1
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Sun Y, Cheng L, Hong Y, Li Z, Li C, Ban X, Gu Z. Preparation and characterization of cationic hyperbranched maltodextrins as potential carrier for siRNA encapsulation. Int J Biol Macromol 2023; 225:786-794. [PMID: 36400207 DOI: 10.1016/j.ijbiomac.2022.11.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/22/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
The present study sought to investigate the physicochemical properties of cationic branched maltodextrins with similar degrees of substitution but different degrees of branching and their siRNA delivery capacity. The results showed that the ratio of α-1,6 glycosidic bonds was significantly increased in the sample treated with dual enzymes. The structural characterization results showed that abundant short chains reassembled by 1,4-α-glucan branching enzyme (GBEs) hydrolysis formed hyperbranched short clustered structure. The absorption peaks that appeared in the FT-IR spectrum confirmed the occurrence of quaternization. The complexes formed by self-assembly of cationic maltodextrins and siRNA were verified by the gel retardation assay and atomic force microscopy, demonstrating a uniform spherical structure with a size close to 300-350 nm. Meanwhile, cationic branched maltodextrins could effectively reduce the change of secondary structure of siRNA. Overall, the results suggested that branched maltodextrins with a cationic surface had significant potential as siRNA carriers.
Collapse
Affiliation(s)
- Yue Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Maeno T, Yamakawa Y, Takiyasu Y, Miyauchi H, Nakamura Y, Ono M, Ozaki N, Utsumi Y, Cenci U, Colleoni C, Ball S, Tsuzuki M, Fujiwara S. One of the isoamylase isoforms, CMI294C, is required for semi-amylopectin synthesis in the rhodophyte Cyanidioschyzon merolae. FRONTIERS IN PLANT SCIENCE 2022; 13:967165. [PMID: 36051298 PMCID: PMC9424615 DOI: 10.3389/fpls.2022.967165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Most rhodophytes synthesize semi-amylopectin as a storage polysaccharide, whereas some species in the most primitive class (Cyanidiophyceae) make glycogen. To know the roles of isoamylases in semi-amylopectin synthesis, we investigated the effects of isoamylase gene (CMI294C and CMS197C)-deficiencies on semi-amylopectin molecular structure and starch granule morphology in Cyanidioschyzon merolae (Cyanidiophyceae). Semi-amylopectin content in a CMS197C-disruption mutant (ΔCMS197C) was not significantly different from that in the control strain, while that in a CMI294C-disruption mutant (ΔCMI294C) was much lower than those in the control strain, suggesting that CMI294C is essential for semi-amylopectin synthesis. Scanning electron microscopy showed that the ΔCMI294C strain contained smaller starch granules, while the ΔCMS197C strain had normal size, but donut-shaped granules, unlike those of the control strain. Although the chain length distribution of starch from the control strain displayed a semi-amylopectin pattern with a peak around degree of polymerization (DP) 11-13, differences in chain length profiles revealed that the ΔCMS197C strain has more short chains (DP of 3 and 4) than the control strain, while the ΔCMI294C strain has more long chains (DP ≥12). These findings suggest that CMI294C-type isoamylase, which can debranch a wide range of chains, probably plays an important role in semi-amylopectin synthesis unique in the Rhodophyta.
Collapse
Affiliation(s)
- Toshiki Maeno
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yuki Yamakawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yohei Takiyasu
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hiroki Miyauchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yasunori Nakamura
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Masami Ono
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Noriaki Ozaki
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | | | - Ugo Cenci
- CNRS, UMR8576-UGSF-Unite de Glycobiologie Structurale et Fonctionnelle, University of Lille, Lille, France
| | - Christophe Colleoni
- CNRS, UMR8576-UGSF-Unite de Glycobiologie Structurale et Fonctionnelle, University of Lille, Lille, France
| | - Steven Ball
- CNRS, UMR8576-UGSF-Unite de Glycobiologie Structurale et Fonctionnelle, University of Lille, Lille, France
| | - Mikio Tsuzuki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
4
|
Bian S, Tian T, Ding Y, Yan N, Wang C, Fang N, Liu Y, Zhang Z, Zhang H. bHLH Transcription Factor NtMYC2a Regulates Carbohydrate Metabolism during the Pollen Development of Tobacco ( Nicotiana tabacum L. cv. TN90). PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010017. [PMID: 35009020 PMCID: PMC8747387 DOI: 10.3390/plants11010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/30/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factor MYC2 regulates plant growth and development in many aspects through the jasmonic acid (JA) signaling pathway, while the role of MYC2 in plant carbohydrate metabolism has not been reported. Here, we generated NtMYC2a-overexpressing (NtMYC2a-OE) and RNA-interference-mediated knockdown (NtMYC2a-RI) transgenic plants of tobacco (Nicotiana tabacum L. cv. TN90) to investigate the role of NtMYC2a in carbohydrate metabolism and pollen development. Results showed that NtMYC2a regulates the starch accumulation and the starch-sugar conversion of floral organs, especially in pollen. The RT-qPCR analysis showed that the expression of starch-metabolic-related genes, AGPs, SS2 and BAM1, were regulated by NtMYC2a in the pollen grain, anther wall and ovary of tobacco plants. The process of pollen maturation was accelerated in NtMYC2a-OE plants and was delayed in NtMYC2a-RI plants, but the manipulation of NtMYC2a expression did not abolish the pollen fertility of the transgenic plants. Intriguingly, overexpression of NtMYC2a also enhanced the soluble carbohydrate accumulation in tobacco ovaries. Overall, our results demonstrated that the bHLH transcription factor NtMYC2a plays an important role in regulating the carbohydrate metabolism during pollen maturation in tobacco.
Collapse
|
5
|
Unraveling the Microbiome of Necrotizing Enterocolitis: Insights in Novel Microbial and Metabolomic Biomarkers. Microbiol Spectr 2021; 9:e0117621. [PMID: 34704805 PMCID: PMC8549755 DOI: 10.1128/spectrum.01176-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is among the most relevant gastrointestinal diseases affecting mostly prematurely born infants with low birth weight. While intestinal dysbiosis has been proposed as one of the possible factors involved in NEC pathogenesis, the role of the gut microbiota remains poorly understood. In this study, the gut microbiota of preterm infants was explored to highlight differences in the composition between infants affected by NEC and infants prior to NEC development. A large-scale gut microbiome analysis was performed, including 47 shotgun sequencing data sets generated in the framework of this study, along with 124 retrieved from publicly available repositories. Meta-analysis led to the identification of preterm community state types (PT-CSTs), which recur in healthy controls and NEC infants. Such analyses revealed an overgrowth of a range of opportunistic microbial species accompanying the loss of gut microbial biodiversity in NEC subjects. Moreover, longitudinal insights into preterm infants prior to NEC development indicated Clostridium neonatale and Clostridium perfringens species as potential biomarkers for predictive early diagnosis of this disease. Furthermore, functional investigation of the enzymatic reaction profiles associated with pre-NEC condition suggested DL-lactate as a putative metabolic biomarker for early detection of NEC onset. IMPORTANCE Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease occurring predominantly in premature infants whose etiology is still not fully understood. In this study, the analysis of infant fecal samples through shotgun metagenomics approaches revealed a marked reduction of the intestinal (bio)diversity and an overgrowth of (opportunistic) pathogens associated with the NEC development. In particular, dissection of the infant’s gut microbiome before NEC diagnosis highlighted the potential involvement of Clostridium genus members in the progression of NEC. Remarkably, our analyses highlighted a gastrointestinal DL-lactate accumulation among NEC patients that might represent a novel potential functional biomarker for the early diagnosis of NEC.
Collapse
|
6
|
Qiao Y, Wang W, Lu X. Engineering cyanobacteria as cell factories for direct trehalose production from CO2. Metab Eng 2020; 62:161-171. [DOI: 10.1016/j.ymben.2020.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/12/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
|
7
|
Pfister B, Zeeman SC, Rugen MD, Field RA, Ebenhöh O, Raguin A. Theoretical and experimental approaches to understand the biosynthesis of starch granules in a physiological context. PHOTOSYNTHESIS RESEARCH 2020; 145:55-70. [PMID: 31955343 PMCID: PMC7308250 DOI: 10.1007/s11120-019-00704-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Starch, a plant-derived insoluble carbohydrate composed of glucose polymers, is the principal carbohydrate in our diet and a valuable raw material for industry. The properties of starch depend on the arrangement of glucose units within the constituent polymers. However, key aspects of starch structure and the underlying biosynthetic processes are not well understood, limiting progress towards targeted improvement of our starch crops. In particular, the major component of starch, amylopectin, has a complex three-dimensional, branched architecture. This architecture stems from the combined actions of a multitude of enzymes, each having broad specificities that are difficult to capture experimentally. In this review, we reflect on experimental approaches and limitations to decipher the enzymes' specificities and explore possibilities for in silico simulations of these activities. We believe that the synergy between experimentation and simulation is needed for the correct interpretation of experimental data and holds the potential to greatly advance our understanding of the overall starch biosynthetic process. We furthermore propose that the formation of glucan secondary structures, concomitant with its synthesis, is a previously overlooked factor that directly affects amylopectin architecture through its impact on enzyme function.
Collapse
Affiliation(s)
- Barbara Pfister
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Samuel C Zeeman
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Michael D Rugen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Oliver Ebenhöh
- Department of Biology, Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Department of Biology, Cluster of Excellence on Plant Sciences, Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Adélaïde Raguin
- Department of Biology, Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, 40225, Düsseldorf, Germany.
| |
Collapse
|
8
|
Smith AM, Zeeman SC. Starch: A Flexible, Adaptable Carbon Store Coupled to Plant Growth. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:217-245. [PMID: 32075407 DOI: 10.1146/annurev-arplant-050718-100241] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research in the past decade has uncovered new and surprising information about the pathways of starch synthesis and degradation. This includes the discovery of previously unsuspected protein families required both for processes and for the long-sought mechanism of initiation of starch granules. There is also growing recognition of the central role of leaf starch turnover in making carbon available for growth across the day-night cycle. Sophisticated systems-level control mechanisms involving the circadian clock set rates of nighttime starch mobilization that maintain a steady supply of carbon until dawn and modulate partitioning of photosynthate into starch in the light, optimizing the fraction of assimilated carbon that can be used for growth. These discoveries also uncover complexities: Results from experiments with Arabidopsis leaves in conventional controlled environments are not necessarily applicable to other organs or species or to growth in natural, fluctuating environments.
Collapse
Affiliation(s)
| | - Samuel C Zeeman
- Institute of Plant Molecular Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
9
|
Affiliation(s)
- Yasunori Nakamura
- Akita Natural Science Laboratory; Tennoh, Katagami, Akita Japan
- Faculty of Bioresource Sciences; Akita Prefectural University; Shimoshinjo-Nakano, Akita Japan
| |
Collapse
|
10
|
Perin D, Murano E. Starch Polysaccharides in the Human Diet: Effect of the Different Source and Processing on its Absorption. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Starch is the main source of carbohydrates in human diet. It is widely used in food processing and non-food industrial applications. The effects on starch digestion and absorption in humans are reviewed in relation to the starch composition, sources, plant genetic variation, food processing and cooking. The impact of food industrial processing and starch modification on the digestibility of starch containing foods and on gut microbiota are discussed. Considering that the resistant starch (RS) fraction escaped from the small intestine is fermented in large intestine, all the variables that influence starch digestibility and absorption must be taken into account when discussing about healthy properties of fibers. Future trends in food industries are aimed to increase the RS fraction in processed foods in order to improve nutritional quality as well as to clarify the influence of RS3 and RS4 on gut microbiota.
Collapse
Affiliation(s)
- Danilo Perin
- Protos Research Institute, 34128, Trieste, Italy
| | - Erminio Murano
- Protos Research Institute, 34128, Trieste, Italy
- Nealys srl, Via Flavia 23/1, 34148 Trieste, Italy
| |
Collapse
|