1
|
Coble AA, Silva-Sanchez C, Arthurs WJ, Flinders CA. Detection and accumulation of environmentally-relevant glyphosate concentrations delivered via pulse- or continuous-delivery on passive samplers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156131. [PMID: 35605867 DOI: 10.1016/j.scitotenv.2022.156131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate is the most commonly used herbicide globally, which has contributed to its ubiquitous presence in the environment. Glyphosate application rates and delivery to surface water vary with land use. Streams in urban and agricultural catchments can experience continuous delivery of low concentrations of glyphosate and aminomethylphosphonic acid (AMPA), while their presence in forest streams occurs as an episodic pulse following silvicultural application. We assessed whether trace concentrations of glyphosate delivered as a 1-day pulse (mimic silvicultural applications) followed by flushing with deionized water would affect the detection of glyphosate or AMPA on novel passive samplers, Polar Organic Chemical Integrative Sampler with Molecular Imprinted Polymer (POCIS-MIP), compared with continuous delivery (mimic agricultural or urban applications). Within each delivery type, POCIS-MIP were exposed to seven treatment concentrations of Rodeo (equivalent to 0.0 to 1.84 μg glyphosate L-1). Experimental results demonstrate POCIS-MIP can detect differences in relative glyphosate concentrations above 0.115 μg L-1 (pulse-delivery) or 0.23 μg L-1 (continuous-delivery), but were unable to distinguish trace concentrations (i.e., < 0.115 or 0.23 μg L-1). Our results suggest POCIS-MIP may better retain glyphosate when delivered as a pulse than when delivered continuously, but both underestimated actual treatment concentrations by 46 to 56%. There is a need to demonstrate the field applicability of passive sampling methods to improve environmental monitoring of silvicultural herbicides, and our results demonstrate passive samplers were unable to distinguish lower concentrations, suggesting a limited utility for determining trace concentration levels such as those experienced during or immediately after silvicultural application.
Collapse
Affiliation(s)
- Ashley A Coble
- NCASI, 2438 NW Professional Drive, Corvallis, OR 97330, United States of America.
| | | | - William J Arthurs
- NCASI, 1117 3rd Street, Anacortes, WA 98221, United States of America
| | | |
Collapse
|
2
|
Xing SY, Li ZH, Li P, You H. A Mini-review of the Toxicity of Pollutants to Fish Under Different Salinities. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:1001-1005. [PMID: 35486156 DOI: 10.1007/s00128-022-03528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
In recent years, with the development of the global economy, water pollution has increased. Pollutants migrate, accumulate, and diffuse in aquatic environments. Most of the pollutants eventually enter aquatic organisms. The accumulation of pollutants affects the development and reproduction of organisms, and many pollutants have teratogenic, carcinogenic, and/or mutagenic effects. Aquatic organisms in estuaries and coastal areas are under pressure due to both salinity and pollutants. Among them, salinity, as an environmental factor, may affect the behavior of pollutants in the aquatic environment, causing changes in their toxic effects on fishes. Salinity also directly affects the growth and development of fishes. Therefore, this paper focuses on metals and organic pollutants and discusses the toxic effects of pollutants on fish under different salinities. This research is of great significance to environmental protection and ecological risk assessment of aquatic environments.
Collapse
Affiliation(s)
- Shao-Ying Xing
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Zhi-Hua Li
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Ping Li
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, P. R. China.
| |
Collapse
|
3
|
de Araújo EP, Caldas ED, Oliveira-Filho EC. Pesticides in surface freshwater: a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:452. [PMID: 35608712 DOI: 10.1007/s10661-022-10005-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
The objective of this study was to critically review studies published up to November 2021 that investigated the presence of pesticides in surface freshwater to answer three questions: (1) in which countries were the studies conducted? (2) which pesticides are most evaluated and detected? and (3) which pesticides have the highest concentrations? Using the Prisma protocol, 146 articles published from 1976 to November 2021 were included in this analysis: 127 studies used grab sampling, 10 used passive sampling, and 9 used both sampling techniques. In the 45-year historical series, the USA, China, and Spain were the countries that conducted the highest number of studies. Atrazine was the most evaluated pesticide (56% of the studies), detected in 43% of the studies using grab sampling, and the most detected in passive sampling studies (68%). The compounds with the highest maximum and mean concentrations in the grab sampling were molinate (211.38 µg/L) and bentazone (53 µg/L), respectively, and in passive sampling, they were oxyfluorfen (16.8 µg/L) and atrazine (4.8 μg/L), respectively. The levels found for atrazine, p,p'-DDD, and heptachlor in Brazil were higher than the regulatory levels for superficial water in the country. The concentrations exceeded the toxicological endpoint for at least 11 pesticides, including atrazine (Daphnia LC50 and fish NOAEC), cypermethrin (algae EC50, Daphnia and fish LC50; fish NOAEC), and chlorpyrifos (Daphnia and fish LC50; fish NOAEC). These results can be used for planning pesticide monitoring programs in surface freshwater, at regional and global levels, and for establishing or updating water quality regulations.
Collapse
Affiliation(s)
| | - Eloisa Dutra Caldas
- Toxicology Laboratory, Faculty of Health Sciences, University of Brasília - UnB, Brasília, Federal District, Brazil
| | | |
Collapse
|
4
|
Hutton SJ, St. Romain SJ, Pedersen EI, Siddiqui S, Chappell PE, White JW, Armbrust KL, Brander SM. Salinity Alters Toxicity of Commonly Used Pesticides in a Model Euryhaline Fish Species ( Menidia beryllina). TOXICS 2021; 9:toxics9050114. [PMID: 34065370 PMCID: PMC8161390 DOI: 10.3390/toxics9050114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Changing salinity in estuaries due to sea level rise and altered rainfall patterns, as a result of climate change, has the potential to influence the interactions of aquatic pollutants as well as to alter their toxicity. From a chemical property point of view, ionic concentration can increase the octanol–water partition coefficient and thus decrease the water solubility of a compound. Biologically, organism physiology and enzyme metabolism are also altered at different salinities with implications for drug metabolism and toxic effects. This highlights the need to understand the influence of salinity on pesticide toxicity when assessing risk to estuarine and marine fishes, particularly considering that climate change is predicted to alter salinity regimes globally and many risk assessments and regulatory decisions are made using freshwater studies. Therefore, we exposed the Inland Silverside (Menidia beryllina) at an early life stage to seven commonly used pesticides at two salinities relevant to estuarine waters (5 PSU and 15 PSU). Triadimefon was the only compound to show a statistically significant increase in toxicity at the 15 PSU LC50. However, all compounds showed a decrease in LC50 values at the higher salinity, and all but one showed a decrease in the LC10 value. Many organisms rely on estuaries as nurseries and increased toxicity at higher salinities may mean that organisms in critical life stages of development are at risk of experiencing adverse, toxic effects. The differences in toxicity demonstrated here have important implications for organisms living within estuarine and marine ecosystems in the Anthropocene as climate change alters estuarine salinity regimes globally.
Collapse
Affiliation(s)
- Sara J. Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Scott J. St. Romain
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (S.J.S.R.); (K.L.A.)
| | - Emily I. Pedersen
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA; (E.I.P.); (S.S.); (J.W.W.)
| | - Samreen Siddiqui
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA; (E.I.P.); (S.S.); (J.W.W.)
| | - Patrick E. Chappell
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - J. Wilson White
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA; (E.I.P.); (S.S.); (J.W.W.)
| | - Kevin L. Armbrust
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (S.J.S.R.); (K.L.A.)
| | - Susanne M. Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA; (E.I.P.); (S.S.); (J.W.W.)
- Correspondence:
| |
Collapse
|
5
|
Exploring Biophysical Linkages between Coastal Forestry Management Practices and Aquatic Bivalve Contaminant Exposure. TOXICS 2021; 9:toxics9030046. [PMID: 33801358 PMCID: PMC7999571 DOI: 10.3390/toxics9030046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/17/2022]
Abstract
Terrestrial land use activities present cross-ecosystem threats to riverine and marine species and processes. Specifically, pesticide runoff can disrupt hormonal, reproductive, and developmental processes in aquatic organisms, yet non-point source pollution is difficult to trace and quantify. In Oregon, U.S.A., state and federal forestry pesticide regulations, designed to meet regulatory water quality requirements, differ in buffer size and pesticide applications. We deployed passive water samplers and collected riverine and estuarine bivalves Margaritifera falcata, Mya arenaria, and Crassostrea gigas from Oregon Coast watersheds to examine forestry-specific pesticide contamination. We used non-metric multidimensional scaling and regression to relate concentrations and types of pesticide contamination across watersheds to ownership and management metrics. In bivalve samples collected from eight coastal watersheds, we measured twelve unique pesticides (two herbicides; three fungicides; and seven insecticides). Pesticides were detected in 38% of bivalve samples; and frequency and maximum concentrations varied by season, species, and watershed with indaziflam (herbicide) the only current-use forestry pesticide detected. Using passive water samplers, we measured four current-use herbicides corresponding with planned herbicide applications; hexazinone and atrazine were most frequently detected. Details about types and levels of exposure provide insight into effectiveness of current forest management practices in controlling transport of forest-use pesticides.
Collapse
|
6
|
Taylor RB, Toteu Djomte V, Bobbitt JM, Hering AS, Chen S, Chambliss CK. Effects of Environmentally Relevant Concentration Exposure Profiles on Polar Organic Chemical Integrative Sampler (POCIS) Sampling Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8848-8856. [PMID: 32598138 DOI: 10.1021/acs.est.0c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polar organic chemical integrative sampler (POCIS) is a passive sampling device that offers many advantages over traditional discrete sampling methods, but quantitative time-weighted average (TWA) concentrations rely heavily on the robustness of sampling rates. The effects of changing chemical concentration exposures on POCIS sampling rates and its ability to operate in an integrative regime were investigated for 12 pesticides across a range of environmentally relevant concentrations. In five independent 21-day experiments, POCIS devices were exposed to these compounds at constant concentrations ranging from 3 to 60 μg/L and multiple pulsed concentrations with maximum peaks ranging from 5 to 150 μg/L (TWA concentrations = 3 to 92 μg/L). For the 21-day exposures to constant and pulsed concentrations, there were no significant differences in the POCIS sampling rates between corresponding TWA concentrations. Similarly, there was no significant effect on POCIS ability to operate in an integrative regime. However, loss of linearity was visible for some replicates when exposed to higher pulsed concentrations over an extended period. Modeling and Freundlich isotherms did not predict sorbent saturation, but the extraction and reconstitution protocol likely contributed to atrazine dissolution and subsequent underestimation of sorbed chemical mass when HLB adsorption exceeded 400 μg.
Collapse
Affiliation(s)
- Raegyn B Taylor
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Valerie Toteu Djomte
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Jonathan M Bobbitt
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Amanda S Hering
- Department of Statistical Science, Baylor University, Waco, Texas 76798, United States
| | - Sunmao Chen
- Syngenta Crop Protection, LLC, Greensboro, North Carolina 27409, United States
| | - C Kevin Chambliss
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
7
|
Djomte VT, Chen S, Chambliss CK. Effects of suspended sediment on POCIS sampling rates. CHEMOSPHERE 2020; 241:124972. [PMID: 31610458 DOI: 10.1016/j.chemosphere.2019.124972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Effects of chemical uptake onto polar organic chemical integrative samplers (POCIS) exposed to total suspended solid (TSS) sediment concentrations of 0 and 3600 ppm were investigated for 12 pesticides at constant concentration, temperature, and flow velocity. The effects of sediment exposure on POCIS uptake were negligible for compounds with polyethersulfone-water partition coefficients greater than three (i.e., log KPESW > 3). However, significant effects were observed for 3 of 12 compounds tested, and the maximum effect was an approximate 4-fold increase in sampling rate for the sediment experiment relative to the control. Effects of sediment on the pesticide distribution between polyethersulfone (PES) membranes and Oasis HLB sorbent were also investigated. The fraction of pesticide accumulated on PES membranes was relatively low for most compounds and ranged from 0 to 33%. In contrast, four compounds with higher affinity for PES accumulated preferentially on the membranes (fraction ranging from 64 to 96%), suggesting that a sampling rate derived from the additive contribution of membrane extraction and the more typical extraction of analytes from HLB sorbent would improve the sensitivity of sampling rate estimations for these compounds. However, for these same compounds, the combined sampling rate, Rs (HLB + PES), was considerably more susceptible to a sediment effect than the traditional sampling rate determination, relying solely on extraction from HLB sorbent.
Collapse
Affiliation(s)
| | - Sunmao Chen
- Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | - C Kevin Chambliss
- Baylor University, Department of Chemistry & Biochemistry, Waco, TX, USA.
| |
Collapse
|
8
|
Lu Z, Gan J, Cui X, Delgado-Moreno L, Lin K. Understanding the bioavailability of pyrethroids in the aquatic environment using chemical approaches. ENVIRONMENT INTERNATIONAL 2019; 129:194-207. [PMID: 31129496 DOI: 10.1016/j.envint.2019.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/27/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Pyrethroids are a class of commonly used insecticides and are ubiquitous in the aquatic environment in various regions. Aquatic toxicity of pyrethroids was often overestimated when using conventional bulk chemical concentrations because of their strong hydrophobicity. Over the last two decades, bioavailability has been recognized and applied to refine the assessment of ecotoxicological effects of pyrethroids. This review focuses on recent advances in the bioavailability of pyrethroids, specifically in the aquatic environment. We summarize the development of passive sampling and Tenax extraction methods for assessing the bioavailability of pyrethroids. Factors affecting the bioavailability of pyrethroids, including physicochemical properties of pyrethroids, and quality and quantity of organic matter, were overviewed. Various applications of bioavailability on the assessment of bioaccumulation and acute toxicity of pyrethroids were also discussed. The final section of this review highlights future directions of research, including development of standardized protocols for measurement of bioavailability, establishment of bioavailability-based toxicity benchmarks and water/sediment quality criteria, and incorporation of bioavailability into future risk assessment and management actions.
Collapse
Affiliation(s)
- Zhijiang Lu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, United States.
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Laura Delgado-Moreno
- Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Kunde Lin
- The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
9
|
Asouzu Johnson J, Ihunwo A, Chimuka L, Mbajiorgu EF. Cardiotoxicity in African clawed frog (Xenopus laevis) sub-chronically exposed to environmentally relevant atrazine concentrations: Implications for species survival. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105218. [PMID: 31203168 DOI: 10.1016/j.aquatox.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
The toxic effects of different atrazine concentrations on tadpoles and adult male African clawed frogs (Xenopus laevis) were assessed in a controlled laboratory environment following 90 days' exposure. The aim was to elucidate the danger of atrazine exposure on the cardiac tissue relative to its critical function of rhythmic contractility, fundamental for optimal blood circulation and homeostasis. Tadpoles and adult frogs were exposed to 0 μg/L (control), 0.01 μg L-1, 200 μg L-1 and 500 μg L-1 concentrations of atrazine for 90 days. Mortality was concenration-dependent and significantly increased in juvenile group (77%, 43%, 23% and 0 respectively for 500 μg L-1, 200 μg L-1, 0.01 μg L-1, and control group). While the mean juvenile heart area decreased concentration-dependently, adult frog mean heart area significantly increased in the 200 μg L-1 group only and mean heart weight change was variable across all exposure levels. Light microscopy of hematoxylin and eosin (H&E) and Mallory-Heidenhain rapid one-step staining techniques on cardiac tissue sections of the juvenile and adult frogs revealed shrinkage of cardiac muscle cells into thin wavy myocytes. Additionally, disorganized branching of muscle fibres with reduced striations were observed in 0.01 μg L-1 and 200 μg L-1 but hypertrophied myocytes, thickened intensely staining myofibrils in the 500 μg L-1 group in juvenile and adult frogs. Significant increase in the mean percentage area of connective tissue in all the treated groups (p < 0.036) were also recorded. Immunohistochemistry analysis showed decreased eNOS localization in cardiac tissue in 200 μg L-1 and 500 μg L-1 of both juvenile and adult group, suggestive of decreased cardiac contractility due to atrazine exposure. The results indicate that environmentally relevant atrazine concentrations cause significant mortality in tadpoles while concentrations ≥200 μg L-1 adversely affect cardiac muscle morphology and may induce functional perturbations in cardiac tissue contractility and consequent dysfunction which generally may have an adverse impact on their survival and longevity.
Collapse
Affiliation(s)
- Jaclyn Asouzu Johnson
- School of Anatomical Sciences, University of the Witwatersrand, P Bag 3, Wits, 2050, Johannesburg, South Africa.
| | - Amadi Ihunwo
- School of Anatomical Sciences, University of the Witwatersrand, P Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Luke Chimuka
- School of Chemistry, University of the Witwatersrand, P Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Ejikeme F Mbajiorgu
- School of Anatomical Sciences, University of the Witwatersrand, P Bag 3, Wits, 2050, Johannesburg, South Africa
| |
Collapse
|
10
|
Godlewska K, Stepnowski P, Paszkiewicz M. Application of the Polar Organic Chemical Integrative Sampler for Isolation of Environmental Micropollutants – A Review. Crit Rev Anal Chem 2019; 50:1-28. [DOI: 10.1080/10408347.2019.1565983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Klaudia Godlewska
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Monika Paszkiewicz
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
11
|
Sadaria AM, Labban CW, Steele JC, Maurer MM, Halden RU. Retrospective nationwide occurrence of fipronil and its degradates in U.S. wastewater and sewage sludge from 2001 - 2016. WATER RESEARCH 2019; 155:465-473. [PMID: 30870636 PMCID: PMC6506233 DOI: 10.1016/j.watres.2019.02.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 05/21/2023]
Abstract
The insecticide fipronil is under regulatory scrutiny worldwide for its toxicity to pollinators and aquatic invertebrates. We conducted the first U.S. nationwide, longitudinal study of sewage sludges for fiproles, i.e., the sum of fipronil and its major degradates (fipronil sulfone, sulfide, amide, and desulfinyl). Archived sludges (n = 109) collected in three campaigns over 15 years were analyzed by isotope dilution liquid chromatography tandem mass spectrometry, revealing ubiquitous fiprole occurrence (0.2-385.3 μg/kg) since 2001 and a significant increase (2.4 ± 0.3 fold; p < 0.005) both from 2001 to 2006/7 and from 2001 to 2015/6, but not a significant increase from 2006/7 to 2015/6 (p = 0.275). A geospatial analysis showed fiprole levels in municipal sludges to be uncoupled from agricultural use of fipronil on cropland surrounding sampled municipalities, thus pointing to non-agricultural uses (i.e., spot-on treatment and urban pest control) as a major source of fiprole loading to wastewater. Whereas anaerobic digestion was correlated with increases in fipronil sulfide at the expense of parental fipronil (p < 0.001), total fiprole levels in sewage sludges were similar regardless of the solids treatment approach applied (p = 0.519). Treatment plant effluent available from 12 facilities in 2015/6 contained fiproles at 0.3-112.9 ng/L, exceeding the United States Environmental Protection Agency (USEPA) aquatic invertebrate life benchmark for chronic fipronil exposure (11 ng/L) in 67% of cases. Whereas the USEPA identified fipronil in sludge only recently (2015), retrospective analyses and modeling conducted here show contaminant ubiquity and nationwide increases of fiprole mass (compared to 2001 levels) in U.S. municipal sludge (1140 ± 230 kg in 2015/6), and treated effluent nationwide (1970 ± 390 kg in 2015/6) over the past 15 years.
Collapse
Affiliation(s)
- Akash M Sadaria
- Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ, USA
| | - Cameron W Labban
- Arizona State University, Biodesign Center for Environmental Health Engineering, Tempe, AZ, USA
| | - Joshua C Steele
- Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ, USA
| | - Megan M Maurer
- Arizona State University, Biodesign Center for Environmental Health Engineering, Tempe, AZ, USA
| | - Rolf U Halden
- Arizona State University, Biodesign Center for Environmental Health Engineering, Tempe, AZ, USA; Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ, USA.
| |
Collapse
|
12
|
Giang PT, Sakalli S, Fedorova G, Tilami SK, Bakal T, Najmanova L, Grabicova K, Kolarova J, Sampels S, Zamaratskaia G, Grabic R, Randak T, Zlabek V, Burkina V. Biomarker response, health indicators, and intestinal microbiome composition in wild brown trout (Salmo trutta m. fario L.) exposed to a sewage treatment plant effluent-dominated stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1494-1509. [PMID: 29996446 DOI: 10.1016/j.scitotenv.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/17/2017] [Accepted: 01/03/2018] [Indexed: 06/08/2023]
Abstract
Concerns about the effect of sewage treatment plant (STP) effluent on the health of freshwater ecosystems have increased. In this study, a unique approach was designed to show the effect of an STP effluent-dominated stream on native wild brown trout (Salmo trutta L.) exposed under fully natural conditions. Zivny stream is located in South Bohemia, Czech Republic. The downstream site of Zivny stream is an STP-affected site, which receives 25% of its water from Prachatice STP effluent. Upstream, however, is a minimally polluted water site and it is considered to be the control site. Native fish were collected from the upstream site, tagged, and distributed to both upstream and downstream sites. After 30, 90, and 180days, fish were recaptured from both sites to determine whether the downstream site of the Zivny stream is associated with the effects of environmental pollution. Several biomarkers indicating the oxidative stress and antioxidant enzyme activities, cytochrome P450 activity, xenoestrogenic effects, bacterial composition, and lipid composition were investigated. Additionally, polar chemical contaminants (pharmaceuticals and personal care products (PPCPs)) were quantified using polar organic chemical integrative samplers (POCIS). Fifty-three PPCPs were detected in the downstream site; 36 of those were constantly present during the 180-day investigation period. Elevated hepatic 7-benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylase (BFCOD) (after 90days) and blood plasma vitellogenin concentrations in males were detected in fish downstream of the STP effluent during all sampling events. An increase in the fishes' total fat content was also observed, but with low levels of ω-3 fatty acid in muscle tissue. Two bacterial taxa related to activated sludge were found in the intestines of fish from downstream. Our results show that Prachatice STP is a major source of PPCPs in the Zivny stream, which has biological consequences on fish physiology.
Collapse
Affiliation(s)
- Pham Thai Giang
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic.
| | - Sidika Sakalli
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Sarvenaz Khalili Tilami
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Tomas Bakal
- Institute of Microbiology AS CR, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Lucie Najmanova
- Institute of Microbiology AS CR, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Katerina Grabicova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Jitka Kolarova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Sabine Sampels
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic; Swedish University of Agricultural Sciences, Uppsala Department of Molecular Science, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Galia Zamaratskaia
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic; Swedish University of Agricultural Sciences, Uppsala Department of Molecular Science, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| |
Collapse
|
13
|
Papadakis EN, Tsaboula A, Vryzas Z, Kotopoulou A, Kintzikoglou K, Papadopoulou-Mourkidou E. Pesticides in the rivers and streams of two river basins in northern Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:732-743. [PMID: 29272842 DOI: 10.1016/j.scitotenv.2017.12.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
The pollution caused by pesticides, and their ecotoxicological implications were investigated in water samples from the Strymonas and Nestos river basins (Northern Greece). Chlorpyrifos was the most frequently detected pesticide in both basins (42 and 37% in the Strymonas and Nestos basins, respectively), followed by fluometuron and terbuthylazine (25 and 12%, Strymonas), and bentazone and boscalid (24 and 10%, Nestos). The Annual Average and the Maximum Allowable Concentration of Environmental Quality Standards set in European Union Directives were exceeded in several cases by alphamethrin and chlorpyrifos. Risk Quotient assessment revealed significant ecological risk towards the aquatic organisms in over 20% of the water samples. Insecticides (mostly pyrethroids and organophosphosphates) contributed more in the ecotoxicological risk than herbicides and fungicides. The three main rivers in the current study (Strymonas, Aggitis, Nestos) exhibited similar sum of RQs indicating that aquatic life in all three of them was at the same risk level. However, the sums of RQs were higher in the various streams monitored than the three rivers.
Collapse
Affiliation(s)
- Emmanouil-Nikolaos Papadakis
- Aristotle University of Thessaloniki, School of Agriculture, Pesticide Science Laboratory, P.O.Box 1678, 54006 Thessaloniki, Greece.
| | - Aggeliki Tsaboula
- Aristotle University of Thessaloniki, School of Agriculture, Pesticide Science Laboratory, P.O.Box 1678, 54006 Thessaloniki, Greece.
| | - Zisis Vryzas
- Democritus University of Thrace, Department of Agricultural Development, Laboratory of Agricultural Pharmacology and Ecotoxicology, 68200 N. Orestiada, Greece.
| | - Athina Kotopoulou
- Aristotle University of Thessaloniki, School of Agriculture, Pesticide Science Laboratory, P.O.Box 1678, 54006 Thessaloniki, Greece.
| | - Katerina Kintzikoglou
- Aristotle University of Thessaloniki, School of Agriculture, Pesticide Science Laboratory, P.O.Box 1678, 54006 Thessaloniki, Greece.
| | - Euphemia Papadopoulou-Mourkidou
- Aristotle University of Thessaloniki, School of Agriculture, Pesticide Science Laboratory, P.O.Box 1678, 54006 Thessaloniki, Greece.
| |
Collapse
|
14
|
Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D. Pyrethroid pesticide residues in the global environment: An overview. CHEMOSPHERE 2018; 191:990-1007. [PMID: 29145144 DOI: 10.1016/j.chemosphere.2017.10.115] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 05/07/2023]
Abstract
Pyrethroids are synthetic organic insecticides with low mammalian toxicity that are widely used in both rural and urban areas worldwide. After entering the natural environment, pyrethroids circulate among the three phases of solid, liquid, and gas and enter organisms through food chains, resulting in substantial health risks. This review summarized the available studies on pyrethroid residues since 1986 in different media at the global scale and indicated that pyrethroids have been widely detected in a range of environments (including soils, water, sediments, and indoors) and in organisms. The concentrations and detection rates of agricultural pyrethroids, which always contain α-cyanogroup (α-CN), such as cypermethrin and fenvalerate, decline in the order of crops > sediments > soils > water. Urban pyrethroids (not contain α-CN), such as permethrin, have been detected at high levels in the indoor environment, and 3-phenoxybenzoic acid, a common pyrethroid metabolite in human urine, is frequently detected in the human body. Pyrethroid pesticides accumulate in sediments, which are a source of pyrethroid residues in aquatic products.
Collapse
Affiliation(s)
- Wangxin Tang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Di Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jiaqi Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhengwen Wu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Mingli Huang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shaohui Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Dongyun Yan
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|