1
|
Albacar M, Casamayor A, Ariño J. Harnessing alkaline-pH regulatable promoters for efficient methanol-free expression of enzymes of industrial interest in Komagataella Phaffii. Microb Cell Fact 2024; 23:99. [PMID: 38566096 PMCID: PMC10985989 DOI: 10.1186/s12934-024-02362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The yeast Komagataella phaffii has become a very popular host for heterologous protein expression, very often based on the use of the AOX1 promoter, which becomes activated when cells are grown with methanol as a carbon source. However, the use of methanol in industrial settings is not devoid of problems, and therefore, the search for alternative expression methods has become a priority in the last few years. RESULTS We recently reported that moderate alkalinization of the medium triggers a fast and wide transcriptional response in K. phaffii. Here, we present the utilization of three alkaline pH-responsive promoters (pTSA1, pHSP12 and pPHO89) to drive the expression of a secreted phytase enzyme by simply shifting the pH of the medium to 8.0. These promoters offer a wide range of strengths, and the production of phytase could be modulated by adjusting the pH to specific values. The TSA1 and PHO89 promoters offered exquisite regulation, with virtually no enzyme production at acidic pH, while limitation of Pi in the medium further potentiated alkaline pH-driven phytase expression from the PHO89 promoter. An evolved strain based on this promoter was able to produce twice as much phytase as the reference pAOX1-based strain. Functional mapping of the TSA1 and HSP12 promoters suggests that both contain at least two alkaline pH-sensitive regulatory regions. CONCLUSIONS Our work shows that the use of alkaline pH-regulatable promoters could be a useful alternative to methanol-based expression systems, offering advantages in terms of simplicity, safety and economy.
Collapse
Affiliation(s)
- Marcel Albacar
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
| |
Collapse
|
2
|
Robinson D, Vanacloig-Pedros E, Cai R, Place M, Hose J, Gasch AP. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. G3 (BETHESDA, MD.) 2023; 13:jkad159. [PMID: 37481264 PMCID: PMC10542507 DOI: 10.1093/g3journal/jkad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene overexpression, revealing that the fitness costs of copy-number variation can vary substantially with genetic background in a common-garden environment. But the interplay between copy-number variation tolerance and environment remains unexplored on a genomic scale. Here, we measured the tolerance to gene overexpression in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride stress. Overexpressed genes that are commonly deleterious during sodium chloride stress recapitulated those commonly deleterious under standard conditions. However, sodium chloride stress uncovered novel differences in strain responses to gene overexpression. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to sodium chloride stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to overexpression of specific genes. Although most genes were deleterious, hundreds were beneficial when overexpressed-remarkably, most of these effects were strain specific. Few beneficial genes were shared between the sodium chloride-sensitive isolates, implicating mechanistic differences behind their sodium chloride sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural copy-number variation of a sodium export pump that likely contributes to strain-specific responses to overexpression of other genes. Our results reveal extensive strain-by-environment interactions in the response to gene copy-number variation, raising important implications for the accessibility of copy-number variation-dependent evolutionary routes under times of stress.
Collapse
Affiliation(s)
- DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Elena Vanacloig-Pedros
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Ruoyi Cai
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53704, USA
| |
Collapse
|
3
|
Robinson D, Vanacloig-Pedros E, Cai R, Place M, Hose J, Gasch AP. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540375. [PMID: 37503218 PMCID: PMC10369901 DOI: 10.1101/2023.05.11.540375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation (CNV) provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene over-expression (OE), revealing that the fitness costs of CNV can vary substantially with genetic background in a common-garden environment. But the interplay between CNV tolerance and environment remains unexplored on a genomic scale. Here we measured the tolerance to gene OE in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride (NaCl) stress. OE genes that are commonly deleterious during NaCl stress recapitulated those commonly deleterious under standard conditions. However, NaCl stress uncovered novel differences in strain responses to gene OE. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to NaCl stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to gene OE. Although most genes were deleterious, hundreds were beneficial when overexpressed - remarkably, most of these effects were strain specific. Few beneficial genes were shared between the NaCl-sensitive isolates, implicating mechanistic differences behind their NaCl sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural CNV of a sodium export pump that likely contributes to strain-specific responses to OE of other genes. Our results reveal extensive strain-by-environment interaction in the response to gene CNV, raising important implications for the accessibility of CNV-dependent evolutionary routes under times of stress.
Collapse
Affiliation(s)
- DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Elena Vanacloig-Pedros
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
| | - Ruoyi Cai
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
- Department of Medical Genetics, University of Wisconsin-Madison, Madison WI 53704
| |
Collapse
|
4
|
Zekhnini A, Albacar M, Casamayor A, Ariño J. The ENA1 Na+-ATPase Gene Is Regulated by the SPS Sensing Pathway and the Stp1/Stp2 Transcription Factors. Int J Mol Sci 2023; 24:ijms24065548. [PMID: 36982620 PMCID: PMC10055992 DOI: 10.3390/ijms24065548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
The Saccharomyces cerevisiae ENA1 gene, encoding a Na+-ATPase, responds transcriptionally to the alkalinization of the medium by means of a network of signals that involves the Rim101, the Snf1 and PKA kinases, and the calcineurin/Crz1 pathways. We show here that the ENA1 promoter also contains a consensus sequence, located at nt −553/−544, for the Stp1/2 transcription factors, the downstream components of the amino acid sensing SPS pathway. Mutation of this sequence or deletion of either STP1 or STP2 decreases the activity of a reporter containing this region in response to alkalinization as well as to changes in the amino acid composition in the medium. Expression driven from the entire ENA1 promoter was affected with similar potency by the deletion of PTR3, SSY5, or simultaneous deletion of STP1 and STP2 when cells were exposed to alkaline pH or moderate salt stress. However, it was not altered by the deletion of SSY1, encoding the amino acid sensor. In fact, functional mapping of the ENA1 promoter reveals a region spanning from nt −742 to −577 that enhances transcription, specifically in the absence of Ssy1. We also found that the basal and alkaline pH-induced expression from the HXT2, TRX2, and, particularly, SIT1 promoters was notably decreased in an stp1 stp2 deletion mutant, whereas the PHO84 and PHO89 gene reporters were unaffected. Our findings add a further layer of complexity to the regulation of ENA1 and suggest that the SPS pathway might participate in the regulation of a subset of alkali-inducible genes.
Collapse
|
5
|
Comparative Analysis of Type 1 and Type Z Protein Phosphatases Reveals D615 as a Key Residue for Ppz1 Regulation. Int J Mol Sci 2022; 23:ijms23031327. [PMID: 35163251 PMCID: PMC8836105 DOI: 10.3390/ijms23031327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Type 1 Ser/Thr protein phosphatases are represented in all fungi by two enzymes, the ubiquitous PP1, with a conserved catalytic polypeptide (PP1c) and numerous regulatory subunits, and PPZ, with a C-terminal catalytic domain related to PP1c and a variable N-terminal extension. Current evidence indicates that, although PP1 and PPZ enzymes might share some cellular targets and regulatory subunits, their functions are quite separated, and they have individual regulation. We explored the structures of PP1c and PPZ across 57 fungal species to identify those features that (1) are distinctive among these enzymes and (2) have been preserved through evolution. PP1c enzymes are more conserved than PPZs. Still, we identified 26 residues in the PP1 and PPZ catalytic moieties that are specific for each kind of phosphatase. In some cases, these differences likely affect the distribution of charges in the surface of the protein. In many fungi, Hal3 is a specific inhibitor of the PPZ phosphatases, although the basis for the interaction of these proteins is still obscure. By in vivo co-purification of the catalytic domain of ScPpz1 and ScHal3, followed by chemical cross-linking and MS analysis, we identified a likely Hal3-interacting region in ScPpz1 characterized by two major and conserved differences, D566 and D615 in ScPpz1, which correspond to K210 and K259 in ScPP1c (Glc7). Functional analysis showed that changing D615 to K renders Ppz1 refractory to Hal3 inhibition. Since ScHal3 does not regulate Glc7 but it inhibits all fungal PPZ tested so far, this conserved D residue could be pivotal for the differential regulation of both enzymes in fungi.
Collapse
|
6
|
Tolerance to alkaline ambient pH in Aspergillus nidulans depends on the activity of ENA proteins. Sci Rep 2020; 10:14325. [PMID: 32868868 PMCID: PMC7459330 DOI: 10.1038/s41598-020-71297-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 11/09/2022] Open
Abstract
Tolerance of microorganisms to abiotic stress is enabled by regulatory mechanisms that coordinate the expression and activity of resistance genes. Alkalinity and high salt concentrations are major environmental physicochemical stresses. Here, we analyzed the roles of sodium-extrusion family (ENA) transporters EnaA, EnaB and EnaC in the response to these stress conditions in the filamentous fungus Aspergillus nidulans. While EnaC has a minor role, EnaB is a key element for tolerance to Na+ and Li+ toxicity. Adaptation to alkaline pH requires the concerted action of EnaB with EnaA. Accordingly, expression of enaA and enaB was induced by Na+, Li+ and pH 8. These expression patterns are altered in a sltAΔ background and completely inhibited in a mutant expressing non-functional PacC protein (palH72). However, a constitutively active PacC form was not sufficient to restore maximum enaA expression. In agreement with their predicted role as membrane ATPases, EnaA localized to the plasma membrane while EnaB accumulated at structures resembling the endoplasmic reticulum. Overall, results suggest different PacC- and SltA-dependent roles for EnaB in pH and salt homeostasis, acting in coordination with EnaA at pH 8 but independently under salt stress.
Collapse
|
7
|
Wang D, Zhang M, Huang J, Zhou R, Jin Y, Wu C. Zygosaccharomyces rouxii Combats Salt Stress by Maintaining Cell Membrane Structure and Functionality. J Microbiol Biotechnol 2020; 30:62-70. [PMID: 31635442 PMCID: PMC9728352 DOI: 10.4014/jmb.1904.04006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/22/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Zygosaccharomyces rouxii is an important yeast that is required in the food fermentation process due to its high salt tolerance. In this study, the responses and resistance strategies of Z. rouxii against salt stress were investigated by performing physiological analysis at membrane level. The results showed that under salt stress, cell integrity was destroyed, and the cell wall was ruptured, which was accompanied by intracellular substance spillover. With an increase of salt concentrations, intracellular Na+ content increased slightly, whereas intracellular K+ content decreased significantly, which caused the increase of the intracellular Na+/K+ ratio. In addition, in response to salt stress, the activity of Na+/K+-ATPase increased from 0.54 to 2.14 μmol/mg protein, and the ergosterol content increased to 2.42-fold to maintain membrane stability. Analysis of cell membrane fluidity and fatty acid composition showed that cell membrane fluidity decreased and unsaturated fatty acid proportions increased, leading to a 101.21% rise in the unsaturated/saturated fatty acid ratio. The results presented in this study offer guidance in understanding the salt tolerance mechanism of Z. rouxii, and in developing new strategies to increase the industrial utilization of this species under salt stress.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 60065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
| | - Min Zhang
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 60065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
| | - Jun Huang
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 60065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
| | - Rongqing Zhou
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 60065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
| | - Yao Jin
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 60065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
| | - Chongde Wu
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 60065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
8
|
Lanza M, Haro R, Conchillo LB, Benito B. The endophyte Serendipita indica reduces the sodium content of Arabidopsis plants exposed to salt stress: fungal ENA ATPases are expressed and regulated at high pH and during plant co-cultivation in salinity. Environ Microbiol 2019; 21:3364-3378. [PMID: 30945789 DOI: 10.1111/1462-2920.14619] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/11/2019] [Accepted: 04/03/2019] [Indexed: 01/12/2023]
Abstract
Serendipita indica (formerly Piriformospora indica) is an endophytic fungus that colonizes plant roots producing a beneficial effect on plant growth and development under optimal and suboptimal conditions provoked by any biotic or abiotic stress, such as salt stress. Salinity induces osmotic and ionic imbalances in plants, mainly by altering the Na+ and K+ contents. However, the mechanism by which Serendipita improves plant growth has yet to be elucidated. Previous works suggest that this fungus improves the plant osmotic state but not much is known about whether it participates in readjustment of the ionic imbalance in plants. Here, we report that co-cultivation with Serendipita reduces the Na+ content of Arabidopsis plants under saline conditions. Additionally, we describe the functional characterization of the two Serendipita ENA ATPases, which are homologous to the main proteins involved in the salt tolerance of other fungi. Their heterologous expression in salt-sensitive yeast mutants shows that SiENA1 is involved in Na+ and K+ efflux, while SiENA5 seems to only be involved in Na+ detoxification. Both are induced and might have a relevant function at alkaline pH, condition in which there are few chlamydospores in the mycelium, as well as during co-cultivation with plants exposed to saline conditions.
Collapse
Affiliation(s)
- Mónica Lanza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM. 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM. 28223-Pozuelo de Alarcón, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain
| | - Lorena B Conchillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM. 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM. 28223-Pozuelo de Alarcón, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain
| |
Collapse
|
9
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
10
|
Physiological and TMT-based proteomic analysis of oat early seedlings in response to alkali stress. J Proteomics 2018; 193:10-26. [PMID: 30576833 DOI: 10.1016/j.jprot.2018.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/07/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
Oats are an important cereal crop worldwide, and they also serve as a phytoremediation crop to ameliorate salinized and alkalized soils. However, the mechanism of the oat response to alkali remains unclear. Physiological and tandem mass tag (TMT)-based proteomic analyses were employed to elucidate the mechanism of the oat response to alkali stress. Physiological and phenotypic data showed that oat root growth was inhibited more severely than shoot growth after alkali stress. In total, 164 proteins were up-regulated and 241 proteins were down-regulated in roots, and 93 proteins were up-regulated and 139 proteins were down-regulated in shoots. Under high pH stress, transmembrane proton transporters were down-regulated; conversely, organic acid synthesis related enzymes were increased. Transporters of N, P, Fe, Cu and Ca in addition to N assimilation enzymes in the root were highly increased. This result revealed that higher efficiency of P, Fe, Cu and Ca transport, especially higher efficiency of N intake and assimilation, greatly promoted oat root resistance to alkali stress. Furthermore, many resistance proteins, such as late embryogenesis abundant (LEA) mainly in shoots, GDSL esterase lipase mainly in roots, and WD40-like beta propeller repeat families, greatly accumulated to contribute to oat resistance to alkali stress. SIGNIFICANCE: In this study, physiological and tandem mass tag (TMT)-based proteomic analyses were employed to elucidate oats early seedlings in response to alkali stress. Many difference expression proteins were found involving in oats response to alkali stress. Also, higher efficiency transport of P, Fe, Cu, Ca and N greatly promoted oat resistance to alkali stress.
Collapse
|
11
|
Ariño J, Ramos J, Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast 2018; 36:177-193. [PMID: 30193006 DOI: 10.1002/yea.3355] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 01/08/2023] Open
Abstract
Maintenance of proper intracellular concentrations of monovalent cations, mainly sodium and potassium, is a requirement for survival of any cell. In the budding yeast Saccharomyces cerevisiae, monovalent cation homeostasis is determined by the active extrusion of protons through the Pma1 H+ -ATPase (reviewed in another chapter of this issue), the influx and efflux of these cations through the plasma membrane transporters (reviewed in this chapter), and the sequestration of toxic cations into the vacuoles. Here, we will describe the structure, function, and regulation of the plasma membrane transporters Trk1, Trk2, Tok1, Nha1, and Ena1, which play a key role in maintaining physiological intracellular concentrations of Na+ , K+ , and H+ , both under normal growth conditions and in response to stress.
Collapse
Affiliation(s)
- Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José Ramos
- Departamento de Microbiología, Universidad de Córdoba, Córdoba, Spain
| | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
12
|
Santolaria C, Velázquez D, Strauss E, Ariño J. Mutations at the hydrophobic core affect Hal3 trimer stability, reducing its Ppz1 inhibitory capacity but not its PPCDC moonlighting function. Sci Rep 2018; 8:14701. [PMID: 30279472 PMCID: PMC6168597 DOI: 10.1038/s41598-018-32979-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
S. cerevisiae Hal3 (ScHal3) is a moonlighting protein that, is in its monomeric state, regulates the Ser/Thr protein phosphatase Ppz1, but also joins ScCab3 (and in some instances the Hal3 paralog Vhs3) to form an unusual heterotrimeric phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. PPCDC is required for CoA biosynthesis and in most eukaryotes is a homotrimeric complex with three identical catalytic sites at the trimer interfaces. However, in S. cerevisiae the heterotrimeric arrangement results in a single functional catalytic center. Importantly, the specific structural determinants that direct Hal3's oligomeric state and those required for Ppz1 inhibition remain largely unknown. We mutagenized residues in the predicted hydrophobic core of ScHal3 (L403-L405) and the plant Arabidopsis thaliana Hal3 (AtHal3, G115-L117) oligomers and characterized their properties as PPCDC components and, for ScHal3, also as Ppz1 inhibitor. We found that in AtHal3 these changes do not affect trimerization or PPCDC function. Similarly, mutation of ScHal3 L403 has no effect. In contrast, ScHal3 L405E fails to form homotrimers, but retains the capacity to bind Cab3-explaining its ability to rescue a hal3 vhs3 synthetically lethal mutation. Remarkably, the L405E mutation decreases Hal3's ability to interact with and to inhibit Ppz1, confirming the importance of the oligomer/monomer equilibrium in Hal3's Ppz1 regulating function.
Collapse
Affiliation(s)
- Carlos Santolaria
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Matieland, 7602, South Africa
| | - Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
13
|
Role of the phosphatase Ptc1 in stress responses mediated by CWI and HOG pathways in Fusarium oxysporum. Fungal Genet Biol 2018; 118:10-20. [DOI: 10.1016/j.fgb.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/24/2018] [Accepted: 05/27/2018] [Indexed: 01/09/2023]
|
14
|
Loss O, Bertuzzi M, Yan Y, Fedorova N, McCann BL, Armstrong-James D, Espeso EA, Read ND, Nierman WC, Bignell EM. Mutual independence of alkaline- and calcium-mediated signalling in Aspergillus fumigatus refutes the existence of a conserved druggable signalling nexus. Mol Microbiol 2017; 106:861-875. [PMID: 28922497 PMCID: PMC5725717 DOI: 10.1111/mmi.13840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 01/03/2023]
Abstract
Functional coupling of calcium‐ and alkaline responsive signalling occurs in multiple fungi to afford efficient cation homeostasis. Host microenvironments exert alkaline stress and potentially toxic concentrations of Ca2+, such that highly conserved regulators of both calcium‐ (Crz) and pH‐ (PacC/Rim101) responsive signalling are crucial for fungal pathogenicity. Drugs targeting calcineurin are potent antifungal agents but also perturb human immunity thereby negating their use as anti‐infectives, abrogation of alkaline signalling has, therefore, been postulated as an adjunctive antifungal strategy. We examined the interdependency of pH‐ and calcium‐mediated signalling in Aspergillus fumigatus and found that calcium chelation severely impedes hyphal growth indicating a critical requirement for this ion independently of ambient pH. Transcriptomic responses to alkaline pH or calcium excess exhibited minimal similarity. Mutants lacking calcineurin, or its client CrzA, displayed normal alkaline tolerance and nuclear translocation of CrzA was unaffected by ambient pH. Expression of a highly conserved, alkaline‐regulated, sodium ATPase was tolerant of genetic or chemical perturbations of calcium‐mediated signalling, but abolished in null mutants of the pH‐responsive transcription factor PacC, and PacC proteolytic processing occurred normally during calcium excess. Taken together our data demonstrate that in A. fumigatus the regulatory hierarchy governing alkaline tolerance circumvents calcineurin signalling.
Collapse
Affiliation(s)
- Omar Loss
- Microbiology Section, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - Yu Yan
- The J. Craig Venter Institute, Infectious Diseases Program, Rockville, MD, USA
| | - Natalie Fedorova
- The J. Craig Venter Institute, Infectious Diseases Program, Rockville, MD, USA
| | - Bethany L McCann
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - Darius Armstrong-James
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London SW7 2AY, UK
| | - Eduardo A Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biologicas (C.S.I.C.), Madrid, Spain
| | - Nick D Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - William C Nierman
- The J. Craig Venter Institute, Infectious Diseases Program, Rockville, MD, USA
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
15
|
Virgilio S, Cupertino FB, Ambrosio DL, Bertolini MC. Regulation of the reserve carbohydrate metabolism by alkaline pH and calcium in Neurospora crassa reveals a possible cross-regulation of both signaling pathways. BMC Genomics 2017; 18:457. [PMID: 28599643 PMCID: PMC5466789 DOI: 10.1186/s12864-017-3832-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/31/2017] [Indexed: 11/28/2022] Open
Abstract
Background Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. Results We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. Conclusions We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the reserve carbohydrate glycogen and trehalose. We also demonstrated that calcium stress affects the reserve carbohydrate levels and the response to calcium stress may require PAC-3. Considering that the reserve carbohydrate metabolism may be subjected to different signaling pathways control, our data contribute to the understanding of the N. crassa responses under pH and calcium stresses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3832-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stela Virgilio
- Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Bioquímica e Tecnologia Química, Araraquara, SP, 14800-060, Brazil
| | - Fernanda Barbosa Cupertino
- Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Bioquímica e Tecnologia Química, Araraquara, SP, 14800-060, Brazil
| | - Daniela Luz Ambrosio
- Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Bioquímica e Tecnologia Química, Araraquara, SP, 14800-060, Brazil
| | - Maria Célia Bertolini
- Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Bioquímica e Tecnologia Química, Araraquara, SP, 14800-060, Brazil.
| |
Collapse
|
16
|
Genome-wide recruitment profiling of transcription factor Crz1 in response to high pH stress. BMC Genomics 2016; 17:662. [PMID: 27544903 PMCID: PMC4992276 DOI: 10.1186/s12864-016-3006-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022] Open
Abstract
Background Exposure of the budding Saccharomyces cerevisiae to an alkaline environment produces a robust transcriptional response involving hundreds of genes. Part of this response is triggered by an almost immediate burst of calcium that activates the Ser/Thr protein phosphatase calcineurin. Activated calcineurin dephosphorylates the transcription factor (TF) Crz1, which moves to the nucleus and binds to calcineurin/Crz1 responsive gene promoters. In this work we present a genome-wide study of the binding of Crz1 to gene promoters in response to high pH stress. Results Environmental alkalinization promoted a time-dependent recruitment of Crz1 to 152 intergenic regions, the vast majority between 1 and 5 min upon stress onset. Positional evaluation of the genomic coordinates combined with existing transcriptional studies allowed identifying 140 genes likely responsive to Crz1 regulation. Gene Ontology analysis confirmed the relevant impact of calcineurin/Crz1 on a set of genes involved in glucose utilization, and uncovered novel targets, such as genes responsible for trehalose metabolism. We also identified over a dozen of genes encoding TFs that are likely under the control of Crz1, suggesting a possible mechanism for amplification of the signal at the transcription level. Further analysis of the binding sites allowed refining the consensus sequence for Crz1 binding to gene promoters and the effect of chromatin accessibility in the timing of Crz1 recruitment to promoters. Conclusions The present work defines at the genomic-wide level the kinetics of binding of Crz1 to gene promoters in response to alkaline stress, confirms diverse previously known Crz1 targets and identifies many putative novel ones. Because of the relevance of calcineurin/Crz1 in signaling diverse stress conditions, our data will contribute to understand the transcriptional response in other circumstances that also involve calcium signaling, such as exposition to sexual pheromones or saline stress. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3006-6) contains supplementary material, which is available to authorized users.
Collapse
|