1
|
Chai W, Yao W, Pan J, Huang Z, Wang B, Xu B, Fan X, He W, Wang W, Zhang W. Moniezia benedeni drives CD3 + T cells residence in the sheep intestinal mucosal effector sites. Front Vet Sci 2024; 11:1342169. [PMID: 38371601 PMCID: PMC10869452 DOI: 10.3389/fvets.2024.1342169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction T cells are the core of the cellular immunity and play a key role in the regulation of intestinal immune homeostasis. In order to explore the impact Moniezia benedeni (M. benedeni) infection on distributions of CD3+ T cells in the small intestine of the sheep. Methods In this study, sheep pET-28a-CD3 recombinant plasmid were constructed and expressed in BL21 receptor cells, then the rabbit anti-sheep CD3 polyclonal antibody was prepared through recombinant protein inducing. The M. benedeni-infected sheep (infection group, n = 6) and healthy sheep (control group, n = 6) were selected, and the distributions of CD3+ T cells in intestinal laminae propria (LP) and mucous epitheliums were observed and analyzed systematically. Results The results showed that the rabbit anti-sheep CD3 polyclonal antibody had good potency and specificity. In the effector area of small intestine, a large number of CD3+ T cells were mainly diffusely distributed in the intestinal LP as well as in the mucous epitheliums, and the densities of intestinal LP from duodenum to jejunum to ileum were 6.01 cells/104 μm2, 7.01 cells/104 μm2 and 6.43 cells/104 μm2, respectively. Their distribution densities in mucous epitheliums were 6.71 cells/104 μm2, 7.93 cells/104 μm2 and 7.21 cells/104 μm2, respectively; in the infected group, the distributions of CD3+ T cells were similar to that of the control group, and the densities in each intestinal segment were all significantly increased (p < 0.05), meanwhile, the total densities of CD3+ T cells in duodenum, jejunum and ileum were increased by 33.43%, 14.50%, and 34.19%. In LP and mucous epitheliums, it was increased by 33.57% and 27.92% in duodenum; by 25.82% and 7.07% in jejunum, and by 27.07% and 19.23% in ileum, respectively. Discussion It was suggested that M. benedeni infection did not change the spatial distributions of CD3+ T cells in the small intestine of sheep, but significantly increased their densities, which lays a foundation for further research on the regulatory mechanism of sheep intestinal mucosal immune system against M. benedeni infection.
Collapse
Affiliation(s)
- Wenzhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Bin Xu
- Lanzhou Safari Park Management Co., Lanzhou, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Fang YD, Liu JY, Xie F, Liu LP, Zeng WW, Wang WH. Antibody preparation and age-dependent distribution of TLR8 in Bactrian camel spleens. BMC Vet Res 2023; 19:276. [PMID: 38104080 PMCID: PMC10725000 DOI: 10.1186/s12917-023-03812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Toll-like receptor 8 (TLR8) can recognize specific pathogen-associated molecular patterns and exert multiple immunological functions through activation of signaling cascades. However, the precise distribution and age-related alterations of TLR8 in the spleens of Bactrian camels have not yet been investigated. This study aimed to prepare a rabbit anti-Bactrian camel TLR8 polyclonal antibody and elucidate the distribution of TLR8 in the spleens of Bactrian camels at different age groups. The methodology involved the construction of the pET-28a-TLR8 recombinant plasmid, followed by the expression of TLR8 recombinant protein via prokaryotic expression. Subsequently, rabbits were immunized with the purified protein to prepare the TLR8 polyclonal antibody. Finally, twelve Alashan Bactrian camels were categorized into four groups: young (1-2 years), pubertal (3-5 years), middle-aged (6-16 years) and old (17-20 years). These camels received intravenous sodium pentobarbital (20 mg/kg) anesthesia and were exsanguinated to collect spleen samples. Immunohistochemical techniques were employed to observe and analyze the distribution patterns and age-related changes of TLR8 in the spleen. RESULTS The results showed that the TLR8 recombinant protein was expressed in the form of inclusion body with a molecular weight of 52 kDa, and the optimal induction condition involved 0.3 mmol/L IPTG induction for 8 h. The prepared antibody yielded a titer of 1:32 000, and the antibody demonstrated specific binding to TLR8 recombinant protein. TLR8 positive cells exhibited a consistent distribution pattern in the spleen across different age groups of Bactrian camels, primarily scattered within the periarterial lymphatic sheath of the white pulp, marginal zone, and red pulp. The predominant cell type expressing TLR8 was macrophages, with expression also observed in neutrophils and dendritic cells. Statistical analysis revealed that there were significant differences in the distribution density of TLR8 positive cells among different spleen regions at the same age, with the red pulp, marginal zone, and white pulp showing a descending order (P<0.05). Age-related changes indicated that the distribution density in the marginal zone and red pulp exhibited a similar trend of initially increasing and subsequently decreasing from young to old camels. As camels age, there was a significant decrease in the distribution density across all spleen regions (P<0.05). CONCLUSIONS The results confirmed that this study successfully prepared a rabbit anti-Bactrian camel TLR8 polyclonal antibody with good specificity. TLR8 positive cells were predominantly located in the red pulp and marginal zone of the spleen, signifying their pivotal role in the innate immune response of the spleen. Aging was found to significantly reduce the density of TLR8 positive cells, while leaving their scattered distribution characteristics unaffected. These findings provide valuable support for further investigations into the immunomorphology and immunosenescence of the spleen in Bactrian camels.
Collapse
Affiliation(s)
- Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing-Yu Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Li-Ping Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei-Wei Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Conca W, Saleh SM, Al-Rabiah R, Parhar RS, Abd-Elnaeim M, Al-Hindas H, Tinson A, Kroell KB, Liedl KR, Collison K, Kishore U, Al-Mohanna F. The immunoglobulin A isotype of the Arabian camel ( Camelus dromedarius) preserves the dualistic structure of unconventional single-domain and canonical heavy chains. Front Immunol 2023; 14:1289769. [PMID: 38162642 PMCID: PMC10756906 DOI: 10.3389/fimmu.2023.1289769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The evolution of adaptive immunity in Camelidae resulted in the concurrent expression of classic heterotetrameric and unconventional homodimeric heavy chain-only IgG antibodies. Heavy chain-only IgG bears a single variable domain and lacks the constant heavy (CH) γ1 domain required for pairing with the light chain. It has not been reported whether this distinctive feature of IgG is also observed in the IgA isotype. Methods Gene-specific primers were used to generate an IgA heavy chain cDNA library derived from RNA extracted from the dromedary's third eyelid where isolated lymphoid follicles and plasma cells abound at inductive and effector sites, respectively. Results Majority of the cDNA clones revealed hallmarks of heavy chain-only antibodies, i.e. camelid-specific amino acid substitutions in framework region 1 and 2, broad length distribution of complementarity determining region 3, and the absence of the CHα1 domain. In a few clones, however, the cDNA of the canonical IgA heavy chain was amplified which included the CHα1 domain, analogous to CHγ1 domain in IgG1 subclass. Moreover, we noticed a short, proline-rich hinge, and, at the N-terminal end of the CHα3 domain, a unique, camelid-specific pentapeptide of undetermined function, designated as the inter-α region. Immunoblots using rabbit anti-camel IgA antibodies raised against CHα2 and CHα3 domains as well as the inter-α region revealed the expression of a ~52 kDa and a ~60 kDa IgA species, corresponding to unconventional and canonical IgA heavy chain, respectively, in the third eyelid, trachea, small and large intestine. In contrast, the leporine anti-CHα1 antibody detected canonical, but not unconventional IgA heavy chain, in all the examined tissues, milk, and serum, in addition to another hitherto unexplored species of ~45 kDa in milk and serum. Immunohistology using anti-CHα domain antibodies confirmed the expression of both variants of IgA heavy chains in plasma cells in the third eyelid's lacrimal gland, conjunctiva, tracheal and intestinal mucosa. Conclusion We found that in the dromedary, the IgA isotype has expanded the immunoglobulin repertoire by co-expressing unconventional and canonical IgA heavy chains, comparable to the IgG class, thus underscoring the crucial role of heavy chain-only antibodies not only in circulation but also at the mucosal frontiers.
Collapse
Affiliation(s)
- Walter Conca
- Department of Executive Health Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Soad M. Saleh
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rana Al-Rabiah
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Ranjit Singh Parhar
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mahmoud Abd-Elnaeim
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Hussein Al-Hindas
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Alexander Tinson
- Management of Scientific Centers and Presidential Camels, Department of President’s Affairs, Hilli ET and Cloning Centre, Al Ain, United Arab Emirates
| | | | - Klaus Roman Liedl
- Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, Austria
| | - Kate Collison
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Chuluunbaatar T, Ichii O, Masum MA, Namba T, Kon Y. Morphological Characteristics of Genital Organ-Associated Lymphoid Tissue in the Vaginal Vestibule of Goats and Pigs. Vet Sci 2023; 10:51. [PMID: 36669052 PMCID: PMC9864709 DOI: 10.3390/vetsci10010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Mucosa-associated lymphoid tissue (MALT) is a specialized form of peripheral lymphoid tissue (LT), which is found on mucosal surfaces exposed to the environment. However, morphological data of these tissues in farm animals are scarce. This study investigated the gross anatomical and histological features of genital organ-associated lymphoid tissues (GOALTs) in the vaginal vestibule (VV) of healthy, non-pregnant, adult goats and pigs. Their VVs were composed of stratified squamous, non-keratinized epithelium, and various-sized dark-blue hematoxylin-positive spots were observed in whole-mount specimens, which were diffusely distributed throughout the mucosal surfaces. These spots were histologically identified as LTs and consisted of lymphatic nodules (LNs) or diffuse lymphoid tissue (DLTs). Both LNs and DLTs contained B cells, T cells, macrophages, dendritic cells, plasma cells, and high endothelial venules. Only the numbers of B cells were significantly higher in both the LNs and DLTs of pigs compared to goats. Furthermore, the surface of the VV epithelium covering the LTs was partially disrupted with a large intercellular space containing abundant connective tissue fibers with numerous lymphocytes. In conclusion, GOALTs in the VV appear to be common local immunological barriers in both examined animals. This knowledge is crucial for understanding the structures and disorders of female reproductive organs in farm animals.
Collapse
Affiliation(s)
- Tsolmon Chuluunbaatar
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
- Department of Basic Science of Veterinary Medicine, School of Veterinary Medicine, Mongolian University of Life Science, Ulaanbaatar 17024, Mongolia
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Md. Abdul Masum
- Department of Anatomy, Histology, and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| |
Collapse
|
5
|
Han LX, Yao WL, Pan J, Wang BS, He WH, Fan XP, Wang WH, Zhang WD. Moniezia benedeni Infection Restrain IgA+, IgG+, and IgM+ Cells Residence in Sheep (Ovis aries) Small Intestine. Front Vet Sci 2022; 9:878467. [PMID: 35573414 PMCID: PMC9096708 DOI: 10.3389/fvets.2022.878467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 01/12/2023] Open
Abstract
Secreted immunoglobulin A (SIgA), IgG, and IgM play a crucial role in forming the intestinal mucosal immune barrier, and parasites could disturb the host's immune response by releasing various immunomodulatory molecules. Moniezia benedeni is an important pathogen parasitizing in the sheep small intestine. It is aimed to explore the residence characteristics of IgA+, IgG+, and IgM+ cells in the sheep small intestine, and the influence of Moniezia benedeni infection on them. Control group (n = 6) and infected group (n = 6) were selected, respectively, and the three subtype cells residing in the small intestine were systematically observed and analyzed. The results showed that in the Control group, the three types of positive cells were all distributed diffusely, and the total densities in jejunum, duodenum and ileum was gradually declined in turn. Notably, the change trend of IgA+ and IgG+ cells densities were both congruent with the total densities, and the differences among them were significant, respectively (P < 0.05); the IgM+ cells density was the highest in duodenum, followed by jejunum and ileum, there was no significant difference between duodenum and jejunum (P > 0.05), but both significantly higher than in ileum (P < 0.05). In the Infected group, their total densities in duodenum, jejunum and ileum were gradually declined in turn. Notably, the IgA+ and IgM+ cells densities change trend was the same as the total densities, and the differences among them were significant, respectively (P < 0.05). The IgG+ cells density in duodenum was the highest, followed by ileum and jejunum and there was significantly difference among them (P < 0.05). The comparison results between Control and Infected groups showed that from the duodenum, jejunum to ileum, IgA+, IgG+, and IgM+ cells were all reduced significantly, respectively. The results suggest that the three types of positive cells were resided heterogeneously in the small intestinal mucosa, that is, significant region-specificity; Moniezia benedeni infection could not change their diffuse distribution characteristics, but strikingly, reduce their resident densities, and the forming mucosal immune barrier were significantly inhibited. It provided powerful evidence for studying on the molecular mechanism of Moniezia benedeni evasion from immune surveillance by strongly inhibiting the host's mucosal immune barrier.
Collapse
|
6
|
Abstract
Camels are domesticated animals that are highly adapted to the extreme desert ecosystem with relatively higher resistance to a wide range of pathogens compared to many other species from the same geographical region. Recently, there has been increased interest in the field of camel immunology. As the progress in the analysis of camel immunoglobulins has previously been covered in many recent reviews, this review intends to summarize published findings related to camel cellular immunology with a focus on the phenotype and functionality of camel leukocyte subpopulations. The review also describes the impact of different physiological (age and pregnancy) and pathological (e.g. infection) conditions on camel immune cells. Despite the progress achieved in the field of camel immunology, there are gaps in our complete understanding of the camel immune system. Questions remain regarding innate recognition mechanisms, the functional characterization of antigen-presenting cells, and the characterization of camel NK and cytotoxic T cells.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hans-Joachim Schuberth
- Institute of Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
7
|
Xu Y, Sun J, Cui Y, Yu S, He J, Liu P, Zhang Q. Age‐related changes in the morphology and the distribution of IgA and IgG in the pharyngeal tonsils of yaks (Bos grunniens). J Morphol 2018; 280:214-222. [DOI: 10.1002/jmor.20933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/23/2018] [Accepted: 11/26/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Yuanfang Xu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Juan Sun
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Junfeng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Penggang Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Qian Zhang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| |
Collapse
|