapna Yadav
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Vikrant Khare
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vikas Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Umesh R. Kamble
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ravindra Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Pawan Saini
- Central Sericultural Research and Training Institute, Pampore 192121, India
| | - Rakesh K. Bairwa
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Rinki Khobra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sonia Sheoran
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Satish Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ankita K. Kurhade
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Chandra N. Mishra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Arun Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Bhudeva S. Tyagi
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Ahlawat
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Gyanendra Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ratan Tiwari
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| |
Collapse
|
2
|
Yan X, Li J, He L, Chen O, Wang N, Wang S, Wang X, Wang Z, Su R. Accuracy of Genomic prediction for fleece traits in Inner Mongolia Cashmere goats. BMC Genomics 2024; 25:349. [PMID: 38589806 PMCID: PMC11000370 DOI: 10.1186/s12864-024-10249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
The fleece traits are important economic traits of goats. With the reduction of sequencing and genotyping cost and the improvement of related technologies, genomic selection for goats has become possible. The research collect pedigree, phenotype and genotype information of 2299 Inner Mongolia Cashmere goats (IMCGs) individuals. We estimate fixed effects, and compare the estimates of variance components, heritability and genomic predictive ability of fleece traits in IMCGs when using the pedigree based Best Linear Unbiased Prediction (ABLUP), Genomic BLUP (GBLUP) or single-step GBLUP (ssGBLUP). The fleece traits considered are cashmere production (CP), cashmere diameter (CD), cashmere length (CL) and fiber length (FL). It was found that year of production, sex, herd and individual ages had highly significant effects on the four fleece traits (P < 0.01). All of these factors should be considered when the genetic parameters of fleece traits in IMCGs are evaluated. The heritabilities of FL, CL, CP and CD with ABLUP, GBLUP and ssGBLUP methods were 0.26 ~ 0.31, 0.05 ~ 0.08, 0.15 ~ 0.20 and 0.22 ~ 0.28, respectively. Therefore, it can be inferred that the genetic progress of CL is relatively slow. The predictive ability of fleece traits in IMCGs with GBLUP (56.18% to 69.06%) and ssGBLUP methods (66.82% to 73.70%) was significantly higher than that of ABLUP (36.73% to 41.25%). For the ssGBLUP method is significantly (29% ~ 33%) higher than that with ABLUP, and which is slightly (4% ~ 14%) higher than that of GBLUP. The ssGBLUP will be as an superiors method for using genomic selection of fleece traits in Inner Mongolia Cashmere goats.
Collapse
Affiliation(s)
- Xiaochun Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Key Laboratory Of Mutton Sheep & Goat Genetics And Breeding, Ministry of Agriculture And Rural Affairs, Hohhot, Inner Mongolia Autonomous Region, 010018, China
- Engineering Research Centre for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, 010018, China
| | - Libing He
- Inner Mongolia Jinlai Livestock Technology Co., Ltd, Hohhot, Inner Mongolia Autonomous Region, 010018, China
| | - Oljibilig Chen
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd, Ordos, Inner Mongolia Autonomous Region, 010018, China
| | - Na Wang
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd, Ordos, Inner Mongolia Autonomous Region, 010018, China
| | - Shuai Wang
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd, Ordos, Inner Mongolia Autonomous Region, 010018, China
| | - Xiuyan Wang
- Livestock Improvement Center of Alxa Left Banner, Alxa League, Inner Mongolia Autonomous Region, 75000, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China.
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, 010018, China.
| |
Collapse
|
3
|
Hamazaki K, Iwata H. AI-assisted selection of mating pairs through simulation-based optimized progeny allocation strategies in plant breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1361894. [PMID: 38817943 PMCID: PMC11138345 DOI: 10.3389/fpls.2024.1361894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/06/2024] [Indexed: 06/01/2024]
Abstract
Emerging technologies such as genomic selection have been applied to modern plant and animal breeding to increase the speed and efficiency of variety release. However, breeding requires decisions regarding parent selection and mating pairs, which significantly impact the ultimate genetic gain of a breeding scheme. The selection of appropriate parents and mating pairs to increase genetic gain while maintaining genetic diversity is still an urgent need that breeders are facing. This study aimed to determine the best progeny allocation strategies by combining future-oriented simulations and numerical black-box optimization for an improved selection of parents and mating pairs. In this study, we focused on optimizing the allocation of progenies, and the breeding process was regarded as a black-box function whose input is a set of parameters related to the progeny allocation strategies and whose output is the ultimate genetic gain of breeding schemes. The allocation of progenies to each mating pair was parameterized according to a softmax function, whose input is a weighted sum of multiple features for the allocation, including expected genetic variance of progenies and selection criteria such as different types of breeding values, to balance genetic gains and genetic diversity optimally. The weighting parameters were then optimized by the black-box optimization algorithm called StoSOO via future-oriented breeding simulations. Simulation studies to evaluate the potential of our novel method revealed that the breeding strategy based on optimized weights attained almost 10% higher genetic gain than that with an equal allocation of progenies to all mating pairs within just four generations. Among the optimized strategies, those considering the expected genetic variance of progenies could maintain the genetic diversity throughout the breeding process, leading to a higher ultimate genetic gain than those without considering it. These results suggest that our novel method can significantly improve the speed and efficiency of variety development through optimized decisions regarding the selection of parents and mating pairs. In addition, by changing simulation settings, our future-oriented optimization framework for progeny allocation strategies can be easily implemented into general breeding schemes, contributing to accelerated plant and animal breeding with high efficiency.
Collapse
Affiliation(s)
| | - Hiroyoshi Iwata
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Yan X, Zhang J, Li J, Wang N, Su R, Wang Z. Impacts of reference population size and methods on the accuracy of genomic prediction for fleece traits in Inner Mongolia Cashmere Goats. Front Vet Sci 2024; 11:1325831. [PMID: 38374988 PMCID: PMC10875101 DOI: 10.3389/fvets.2024.1325831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/08/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Inner Mongolia Cashmere Goats (IMCGs) are famous for its cashmere quality and it's a unique genetic resource in China. Therefore, it is necessary to use genomic selection to improve the accuracy of selection for fleece traits in Inner Mongolia cashmere goats. The aim of this study was to determine the effect of methods (GBLUP, BayesA, BayesB, Bayesian LASSO, Bayesian Ridge Region) and the reference population size on accuracy of genomic selection in IMCGs. Methods This study fully utilizes the pedigree and phenotype records of fleece traits in 2255 individuals, genotype of 50794 SNPs after quality control, and environmental data to perform genomic selection of fleece traits. Then GBLUP and Bayes series methods (BayesA, BayesB, Bayesian LASSO, Bayesian Ridge Region) were used to perform estimates of genetic parameter and genomic breeding value. And the accuracy of genomic estimated breeding value (GEBV) is evaluated using the five-fold cross validation method. And the analysis of variance and multiple comparison methods were used to determine the best method for genomic selection in fleece traits of IMCGs. Further the different reference population sizes (500, 1000, 1500, and 2000) was set. Then the best method was applied to estimate genome breeding values, and evaluate the impact of reference population sizes on the accuracy of genome selection for fleece traits in IMCGs. Results It was found that the genomic prediction accuracy for each fleece trait in IMCGs by GBLUP method is highest, and it is significantly higher than that obtained by Bayesian method. The accuracy of breeding value estimation is 58.52% -68.49%. Also, it was found that the size of the reference population has a significant impact on the accuracy of genome prediction of fleece traits. When the reference population size is 2000, the accuracy of genomic prediction for each fleece trait is significantly higher than other levels, with accuracy of 55.47% -67.87%. This provides a theoretical basis for design a reasonable genome selection plan for Inner Mongolia cashmere goats in the later stag.
Collapse
Affiliation(s)
- Xiaochun Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiaxin Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep and Goat Genetics Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep and Goat Genetics and Breeding, Ministry of Agriculture And Rural Affairs, Hohhot, China
- Engineering Research Centre for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
| | - Na Wang
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd., Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
Keele JW, Foraker BA, Boldt R, Kemp C, Kuehn LA, Woerner DR. Genetic parameters for carcass traits of progeny of beef bulls mated to dairy cows. J Anim Sci 2024; 102:skae075. [PMID: 38489760 PMCID: PMC10989647 DOI: 10.1093/jas/skae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/14/2024] [Indexed: 03/17/2024] Open
Abstract
Beef × dairy crossbred cattle (n = 615) were used to evaluate the effect of preharvest indicator traits and genotypes on the accuracy of estimated breeding values (EBVs) of seedstock candidates for selection. Genotypes for 100,000 single nucleotide polymorphisms were provided by the American Simmental Association of purebred and crossbred seedstock animals (n = 2,632). Five hundred and ninety-five of the 615 beef × dairy cattle had carcass camera and ultrasound data. Phenotypes were not used for any of the seedstock animals even though some may have had performance and ultrasound data. We estimated the genomic relationship matrix among 3,247 animals including both phenotyped and unphenotyped animals. We computed genetic parameters among 37 traits using 666 bivariate restricted maximum likelihood analyses. The accuracy of EBV depends on heritability. For the sake of brevity, we report accuracy for marbling as a proxy for other traits with similar heritability. We focus on accuracy for marbling because marbling is the primary determinant of carcass value. We computed EBV for all 3,247 animals for marbling based on camera data postharvest using best linear unbiased prediction. We report evidence of overlap in causative genes among postharvest carcass traits; marbling, ribeye area, yield grade, fat thickness, and hot carcass weight (HCW) based on genetic correlations. Genetic correlations range from -0.73 to 0.89. Several live animal traits (frame size, body weight and ultrasound fat thickness and ribeye area) were genetically correlated with postharvest traits; including HCW, ribeye area, yield grade, fat thickness, and marbling. Genetic correlations between pre- and postharvest traits ranged from -0.53 to 0.95. Accuracy for marbling ranged from 0.64 to 0.80 for animals with marbling recorded, and from 0.09 to 0.60 for animals without marbling recorded. The accuracy of animals without phenotypes was related to the genomic relationship between animals with phenotype and those without. Live animal traits were useful for predicting economically important carcass traits based on genetic correlations. The accuracy of EBV for seedstock animals that were not phenotyped was low, but this is consistent with theory, and accuracy is expected to increase with the addition of genotypes and carcass data from beef × dairy animals.
Collapse
Affiliation(s)
- John W Keele
- U. S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Blake A Foraker
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ryan Boldt
- American Simmental Association, Bozeman, MT 59718, USA
| | - Chip Kemp
- American Simmental Association, Bozeman, MT 59718, USA
| | - Larry A Kuehn
- U. S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Dale R Woerner
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
6
|
Hafeez A, Ali B, Javed MA, Saleem A, Fatima M, Fathi A, Afridi MS, Aydin V, Oral MA, Soudy FA. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics-assisted breeding. PLANTA 2023; 258:97. [PMID: 37823963 DOI: 10.1007/s00425-023-04252-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
MAIN CONCLUSION Genomics-assisted breeding represents a crucial frontier in enhancing the balance between sustainable agriculture, environmental preservation, and global food security. Its precision and efficiency hold the promise of developing resilient crops, reducing resource utilization, and safeguarding biodiversity, ultimately fostering a more sustainable and secure food production system. Agriculture has been seriously threatened over the last 40 years by climate changes that menace global nutrition and food security. Changes in environmental factors like drought, salt concentration, heavy rainfalls, and extremely low or high temperatures can have a detrimental effects on plant development, growth, and yield. Extreme poverty and increasing food demand necessitate the need to break the existing production barriers in several crops. The first decade of twenty-first century marks the rapid development in the discovery of new plant breeding technologies. In contrast, in the second decade, the focus turned to extracting information from massive genomic frameworks, speculating gene-to-phenotype associations, and producing resilient crops. In this review, we will encompass the causes, effects of abiotic stresses and how they can be addressed using plant breeding technologies. Both conventional and modern breeding technologies will be highlighted. Moreover, the challenges like the commercialization of biotechnological products faced by proponents and developers will also be accentuated. The crux of this review is to mention the available breeding technologies that can deliver crops with high nutrition and climate resilience for sustainable agriculture.
Collapse
Affiliation(s)
- Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Aroona Saleem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Amin Fathi
- Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, 46151, Iran
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, MG, 37200-900, Brazil
| | - Veysel Aydin
- Sason Vocational School, Department of Plant and Animal Production, Batman University, Batman, 72060, Turkey
| | - Mükerrem Atalay Oral
- Elmalı Vocational School of Higher Education, Akdeniz University, Antalya, 07058, Turkey
| | - Fathia A Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
7
|
Building a Calibration Set for Genomic Prediction, Characteristics to Be Considered, and Optimization Approaches. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2467:77-112. [PMID: 35451773 DOI: 10.1007/978-1-0716-2205-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The efficiency of genomic selection strongly depends on the prediction accuracy of the genetic merit of candidates. Numerous papers have shown that the composition of the calibration set is a key contributor to prediction accuracy. A poorly defined calibration set can result in low accuracies, whereas an optimized one can considerably increase accuracy compared to random sampling, for a same size. Alternatively, optimizing the calibration set can be a way of decreasing the costs of phenotyping by enabling similar levels of accuracy compared to random sampling but with fewer phenotypic units. We present here the different factors that have to be considered when designing a calibration set, and review the different criteria proposed in the literature. We classified these criteria into two groups: model-free criteria based on relatedness, and criteria derived from the linear mixed model. We introduce criteria targeting specific prediction objectives including the prediction of highly diverse panels, biparental families, or hybrids. We also review different ways of updating the calibration set, and different procedures for optimizing phenotyping experimental designs.
Collapse
|
8
|
Rio S, Akdemir D, Carvalho T, Sánchez JIY. Assessment of genomic prediction reliability and optimization of experimental designs in multi-environment trials. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:405-419. [PMID: 34807267 PMCID: PMC8866390 DOI: 10.1007/s00122-021-03972-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
New forms of the coefficient of determination can help to forecast the accuracy of genomic prediction and optimize experimental designs in multi-environment trials with genotype-by-environment interactions. In multi-environment trials, the relative performance of genotypes may vary depending on the environmental conditions, and this phenomenon is commonly referred to as genotype-by-environment interaction (G[Formula: see text]E). With genomic prediction, G[Formula: see text]E can be accounted for by modeling the genetic covariance between trials, even when the overall experimental design is highly unbalanced between trials, thanks to the genomic relationship between genotypes. In this study, we propose new forms of the coefficient of determination (CD, i.e., the expected model-based square correlation between a genetic value and its corresponding prediction) that can be used to forecast the genomic prediction reliability of genotypes, both for their trial-specific performance and their mean performance. As the expected prediction reliability based on these new CD criteria is generally a good approximation of the observed reliability, we demonstrate that they can be used to optimize multi-environment trials in the presence of G[Formula: see text]E. In addition, this reliability may be highly variable between genotypes, especially in unbalanced designs with complex pedigree relationships between genotypes. Therefore, it can be useful for breeders to assess it before selecting genotypes based on their predicted genetic values. Using a wheat population evaluated both for simulated and phenology traits, and two maize populations evaluated for grain yield, we illustrate this approach and confirm the value of our new CD criteria.
Collapse
Affiliation(s)
- Simon Rio
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA) Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón Madrid, Spain
| | - Deniz Akdemir
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN USA
| | - Tiago Carvalho
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA) Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón Madrid, Spain
| | - Julio Isidro y Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA) Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón Madrid, Spain
| |
Collapse
|
9
|
Zhu S, Guo T, Yuan C, Liu J, Li J, Han M, Zhao H, Wu Y, Sun W, Wang X, Wang T, Liu J, Tiambo CK, Yue Y, Yang B. Evaluation of Bayesian alphabet and GBLUP based on different marker density for genomic prediction in Alpine Merino sheep. G3 (BETHESDA, MD.) 2021; 11:6310012. [PMID: 34849779 PMCID: PMC8527494 DOI: 10.1093/g3journal/jkab206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 01/20/2023]
Abstract
The marker density, the heritability level of trait and the statistical models adopted are critical to the accuracy of genomic prediction (GP) or selection (GS). If the potential of GP is to be fully utilized to optimize the effect of breeding and selection, in addition to incorporating the above factors into simulated data for analysis, it is essential to incorporate these factors into real data for understanding their impact on GP accuracy, more clearly and intuitively. Herein, we studied the GP of six wool traits of sheep by two different models, including Bayesian Alphabet (BayesA, BayesB, BayesCπ, and Bayesian LASSO) and genomic best linear unbiased prediction (GBLUP). We adopted fivefold cross-validation to perform the accuracy evaluation based on the genotyping data of Alpine Merino sheep (n = 821). The main aim was to study the influence and interaction of different models and marker densities on GP accuracy. The GP accuracy of the six traits was found to be between 0.28 and 0.60, as demonstrated by the cross-validation results. We showed that the accuracy of GP could be improved by increasing the marker density, which is closely related to the model adopted and the heritability level of the trait. Moreover, based on two different marker densities, it was derived that the prediction effect of GBLUP model for traits with low heritability was better; while with the increase of heritability level, the advantage of Bayesian Alphabet would be more obvious, therefore, different models of GP are appropriate in different traits. These findings indicated the significance of applying appropriate models for GP which would assist in further exploring the optimization of GP.
Collapse
Affiliation(s)
- Shaohua Zhu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianye Li
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Mei Han
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Hongchang Zhao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yi Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Weibo Sun
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xijun Wang
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan 734400, China
| | - Tianxiang Wang
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan 734400, China
| | - Jigang Liu
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan 734400, China
| | - Christian Keambou Tiambo
- Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute, Nairobi 00100, Kenya
| | - Yaojing Yue
- Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Bohui Yang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
10
|
Rabier C, Grusea S. Prediction in high‐dimensional linear models and application to genomic selection under imperfect linkage disequilibrium. J R Stat Soc Ser C Appl Stat 2021. [DOI: 10.1111/rssc.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Charles‐Elie Rabier
- ISE‐MUMR 5554CNRSIRDUniversité de Montpellier France
- IMAGUMR 5149CNRSUniversité de Montpellier France
- LIRMMUMR 5506CNRSUniversité de Montpellier France
| | - Simona Grusea
- Institut de Mathématiques de Toulouse Université de ToulouseINSA de Toulouse France
| |
Collapse
|
11
|
Rabier CE, Delmas C. The SgenoLasso and its cousins for selective genotyping and extreme sampling: application to association studies and genomic selection. STATISTICS-ABINGDON 2021. [DOI: 10.1080/02331888.2021.1881785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Charles-Elie Rabier
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
- IMAG, CNRS, Université de Montpellier, Montpellier, France
- LIRMM, CNRS, Université de Montpellier, Montpellier, France
| | - Céline Delmas
- INRAE, UR MIAT, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
12
|
Frouin A, Dandine-Roulland C, Pierre-Jean M, Deleuze JF, Ambroise C, Le Floch E. Exploring the Link Between Additive Heritability and Prediction Accuracy From a Ridge Regression Perspective. Front Genet 2020; 11:581594. [PMID: 33329721 PMCID: PMC7672157 DOI: 10.3389/fgene.2020.581594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Genome-Wide Association Studies (GWAS) explain only a small fraction of heritability for most complex human phenotypes. Genomic heritability estimates the variance explained by the SNPs on the whole genome using mixed models and accounts for the many small contributions of SNPs in the explanation of a phenotype. This paper approaches heritability from a machine learning perspective, and examines the close link between mixed models and ridge regression. Our contribution is two-fold. First, we propose estimating genomic heritability using a predictive approach via ridge regression and Generalized Cross Validation (GCV). We show that this is consistent with classical mixed model based estimation. Second, we derive simple formulae that express prediction accuracy as a function of the ratio n p , where n is the population size and p the total number of SNPs. These formulae clearly show that a high heritability does not imply an accurate prediction when p > n. Both the estimation of heritability via GCV and the prediction accuracy formulae are validated using simulated data and real data from UK Biobank.
Collapse
Affiliation(s)
- Arthur Frouin
- CNRGH, Institut Jacob, CEA - Université Paris-Saclay, Évry, France
| | | | | | - Jean-François Deleuze
- CNRGH, Institut Jacob, CEA - Université Paris-Saclay, Évry, France.,Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France
| | - Christophe Ambroise
- LaMME, Université Paris-Saclay, CNRS, Université d'Évry val d'Essonne, Évry, France
| | - Edith Le Floch
- CNRGH, Institut Jacob, CEA - Université Paris-Saclay, Évry, France
| |
Collapse
|
13
|
Baral K, Coulman B, Biligetu B, Fu YB. Advancing crested wheatgrass [Agropyron cristatum (L.) Gaertn.] breeding through genotyping-by-sequencing and genomic selection. PLoS One 2020; 15:e0239609. [PMID: 33031422 PMCID: PMC7544028 DOI: 10.1371/journal.pone.0239609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
Crested wheatgrass [Agropyron cristatum (L.) Gaertn.] provides high quality, highly palatable forage for early season grazing. Genetic improvement of crested wheatgrass has been challenged by its complex genome, outcrossing nature, long breeding cycle, and lack of informative molecular markers. Genomic selection (GS) has potential for improving traits of perennial forage species, and genotyping-by-sequencing (GBS) has enabled the development of genome-wide markers in non-model polyploid plants. An attempt was made to explore the utility of GBS and GS in crested wheatgrass breeding. Sequencing and phenotyping 325 genotypes representing 10 diverse breeding lines were performed. Bioinformatics analysis identified 827, 3,616, 14,090 and 46,136 single nucleotide polymorphism markers at 20%, 30%, 40% and 50% missing marker levels, respectively. Four GS models (BayesA, BayesB, BayesCπ, and rrBLUP) were examined for the accuracy of predicting nine agro-morphological and three nutritive value traits. Moderate accuracy (0.20 to 0.32) was obtained for the prediction of heading days, leaf width, plant height, clump diameter, tillers per plant and early spring vigor for genotypes evaluated at Saskatoon, Canada. Similar accuracy (0.29 to 0.35) was obtained for predicting fall regrowth and plant height for genotypes evaluated at Swift Current, Canada. The Bayesian models displayed similar or higher accuracy than rrBLUP. These findings show the feasibility of GS application for a non-model species to advance plant breeding.
Collapse
Affiliation(s)
- Kiran Baral
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bruce Coulman
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bill Biligetu
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
14
|
Karimi K, Farid AH, Sargolzaei M, Myles S, Miar Y. Linkage Disequilibrium, Effective Population Size and Genomic Inbreeding Rates in American Mink Using Genotyping-by-Sequencing Data. Front Genet 2020; 11:223. [PMID: 32231688 PMCID: PMC7083153 DOI: 10.3389/fgene.2020.00223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Knowledge of linkage disequilibrium (LD) patterns is necessary to determine the minimum density of markers required for genomic studies and to infer historical changes as well as inbreeding events in the populations. In this study, we used genotyping-by-sequencing (GBS) approach to detect single nucleotide polymorphisms (SNPs) across American mink genome and further to estimate LD, effective population size (Ne), and inbreeding rates based on excess of homozygosity (FHOM) and runs of homozygosity (ROH). A GBS assay was constructed based on the sequencing of ApeKI-digested libraries from 285 American mink using Illumina HiSeq Sequencer. Data of 13,321 SNPs located on 46 scaffolds was used to perform LD analysis. The average LD (r2 ± SD) between adjacent SNPs was 0.30 ± 0.35 over all scaffolds with an average distance of 51 kb between markers. The average r2 < 0.2 was observed at inter-marker distances of >40 kb, suggesting that at least 60,000 informative SNPs would be required for genomic selection in American mink. The Ne was estimated to be 116 at five generations ago. In addition, the most rapid decline of population size was observed between 100 and 200 generations ago. Our results showed that short extensions of homozygous genotypes (500 kb to 1 Mb) were abundant across the genome and accounted for 33% of all ROH identified. The average inbreeding coefficient based on ROH longer than 1 Mb was 0.132 ± 0.042. The estimations of FHOM ranged from −0.44 to 0.34 among different samples with an average of 0.15 over all individuals. This study provided useful insights to determine the density of SNP panel providing enough statistical power and accuracy in genomic studies of American mink. Moreover, these results confirmed that GBS approach can be considered as a useful tool for genomic studies in American mink.
Collapse
Affiliation(s)
- Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - A Hossain Farid
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.,Select Sires Inc., Plain City, OH, United States
| | - Sean Myles
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
15
|
Picard Druet D, Varenne A, Herry F, Hérault F, Allais S, Burlot T, Le Roy P. Reliability of genomic evaluation for egg quality traits in layers. BMC Genet 2020; 21:17. [PMID: 32046634 PMCID: PMC7014768 DOI: 10.1186/s12863-020-0820-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/31/2020] [Indexed: 11/17/2022] Open
Abstract
Background Genomic evaluation, based on the use of thousands of genetic markers in addition to pedigree and phenotype information, has become the standard evaluation methodology in dairy cattle breeding programmes over the past several years. Despite the many differences between dairy cattle breeding and poultry breeding, genomic selection seems very promising for the avian sector, and studies are currently being conducted to optimize avian selection schemes. In this optimization perspective, one of the key parameters is to properly predict the accuracy of genomic evaluation in pure line layers. Results It was observed that genomic evaluation, whether performed on males or females, always proved more accurate than genetic evaluation. The gain was higher when phenotypic information was narrowed, and an augmentation of the size of the reference population led to an increase in accuracy prediction with regard to genomic evaluation. By taking into account the increase of selection intensity and the decrease of the generation interval induced by genomic selection, the expected annual genetic gain would be higher with ancestry-based genomic evaluation of male candidates than with genetic evaluation based on collaterals. This advantage of genomic selection over genetic selection requires more detailed further study for female candidates. Conclusions In conclusion, in the population studied, the genomic evaluation of egg quality traits of breeding birds at birth seems to be a promising strategy, at least for the selection of males.
Collapse
Affiliation(s)
- David Picard Druet
- PEGASE, INRAE, Agrocampus Ouest, 16 Le Clos, Saint-Gilles, 35590, France
| | | | - Florian Herry
- PEGASE, INRAE, Agrocampus Ouest, 16 Le Clos, Saint-Gilles, 35590, France.,NOVOGEN, 5, rue des Compagnons, Plédran, 22960, France
| | - Frédéric Hérault
- PEGASE, INRAE, Agrocampus Ouest, 16 Le Clos, Saint-Gilles, 35590, France
| | - Sophie Allais
- PEGASE, INRAE, Agrocampus Ouest, 16 Le Clos, Saint-Gilles, 35590, France
| | | | - Pascale Le Roy
- PEGASE, INRAE, Agrocampus Ouest, 16 Le Clos, Saint-Gilles, 35590, France.
| |
Collapse
|
16
|
Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel CE, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S. Apple whole genome sequences: recent advances and new prospects. HORTICULTURE RESEARCH 2019; 6:59. [PMID: 30962944 PMCID: PMC6450873 DOI: 10.1038/s41438-019-0141-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
In 2010, a major scientific milestone was achieved for tree fruit crops: publication of the first draft whole genome sequence (WGS) for apple (Malus domestica). This WGS, v1.0, was valuable as the initial reference for sequence information, fine mapping, gene discovery, variant discovery, and tool development. A new, high quality apple WGS, GDDH13 v1.1, was released in 2017 and now serves as the reference genome for apple. Over the past decade, these apple WGSs have had an enormous impact on our understanding of apple biological functioning, trait physiology and inheritance, leading to practical applications for improving this highly valued crop. Causal gene identities for phenotypes of fundamental and practical interest can today be discovered much more rapidly. Genome-wide polymorphisms at high genetic resolution are screened efficiently over hundreds to thousands of individuals with new insights into genetic relationships and pedigrees. High-density genetic maps are constructed efficiently and quantitative trait loci for valuable traits are readily associated with positional candidate genes and/or converted into diagnostic tests for breeders. We understand the species, geographical, and genomic origins of domesticated apple more precisely, as well as its relationship to wild relatives. The WGS has turbo-charged application of these classical research steps to crop improvement and drives innovative methods to achieve more durable, environmentally sound, productive, and consumer-desirable apple production. This review includes examples of basic and practical breakthroughs and challenges in using the apple WGSs. Recommendations for "what's next" focus on necessary upgrades to the genome sequence data pool, as well as for use of the data, to reach new frontiers in genomics-based scientific understanding of apple.
Collapse
Affiliation(s)
- Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Luca Bianco
- Computational Biology, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Nicholas P. Howard
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108 USA
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Amandine Cornille
- GQE – Le Moulon, Institut National de la Recherche Agronomique, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charles-Eric Durel
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Robert J. Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, Motueka, 7198 New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Evelyne Costes
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Gennaro Fazio
- Plant Genetic Resources Unit, USDA ARS, Geneva, NY 14456 USA
| | - Hisayo Yamane
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Chris Gottschalk
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | | | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Craig Hardner
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, 4072 Australia
| | - Satish Kumar
- New Cultivar Innovation, Plant and Food Research, Havelock North, 4130 New Zealand
| | - Francois Laurens
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Etienne Bucher
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
- Agroscope, 1260 Changins, Switzerland
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
17
|
Karimi K, Sargolzaei M, Plastow GS, Wang Z, Miar Y. Opportunities for genomic selection in American mink: A simulation study. PLoS One 2019; 14:e0213873. [PMID: 30870528 PMCID: PMC6417779 DOI: 10.1371/journal.pone.0213873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/01/2019] [Indexed: 12/25/2022] Open
Abstract
Genomic selection can be considered as an effective tool for developing breeding programs in American mink. However, the genetic gains for economically important traits can be influenced by the accuracy of genomic predictions. The objective of this study was to investigate the prediction accuracies of traditional best linear unbiased prediction (BLUP), multi-step genomic BLUP (GBLUP) and single-step GBLUP (ssGBLUP) methods in American mink using simulated data with different levels of heritability, marker density, training set (TS) sizes and selection designs based on either phenotypic performance or estimated breeding values (EBVs). Under EBV selection design, the accuracy of BLUP predictions was increased by 38% and 44% for h2 = 0.10, 27% and 29% for h2 = 0.20, and 5.8% and 6% for h2 = 0.50 using GBLUP and ssGBLUP methods, respectively. Under phenotypic selection design, the accuracies of prediction by ssGBLUP method were 11.8% and 15.4% higher than those obtained by GBLUP for heritability of 0.10 and 0.20, respectively. However, the efficiency of ssGBLUP and GBLUP was not influenced by selection design at higher level of heritability (h2 = 0.50). Furthermore, higher selection intensity increased the bias of predictions in both pedigree-based and genomic evaluations. Regardless of selection design, TS sizes for GBLUP and ssGBLUP methods should be at least 3000 to achieve more accuracy than using BLUP for heritability of 0.50 and marker density of 10k and 50k. Overall, more accurate predictions were obtained using ssGBLUP method particularly for lowly heritable traits and low density of markers. Our results indicated that TS sizes should be optimized in accordance with heritability level, marker density, selection design and prediction method for genomic selection in American mink. The results provided an initial framework for designing genomic selection in mink breeding programs.
Collapse
Affiliation(s)
- Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
- Select Sires Inc., Plain City, Ohio, United States of America
| | - Graham Stuart Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
18
|
Mangin B, Rincent R, Rabier CE, Moreau L, Goudemand-Dugue E. Training set optimization of genomic prediction by means of EthAcc. PLoS One 2019; 14:e0205629. [PMID: 30779753 PMCID: PMC6380617 DOI: 10.1371/journal.pone.0205629] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
Genomic prediction is a useful tool for plant and animal breeding programs and is starting to be used to predict human diseases as well. A shortcoming that slows down the genomic selection deployment is that the accuracy of the prediction is not known a priori. We propose EthAcc (Estimated THeoretical ACCuracy) as a method for estimating the accuracy given a training set that is genotyped and phenotyped. EthAcc is based on a causal quantitative trait loci model estimated by a genome-wide association study. This estimated causal model is crucial; therefore, we compared different methods to find the one yielding the best EthAcc. The multilocus mixed model was found to perform the best. We compared EthAcc to accuracy estimators that can be derived via a mixed marker model. We showed that EthAcc is the only approach to correctly estimate the accuracy. Moreover, in case of a structured population, in accordance with the achieved accuracy, EthAcc showed that the biggest training set is not always better than a smaller and closer training set. We then performed training set optimization with EthAcc and compared it to CDmean. EthAcc outperformed CDmean on real datasets from sugar beet, maize, and wheat. Nonetheless, its performance was mainly due to the use of an optimal but inaccessible set as a start of the optimization algorithm. EthAcc's precision and algorithm issues prevent it from reaching a good training set with a random start. Despite this drawback, we demonstrated that a substantial gain in accuracy can be obtained by performing training set optimization.
Collapse
Affiliation(s)
- Brigitte Mangin
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
- * E-mail:
| | | | - Charles-Elie Rabier
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
- LIRMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Laurence Moreau
- GQE-Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
19
|
Rio S, Mary-Huard T, Moreau L, Charcosset A. Genomic selection efficiency and a priori estimation of accuracy in a structured dent maize panel. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:81-96. [PMID: 30288553 DOI: 10.1007/s00122-018-3196-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Population structure affects genomic selection efficiency as well as the ability to forecast accuracy using standard GBLUP. Genomic prediction models usually assume that the individuals used for calibration belong to the same population as those to be predicted. Most of the a priori indicators of precision, such as the coefficient of determination (CD), were derived from those same models. But genetic structure is a common feature in plant species, and it may impact genomic selection efficiency and the ability to forecast prediction accuracy. We investigated the impact of genetic structure in a dent maize panel ("Amaizing Dent") using different scenarios including within- or across-group predictions. For a given training set size, the best accuracies were achieved when predicting individuals using a model calibrated on the same genetic group. Nevertheless, a diverse training set representing all the groups had a certain predictive efficiency for all the validation sets, and adding extra-group individuals was almost always beneficial. It underlines the potential of such a generic training set for dent maize genomic selection applications. Alternative prediction models, taking genetic structure explicitly into account, did not improve the prediction accuracy compared to GBLUP. We also investigated the ability of different indicators of precision to forecast accuracy in the within- or across-group scenarios. There was a global encouraging trend of the CD to differentiate scenarios, although there were specific combinations of target populations and traits where the efficiency of this indicator proved to be null. One hypothesis to explain such erratic performances is the impact of genetic structure through group-specific allele diversity at QTLs rather than group-specific allele effects.
Collapse
Affiliation(s)
- Simon Rio
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Tristan Mary-Huard
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
- MIA, INRA, AgroParisTech, Université Paris-Saclay, 75005, Paris, France
| | - Laurence Moreau
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Alain Charcosset
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
20
|
Wang Y, Zhang Y, Su X, Wang H, Yang W, Zan L. Cooperative and Independent Functions of the miR-23a~27a~24-2 Cluster in Bovine Adipocyte Adipogenesis. Int J Mol Sci 2018; 19:ijms19123957. [PMID: 30544847 PMCID: PMC6321175 DOI: 10.3390/ijms19123957] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
The miR-23a~27a~24-2 cluster is an important regulator in cell metabolism. However, the cooperative and independent functions of this cluster in bovine adipocyte adipogenesis have not been elucidated. In this study, we found that expression of the miR-23a~27a~24-2 cluster was induced during adipogenesis and this cluster acted as a negative regulator of adipogenesis. miR-27a and miR-24-2 were shown to inhibit adipogenesis by directly targeting glycerol-3-phosphate acyltransferase, mitochondrial (GPAM) and diacylglycerol O-acyltransferase 2 (DGAT2), both of which promoted adipogenesis. Meanwhile, miR-23a and miR-24-2 were shown to target decorin (DCN), glucose-6-phosphate dehydrogenase (G6PD), and lipoprotein lipase (LPL), all of which repressed adipogenesis in this study. Thus, the miR-23a~27a~24-2 cluster exhibits a non-canonical regulatory role in bovine adipocyte adipogenesis. To determine how the miR-23a~27a~24-2 cluster inhibits adipogenesis while targeting anti-adipogenic genes, we identified another target gene, fibroblast growth factor 11 (FGF11), a positive regulator of adipogenesis, that was commonly targeted by the entire miR-23a~27a~24-2 cluster. Our findings suggest that the miR-23a~27a~24-2 cluster fine-tunes the regulation of adipogenesis by targeting two types of genes with pro- or anti-adipogenic effects. This balanced regulatory role of miR-23a~27a~24-2 cluster finally repressed adipogenesis.
Collapse
Affiliation(s)
- Yaning Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Yingying Zhang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Xiaotong Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- National Beef Cattle Improvement Center in China, Yangling 712100, China.
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- National Beef Cattle Improvement Center in China, Yangling 712100, China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- National Beef Cattle Improvement Center in China, Yangling 712100, China.
| |
Collapse
|
21
|
Momen M, Mehrgardi AA, Sheikhi A, Kranis A, Tusell L, Morota G, Rosa GJM, Gianola D. Predictive ability of genome-assisted statistical models under various forms of gene action. Sci Rep 2018; 8:12309. [PMID: 30120288 PMCID: PMC6098164 DOI: 10.1038/s41598-018-30089-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/24/2018] [Indexed: 11/09/2022] Open
Abstract
Recent work has suggested that the performance of prediction models for complex traits may depend on the architecture of the target traits. Here we compared several prediction models with respect to their ability of predicting phenotypes under various statistical architectures of gene action: (1) purely additive, (2) additive and dominance, (3) additive, dominance, and two-locus epistasis, and (4) purely epistatic settings. Simulation and a real chicken dataset were used. Fourteen prediction models were compared: BayesA, BayesB, BayesC, Bayesian LASSO, Bayesian ridge regression, elastic net, genomic best linear unbiased prediction, a Gaussian process, LASSO, random forests, reproducing kernel Hilbert spaces regression, ridge regression (best linear unbiased prediction), relevance vector machines, and support vector machines. When the trait was under additive gene action, the parametric prediction models outperformed non-parametric ones. Conversely, when the trait was under epistatic gene action, the non-parametric prediction models provided more accurate predictions. Thus, prediction models must be selected according to the most probably underlying architecture of traits. In the chicken dataset examined, most models had similar prediction performance. Our results corroborate the view that there is no universally best prediction models, and that the development of robust prediction models is an important research objective.
Collapse
Affiliation(s)
- Mehdi Momen
- Department of Animal Science, University College of Agriculture, Shahid Bahonar University of Kerman (SBUK), Kerman, Iran
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, University College of Agriculture, Shahid Bahonar University of Kerman (SBUK), Kerman, Iran.
| | - Ayyub Sheikhi
- Department of Statistical Science, University College of Mathematic and Statistical Science, Shahid Bahonar University of Kerman (SBUK), Kerman, Iran
| | - Andreas Kranis
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9PS, UK
| | - Llibertat Tusell
- INRA UMR1388/INPT ENSAT/INPT ENVT GenPhySE, F-31326, Castanet-Tolosan, France
| | - Gota Morota
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Guilherme J M Rosa
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Daniel Gianola
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA.,Department of Dairy Science, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
22
|
Rabier C, Mangin B, Grusea S. On the accuracy in high‐dimensional linear models and its application to genomic selection. Scand Stat Theory Appl 2018. [DOI: 10.1111/sjos.12352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Charles‐Elie Rabier
- Institut des Sciences de l'EvolutionUniversité de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, École Pratique des Hautes Études Montpellier France
- Laboratoire d'Informatique, de Robotique et de Microélectronique de MontpellierUniversité de Montpellier, Centre National de la Recherche Scientifique Montpellier France
- Institut de Mathématiques de ToulouseUniversité de Toulouse, Institut National des Sciences Appliquées de Toulouse Toulouse France
- Mathématiques et Informatique Appliquées de ToulouseUniversité de Toulouse, Institut National de la Recherche Agronomique Castanet‐Tolosan France
| | - Brigitte Mangin
- Laboratoire des Interactions Plantes‐MicroorganismesUniversité de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique Castanet‐Tolosan France
| | - Simona Grusea
- Institut de Mathématiques de ToulouseUniversité de Toulouse, Institut National des Sciences Appliquées de Toulouse Toulouse France
| |
Collapse
|
23
|
Estimation of genomic prediction accuracy from reference populations with varying degrees of relationship. PLoS One 2017; 12:e0189775. [PMID: 29267328 PMCID: PMC5739427 DOI: 10.1371/journal.pone.0189775] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/09/2017] [Indexed: 01/07/2023] Open
Abstract
Genomic prediction is emerging in a wide range of fields including animal and plant breeding, risk prediction in human precision medicine and forensic. It is desirable to establish a theoretical framework for genomic prediction accuracy when the reference data consists of information sources with varying degrees of relationship to the target individuals. A reference set can contain both close and distant relatives as well as ‘unrelated’ individuals from the wider population in the genomic prediction. The various sources of information were modeled as different populations with different effective population sizes (Ne). Both the effective number of chromosome segments (Me) and Ne are considered to be a function of the data used for prediction. We validate our theory with analyses of simulated as well as real data, and illustrate that the variation in genomic relationships with the target is a predictor of the information content of the reference set. With a similar amount of data available for each source, we show that close relatives can have a substantially larger effect on genomic prediction accuracy than lesser related individuals. We also illustrate that when prediction relies on closer relatives, there is less improvement in prediction accuracy with an increase in training data or marker panel density. We release software that can estimate the expected prediction accuracy and power when combining different reference sources with various degrees of relationship to the target, which is useful when planning genomic prediction (before or after collecting data) in animal, plant and human genetics.
Collapse
|
24
|
Morota G. ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas. Genet Sel Evol 2017; 49:91. [PMID: 29262775 PMCID: PMC5738850 DOI: 10.1186/s12711-017-0368-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deterministic formulas for the accuracy of genomic predictions highlight the relationships among prediction accuracy and potential factors influencing prediction accuracy prior to performing computationally intensive cross-validation. Visualizing such deterministic formulas in an interactive manner may lead to a better understanding of how genetic factors control prediction accuracy. RESULTS The software to simulate deterministic formulas for genomic prediction accuracy was implemented in R and encapsulated as a web-based Shiny application. Shiny genomic prediction accuracy simulator (ShinyGPAS) simulates various deterministic formulas and delivers dynamic scatter plots of prediction accuracy versus genetic factors impacting prediction accuracy, while requiring only mouse navigation in a web browser. ShinyGPAS is available at: https://chikudaisei.shinyapps.io/shinygpas/ . CONCLUSION ShinyGPAS is a shiny-based interactive genomic prediction accuracy simulator using deterministic formulas. It can be used for interactively exploring potential factors that influence prediction accuracy in genome-enabled prediction, simulating achievable prediction accuracy prior to genotyping individuals, or supporting in-class teaching. ShinyGPAS is open source software and it is hosted online as a freely available web-based resource with an intuitive graphical user interface.
Collapse
Affiliation(s)
- Gota Morota
- Department of Animal Science, University of Nebraska-Lincoln, PO Box 830908, Lincoln, NE, 68583-0908, USA.
| |
Collapse
|
25
|
Rincent R, Charcosset A, Moreau L. Predicting genomic selection efficiency to optimize calibration set and to assess prediction accuracy in highly structured populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2231-2247. [PMID: 28795202 PMCID: PMC5641287 DOI: 10.1007/s00122-017-2956-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/26/2017] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE We propose a criterion to predict genomic selection efficiency for structured populations. This criterion is useful to define optimal calibration set and to estimate prediction reliability for multiparental populations. Genomic selection refers to the use of genotypic information for predicting the performance of selection candidates. It has been shown that prediction accuracy depends on various parameters including the composition of the calibration set (CS). Assessing the level of accuracy of a given prediction scenario is of highest importance because it can be used to optimize CS sampling before collecting phenotypes, and once the breeding values are predicted it informs the breeders about the reliability of these predictions. Different criteria were proposed to optimize CS sampling in highly diverse panels, which can be useful to screen collections of genotypes. But plant breeders often work on structured material such as biparental or multiparental populations, for which these criteria are less adapted. We derived from the generalized coefficient of determination (CD) theory different criteria to optimize CS sampling and to assess the reliability associated to predictions in structured populations. These criteria were evaluated on two nested association mapping (NAM) populations and two highly diverse panels of maize. They were efficient to sample optimized CS in most situations. They could also estimate at least partly the reliability associated to predictions between NAM families, but they could not estimate differences in the reliability associated to the predictions of NAM families using the highly diverse panels as calibration sets. We illustrated that the CD criteria could be adapted to various prediction scenarios including inter and intra-family predictions, resulting in higher prediction accuracies.
Collapse
Affiliation(s)
- R Rincent
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, 63100, Clermont-Ferrand, France.
- Université Blaise Pascal, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 63178, Aubière Cedex, France.
| | - A Charcosset
- UMR de Génétique Végétale, INRA - Université Paris-Sud - CNRS, 91190, Gif-Sur-Yvette, France
| | - L Moreau
- UMR de Génétique Végétale, INRA - Université Paris-Sud - CNRS, 91190, Gif-Sur-Yvette, France
| |
Collapse
|
26
|
de Azevedo Peixoto L, Moellers TC, Zhang J, Lorenz AJ, Bhering LL, Beavis WD, Singh AK. Leveraging genomic prediction to scan germplasm collection for crop improvement. PLoS One 2017; 12:e0179191. [PMID: 28598989 PMCID: PMC5466325 DOI: 10.1371/journal.pone.0179191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 05/25/2017] [Indexed: 01/08/2023] Open
Abstract
The objective of this study was to explore the potential of genomic prediction (GP) for soybean resistance against Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mold (WM). A diverse panel of 465 soybean plant introduction accessions was phenotyped for WM resistance in replicated field and greenhouse tests. All plant accessions were previously genotyped using the SoySNP50K BeadChip. The predictive ability of six GP models were compared, and the impact of marker density and training population size on the predictive ability was investigated. Cross-prediction among environments was tested to determine the effectiveness of the prediction models. GP models had similar prediction accuracies for all experiments. Predictive ability did not improve significantly by using more than 5k SNPs, or by increasing the training population size (from 50% to 90% of the total of individuals). The GP model effectively predicted WM resistance across field and greenhouse experiments when each was used as either the training or validation population. The GP model was able to identify WM-resistant accessions in the USDA soybean germplasm collection that had previously been reported and were not included in the study panel. This study demonstrated the applicability of GP to identify useful genetic sources of WM resistance for soybean breeding. Further research will confirm the applicability of the proposed approach to other complex disease resistance traits and in other crops.
Collapse
Affiliation(s)
| | - Tara C. Moellers
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Jiaoping Zhang
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Aaron J. Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, Minneapolis, MN, United States of America
| | - Leonardo L. Bhering
- Department of Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - William D. Beavis
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
27
|
Mehrban H, Lee DH, Moradi MH, IlCho C, Naserkheil M, Ibáñez-Escriche N. Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture. Genet Sel Evol 2017; 49:1. [PMID: 28093066 PMCID: PMC5240470 DOI: 10.1186/s12711-016-0283-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/22/2016] [Indexed: 12/15/2022] Open
Abstract
Background Hanwoo beef is known for its marbled fat, tenderness, juiciness and characteristic flavor, as well as for its low cholesterol and high omega 3 fatty acid contents. As yet, there has been no comprehensive investigation to estimate genomic selection accuracy for carcass traits in Hanwoo cattle using dense markers. This study aimed at evaluating the accuracy of alternative statistical methods that differed in assumptions about the underlying genetic model for various carcass traits: backfat thickness (BT), carcass weight (CW), eye muscle area (EMA), and marbling score (MS). Methods Accuracies of direct genomic breeding values (DGV) for carcass traits were estimated by applying fivefold cross-validation to a dataset including 1183 animals and approximately 34,000 single nucleotide polymorphisms (SNPs). Results Accuracies of BayesC, Bayesian LASSO (BayesL) and genomic best linear unbiased prediction (GBLUP) methods were similar for BT, EMA and MS. However, for CW, DGV accuracy was 7% higher with BayesC than with BayesL and GBLUP. The increased accuracy of BayesC, compared to GBLUP and BayesL, was maintained for CW, regardless of the training sample size, but not for BT, EMA, and MS. Genome-wide association studies detected consistent large effects for SNPs on chromosomes 6 and 14 for CW. Conclusions The predictive performance of the models depended on the trait analyzed. For CW, the results showed a clear superiority of BayesC compared to GBLUP and BayesL. These findings indicate the importance of using a proper variable selection method for genomic selection of traits and also suggest that the genetic architecture that underlies CW differs from that of the other carcass traits analyzed. Thus, our study provides significant new insights into the carcass traits of Hanwoo cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hossein Mehrban
- Department of Animal Science, Shahrekord University, P.O. Box 115, Shahrekord, 88186-34141, Iran
| | - Deuk Hwan Lee
- Department of Animal Life and Environment Science, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do, 456-749, Korea.
| | - Mohammad Hossein Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arāk, 38156-8-8349, Iran
| | - Chung IlCho
- Hanwoo Improvement Center, National Agricultural Cooperative Federation, Haeun-ro 691, Unsan-myeon, Seosan-si, Chungnam-do, 356-831, Korea
| | - Masoumeh Naserkheil
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj, 31587-11167, Iran
| | - Noelia Ibáñez-Escriche
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| |
Collapse
|
28
|
Fu YB, Yang MH, Zeng F, Biligetu B. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:1182. [PMID: 28729875 PMCID: PMC5498511 DOI: 10.3389/fpls.2017.01182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/20/2017] [Indexed: 05/09/2023]
Abstract
Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, SaskatoonSK, Canada
- *Correspondence: Yong-Bi Fu,
| | - Mo-Hua Yang
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, SaskatoonSK, Canada
- College of Forestry, Central South University of Forestry and TechnologyChangsha, China
| | - Fangqin Zeng
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, SaskatoonSK, Canada
| | - Bill Biligetu
- Department of Plant Sciences, University of Saskatchewan, SaskatoonSK, Canada
| |
Collapse
|