1
|
García-Vázquez JL, Quijada-Rivera M, Hernández-Oñate MÁ, Tiznado-Hernández ME, Lazo-Javalera MF, Martínez-Téllez MÁ, Astorga-Cienfuegos KR, Rivera-Domínguez M. Effect of Vitis vinifera zygotic embryo cryopreservation and post-cryopreservation on the gene expression of DNA demethylases. Cryobiology 2024; 116:104947. [PMID: 39084504 DOI: 10.1016/j.cryobiol.2024.104947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Grapevine (Vitis vinifera L.) crops are continuously exposed to biotic and abiotic stresses, which can cause genetic and epigenetic alterations. To determine the possible effects of grapevine cryopreservation on the regulation of DNA demethylase genes, this work studied the expression of DNA demethylase genes in cryopreserved and post-cryopreserved grapevine tissues. V. vinifera DNA demethylases were characterized by in silico analysis, and gene expression quantification was conducted by RT‒qPCR. Three DNA demethylase sequences were found: VIT_13s0074g00450 (VvDMT), VIT_08s0007g03920 (VvROS1), and VIT_06s0061g01270 (VvDML3). Phylogenetic analysis revealed that the sequences from V. vinifera and A. thaliana had a common ancestry. In the promoters of responsive elements to transcription factors such as AP-2, Myb, bZIP, TBP, and GATA, the conserved domains RRM DME and Perm CXXC were detected. These responsive elements play roles in the response to abiotic stress and the regulation of cell growth. These data helped us characterize the V. vinifera DNA demethylase genes. Gene expression analysis indicated that plant vitrification solution 2 (PVS2) treatment does not alter the expression of DNA demethylase genes. The expression levels of VvDMT and VvROS1 increased in response to cryopreservation by vitrification. Furthermore, in post-cryopreservation, VvROS1 was highly induced, and VvDML3 was repressed in all the treatment groups. Gene expression differences between different treatments and tissues may play roles in controlling methylation patterns during gene regulation in tissues stressed by cryopreservation procedures and in the post-cryopreservation period during plant growth and development.
Collapse
Affiliation(s)
- Juan Luis García-Vázquez
- Food Science Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico
| | - Mariana Quijada-Rivera
- Food Science Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico
| | - Miguel Ángel Hernández-Oñate
- Vegetal Food Origin Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico
| | | | | | - Miguel Ángel Martínez-Téllez
- Vegetal Food Origin Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico
| | | | - Marisela Rivera-Domínguez
- Food Science Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico.
| |
Collapse
|
2
|
Ballesteros D, Martínez MT, Sánchez-Romero C, Montalbán IA, Sales E, Moncaleán P, Arrillaga I, Corredoira E. Current status of the cryopreservation of embryogenic material of woody species. FRONTIERS IN PLANT SCIENCE 2024; 14:1337152. [PMID: 38298606 PMCID: PMC10828030 DOI: 10.3389/fpls.2023.1337152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
Cryopreservation, or the storage at liquid nitrogen temperatures (-196°C), of embryogenic cells or somatic embryos allows their long-term conservation without loss of their embryogenic capacity. During the last decade, protocols for cryopreservation of embryogenic material of woody species have been increasing in number and importance. However, despite the large experimental evidence proved in thousands of embryogenic lines, the application for the large-scale conservation of embryogenic material in cryobanks is still limited. Cryopreservation facilitates the management of embryogenic lines, reducing costs and time spent on their maintenance, thus limiting the risk of the appearance of somaclonal variation or contamination. Somatic embryogenesis in combination with cryopreservation is especially useful to preserve the juvenility of lines while the corresponding clones are being field-tested. Hence, when tree performance has been evaluated, selected varieties can be propagated from the cryostock. The traditional method of slow cooling or techniques based on vitrification are mostly applied procedures. For example, slow cooling methods are widely applied to conserve embryogenic lines of conifers. Desiccation based procedures, although simpler, have been applied in a smaller number of species. Genetic stability of the cryopreserved material is supported by multiloci PCR-derived markers in most of the assayed species, whereas DNA methylation status assays showed that cryopreservation might induce some changes that were also observed after prolonged subculture of the embryogenic lines. This article reviews the cryopreservation of embryogenic cultures in conifers, fruit species, deciduous forest species and palms, including a description of the different cryopreservation procedures and the analysis of their genetic stability after storage in liquid nitrogen.
Collapse
Affiliation(s)
- Daniel Ballesteros
- Departamento de Botánica y Geología, Facultad de Farmacia, Universitat de València, Burjassot, Valencia, Spain
- Royal Botanic Gardens, Kew, Wakehurst Place, Haywards Heath, United Kingdom
| | - María Teresa Martínez
- Misión Biológica de Galicia (MBG-CSIC), Sede Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | - Ester Sales
- Dpto. Ciencias Agrarias y del Medio natural, Instituto Universitario de Investigación en Ciencias Ambientales (IUCA), Universidad de Zaragoza, Escuela Politécnica Superior, Huesca, Spain
| | | | - Isabel Arrillaga
- Institut Biotec/Med, Dpto Biología Vegetal, Facultad de Farmacia, Universitat de València, Burjassot, Valencia, Spain
| | - Elena Corredoira
- Misión Biológica de Galicia (MBG-CSIC), Sede Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Sivanesan I, Nayeem S, Venkidasamy B, Kuppuraj SP, RN C, Samynathan R. Genetic and epigenetic modes of the regulation of somatic embryogenesis: a review. Biol Futur 2022; 73:259-277. [DOI: 10.1007/s42977-022-00126-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/16/2022] [Indexed: 01/17/2023]
|
4
|
Wang MR, Bi W, Shukla MR, Ren L, Hamborg Z, Blystad DR, Saxena PK, Wang QC. Epigenetic and Genetic Integrity, Metabolic Stability, and Field Performance of Cryopreserved Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:1889. [PMID: 34579422 PMCID: PMC8467502 DOI: 10.3390/plants10091889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
Cryopreservation is considered an ideal strategy for the long-term preservation of plant genetic resources. Significant progress was achieved over the past several decades, resulting in the successful cryopreservation of the genetic resources of diverse plant species. Cryopreservation procedures often employ in vitro culture techniques and require the precise control of several steps, such as the excision of explants, preculture, osmo- and cryoprotection, dehydration, freeze-thaw cycle, unloading, and post-culture for the recovery of plants. These processes create a stressful environment and cause reactive oxygen species (ROS)-induced oxidative stress, which is detrimental to the growth and regeneration of tissues and plants from cryopreserved tissues. ROS-induced oxidative stresses were documented to induce (epi)genetic and somatic variations. Therefore, the development of true-to-type regenerants of the source germplasm is of primary concern in the application of plant cryopreservation technology. The present article provides a comprehensive assessment of epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants developed in the past decade. Potential areas and the directions of future research in plant cryopreservation are also proposed.
Collapse
Affiliation(s)
- Min-Rui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling District, Xianyang 712100, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Wenlu Bi
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (W.B.); (M.R.S.); (P.K.S.)
| | - Mukund R. Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (W.B.); (M.R.S.); (P.K.S.)
| | - Li Ren
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Zhibo Hamborg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway; (Z.H.); (D.-R.B.)
| | - Dag-Ragnar Blystad
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway; (Z.H.); (D.-R.B.)
| | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (W.B.); (M.R.S.); (P.K.S.)
| | - Qiao-Chun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling District, Xianyang 712100, China
| |
Collapse
|
5
|
Li QY, Zou T, Gong Y, Chen SY, Zeng YX, Gao LX, Weng CH, Xu HW, Yin ZQ. Functional assessment of cryopreserved clinical grade hESC-RPE cells as a qualified cell source for stem cell therapy of retinal degenerative diseases. Exp Eye Res 2020; 202:108305. [PMID: 33080300 DOI: 10.1016/j.exer.2020.108305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023]
Abstract
The biosafety and efficiency of transplanting retinal pigment epithelial (RPE) cells derived from both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been evaluated in phase I and phase II clinical trials. For further large-scale application, cryopreserved RPE cells must be used; thus, it is highly important to investigate the influence of cryopreservation and thawing on the biological characteristics of hESC-RPE cells and their post-transplantation vision-restoring function. Here, via immunofluorescence, qPCR, transmission electron microscopy, transepithelial electrical resistance, and enzyme-linked immunosorbent assays (ELISAs), we showed that cryopreserved hESC-RPE cells retained the specific gene expression profile, morphology, ultrastructure, and maturity-related functions of induced RPE cells. Additionally, cryopreserved hESC-RPE cells exhibited a polarized monolayer, tight junction, and gap junction structure and an in vitro nanoparticle phagocytosis capability similar to those of induced hESC-RPE cells. However, the level of pigment epithelium-derived factor (PEDF) secretion was significantly decreased in cryopreserved hESC-RPE cells. Royal College of Surgeons rats with cryopreserved hESC-RPE cells engrafted into the subretinal space exhibited a significant decrease in the b-wave amplitude compared with rats engrafted with induced hESC-RPE cells at 4 weeks post transplantation. However, the difference disappeared at 8 weeks and 12 weeks post operation. No significant difference in the outer nuclear layer (ONL) thickness was observed between the two groups. Our data showed that even after cryopreservation and thawing, cryopreserved hESC-RPE cells are still qualified as a donor cell source for cell-based therapy of retinal degenerative diseases.
Collapse
Affiliation(s)
- Qi-You Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Ting Zou
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Yu Gong
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Si-Yu Chen
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Yu-Xiao Zeng
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Li-Xiong Gao
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China; Department of Ophthalmology, The 6th Medical Center of PLA General Hospital, Beijing, China
| | - Chuan-Huang Weng
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Hai-Wei Xu
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China.
| | - Zheng-Qin Yin
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China.
| |
Collapse
|
6
|
Application of the MSAP Technique to Evaluate Epigenetic Changes in Plant Conservation. Int J Mol Sci 2020; 21:ijms21207459. [PMID: 33050382 PMCID: PMC7589462 DOI: 10.3390/ijms21207459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
Epigenetic variation, and particularly DNA methylation, is involved in plasticity and responses to changes in the environment. Conservation biology studies have focused on the measurement of this variation to establish demographic parameters, diversity levels and population structure to design the appropriate conservation strategies. However, in ex situ conservation approaches, the main objective is to guarantee the characteristics of the conserved material (phenotype and epi-genetic). We review the use of the Methylation Sensitive Amplified Polymorphism (MSAP) technique to detect changes in the DNA methylation patterns of plant material conserved by the main ex situ plant conservation methods: seed banks, in vitro slow growth and cryopreservation. Comparison of DNA methylation patterns before and after conservation is a useful tool to check the fidelity of the regenerated plants, and, at the same time, may be related with other genetic variations that might appear during the conservation process (i.e., somaclonal variation). Analyses of MSAP profiles can be useful in the management of ex situ plant conservation but differs in the approach used in the in situ conservation. Likewise, an easy-to-use methodology is necessary for a rapid interpretation of data, in order to be readily implemented by conservation managers.
Collapse
|
7
|
Ibáñez MA, Alvarez-Mari A, Rodríguez-Sanz H, Kremer C, González-Benito ME, Martín C. Genetic and epigenetic stability of recovered mint apices after several steps of a cryopreservation protocol by encapsulation-dehydration. A new approach for epigenetic analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:299-307. [PMID: 31539759 DOI: 10.1016/j.plaphy.2019.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The genetic and epigenetic stability (analysis of DNA methylation using MSAP markers) of mint (Mentha x piperita L.) apices was studied after each step of a cryopreservation protocol, by encapsulation-dehydration. The effect of the addition of an antioxidant (ascorbic acid) during one of the protocol steps was also evaluated. Eight-week old in vitro recovered shoots from apices after each step of the protocol were genetically stable when compared to control in vitro shoots, using RAPD and AFLP markers. The addition of ascorbic acid in the medium with the highest sucrose concentration did not improve recovery and did not have any effect on stability. Apices sampled immediately after each step showed increased epigenetic differences as the protocol advanced, compared to in vitro control apices, in particular related to de novo methylation events. However, after one-day in vitro recovery, methylation status was similar to control apices. To improve the quality of methylation data interpretation, a simple and fast method for MSAP markers analysis, based on R programming, has been developed which allows the statistical comparison of treatments to control samples and its graphical representation.
Collapse
Affiliation(s)
- Miguel Angel Ibáñez
- Departamento de Economía Agraria, Estadística y Gestión de Empresas, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2 - 4, 28040, Madrid, Spain.
| | - Ana Alvarez-Mari
- Departamento de Economía Agraria, Estadística y Gestión de Empresas, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2 - 4, 28040, Madrid, Spain.
| | - Héctor Rodríguez-Sanz
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2 - 4, 28040, Madrid, Spain.
| | - Carolina Kremer
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2 - 4, 28040, Madrid, Spain.
| | - María Elena González-Benito
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2 - 4, 28040, Madrid, Spain.
| | - Carmen Martín
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2 - 4, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Akomeah B, Quain MD, Ramesh SA, Anand L, Rodríguez López CM. Common garden experiment reveals altered nutritional values and DNA methylation profiles in micropropagated three elite Ghanaian sweet potato genotypes. PLoS One 2019; 14:e0208214. [PMID: 31026262 PMCID: PMC6485893 DOI: 10.1371/journal.pone.0208214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/07/2019] [Indexed: 11/18/2022] Open
Abstract
Micronutrient deficiency is the cause of multiple diseases in developing countries. Staple crop biofortification is an efficient means to combat such deficiencies in the diets of local consumers. Biofortified lines of sweet potato (Ipomoea batata L. Lam) with enhanced beta-carotene content have been developed in Ghana to alleviate Vitamin A Deficiency. These genotypes are propagated using meristem micropropagation to ensure the generation of virus-free propagules. In vitro culture exposes micropropagated plants to conditions that can lead to the accumulation of somaclonal variation with the potential to generate unwanted aberrant phenotypes. However, the effect of micropropagation induced somaclonal variation on the production of key nutrients by field-grown plants has not been previously studied. Here we assessed the extent of in vitro culture induced somaclonal variation, at a phenotypic, compositional and genetic/epigenetic level, by comparing field-maintained and micropropagated lines of three elite Ghanaian sweet potato genotypes grown in a common garden. Although micropropagated plants presented no observable morphological abnormalities compared to field maintained lines, they presented significantly lower levels of iron, total protein, zinc, and glucose. Methylation Sensitive Amplification Polymorphism analysis showed a high level of in vitro culture induced molecular variation in micropropagated plants. Epigenetic, rather than genetic variation, accounts for most of the observed molecular variability. Taken collectively, our results highlight the importance of ensuring the clonal fidelity of the micropropagated biofortified lines in order to reduce potential losses in the nutritional value prior to their commercial release.
Collapse
Affiliation(s)
- Belinda Akomeah
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, PMB1 Glen Osmond, South Africa, Australia
- The Waite Research Institute and The School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1 Glen Osmond, South Africa, Australia
- CSIR-Crops Research Institute, Kumasi, Ghana
| | | | - Sunita A Ramesh
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, PMB1 Glen Osmond, South Africa, Australia
- The Waite Research Institute and The School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1 Glen Osmond, South Africa, Australia
| | - Lakshay Anand
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, United States America
| | - Carlos M. Rodríguez López
- The Waite Research Institute and The School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1 Glen Osmond, South Africa, Australia
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, United States America
- * E-mail:
| |
Collapse
|
9
|
Osorio-Montalvo P, Sáenz-Carbonell L, De-la-Peña C. 5-Azacytidine: A Promoter of Epigenetic Changes in the Quest to Improve Plant Somatic Embryogenesis. Int J Mol Sci 2018; 19:E3182. [PMID: 30332727 PMCID: PMC6214027 DOI: 10.3390/ijms19103182] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Somatic embryogenesis (SE) is a widely studied process due to its biotechnological potential to generate large quantities of plants in short time frames and from different sources of explants. The success of SE depends on many factors, such as the nature of the explant, the microenvironment generated by in vitro culture conditions, and the regulation of gene expression, among others. Epigenetics has recently been identified as an important factor influencing SE outcome. DNA methylation is one of the most studied epigenetic mechanisms due to its essential role in gene expression, and its participation in SE is crucial. DNA methylation levels can be modified through the use of drugs such as 5-Azacytidine (5-AzaC), an inhibitor of DNA methylation, which has been used during SE protocols. The balance between hypomethylation and hypermethylation seems to be the key to SE success. Here, we discuss the most prominent recent research on the role of 5-AzaC in the regulation of DNA methylation, highlighting its importance during the SE process. Also, the molecular implications that this inhibitor might have for the increase or decrease in the embryogenic potential of various explants are reviewed.
Collapse
Affiliation(s)
- Pedro Osorio-Montalvo
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico.
| | - Luis Sáenz-Carbonell
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico.
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán, Mexico.
| |
Collapse
|
10
|
Phenotypic changes and DNA methylation status in cryopreserved seeds of rye (Secale cereale L.). Cryobiology 2018; 82:8-14. [PMID: 29723505 DOI: 10.1016/j.cryobiol.2018.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 11/20/2022]
Abstract
Conserving genetic diversity is a major priority of the National Laboratory for Genetic Resources Preservation (NLGRP), operated by the U.S. Department of Agriculture, Agricultural Research Service. There are two long-term preservation methods employed in the NLGRP: storage in a -18 °C freezer (conventional storage) and storage in liquid nitrogen vapor phase at -135 to -180 °C (cryopreservation). To test the phenotypic and epigenetic effects of long-term cryopreservation of orthodox seeds, we evaluated 40 cereal rye accessions (20 spring habit and 20 winter habit) stored for 25 years under both conventional storage and cryogenic conditions. In laboratory evaluations of winter habit rye, seeds from cryopreserved samples had significantly higher normal germination percentage (P < 0.05) and lower abnormal germination percentage (P < 0.05) than those stored under conventional conditions. Cryopreserved spring habit rye also had higher normal germination percentage (P < 0.01) than conventionally stored samples. In addition, winter rye seedlings from cryopreserved seeds had longer roots and smaller root diameter (P < 0.05) than seedlings from conventionally stored seeds. In field evaluations conducted in Fort Collins, Colorado in 2014-15, spikes of plants grown from conventionally stored seeds of the winter accessions were slightly longer than those from cryopreserved seeds (P = 0.045). To detect DNA methylation changes, a methylation-sensitive amplified fragment length polymorphism (metAFLP) technique was applied to two accessions. After false discovery rate adjustment, no differences in methylation were detected between storage treatments on an individual locus basis. Our study indicated that cryopreservation slowed seed deterioration as evidenced by higher germination rates compared to conventional storage, had only minimal effects on other phenotypic traits, and had no significant effects on DNA methylation status.
Collapse
|
11
|
Abstract
Cryopreservation is a technique that allows the conservation of many species for long periods. Among the protocols used for cryopreservation, droplet vitrification has shown efficient results in preserving shoot tips of various wild and cultivated pineapple genotypes. The method consists of extraction of shoot tips from plants grown in vitro, dehydration for a period of 48 h in a preculture medium supplemented with a high concentration of sucrose, treatment in a plant vitrification solution (PVS2), and immersion in liquid nitrogen. The method described in this chapter has produced survival and regeneration indices of around 70%, depending on the genotype and physiological conditions of the initial explants. The objective of this chapter is to describe in detail a droplet vitrification protocol for shoot tips that is easy to perform for cryopreservation of pineapple germplasm.
Collapse
|
12
|
Wickramasuriya AM, Dunwell JM. Cacao biotechnology: current status and future prospects. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:4-17. [PMID: 28985014 PMCID: PMC5785363 DOI: 10.1111/pbi.12848] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 05/03/2023]
Abstract
Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology.
Collapse
Affiliation(s)
| | - Jim M. Dunwell
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| |
Collapse
|
13
|
Abstract
Despite more than a century of research on effective biotechnological methods, micropropagation continues to be an important tool for the large-scale production of clonal plantlets of several important plant species that retain genetic fidelity and are pest-free. In some cases, micropropagation is the only technique that supports the maintenance and promotes the economic value of specific agricultural species. The micropropagation of plants solved many phytosanitary problems and allowed both the expansion and access to high-quality plants for growers from different countries and economic backgrounds, thereby effectively contributing to an agricultural expansion in this and the last century. The challenges for micropropagation in the twenty-first century include cost reduction, enhanced efficiency, developing new technologies, and combining micropropagation with other systems/propagation techniques such as microcuttings, hydroponics, and aeroponics. In this chapter, we discuss the actual uses of micropropagation in this century, its importance and limitations, and some possible techniques that can effectively increase its wider application by replacing certain conventional techniques and technologies.
Collapse
|
14
|
Guillou C, Fillodeau A, Brulard E, Breton D, De Faria Maraschin S, Verdier D, Simon M, Ducos JP. Indirect somatic embryogenesis of Theobroma cacao L . in liquid medium and improvement of embryo-to-plantlet conversion rate. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2018; 54:377-391. [PMID: 30147286 PMCID: PMC6096749 DOI: 10.1007/s11627-018-9909-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/15/2018] [Indexed: 05/08/2023]
Abstract
The establishment of cocoa embryogenic cell lines in liquid medium starting from high frequency somatic embryogenesis (HFSE) callus is described. The growth kinetics of the cultures during the multiplication and the expression steps conducted in 250 mL Erlenmeyer flasks were described for three genotypes selected for their agronomical traits (EET95, EET96, and EET103). The glucose and dissolved oxygen concentrations and the absorption of Murashige and Skoog medium macronutrients (nitrate, ammonium, potassium, sulfate, calcium, phosphorus, and magnesium) were monitored. The multiplication of the embryogenic calluses in a medium containing 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) at 1 mg L-1, initiated with an inoculation density of 20 g L-1 of callus, was achieved. The growth rate was characterized by two phases, with the second being concomitant with a depletion of phosphorus and magnesium, and a decrease in the embryogenic potential of the callus. The expression of the callus embryogenic capacity was conducted in an auxin-free medium. The embryo production starting from 1 and 5 g L-1 inoculation densities was compared. When placed in the optimal expression conditions in flasks, 1 g of callus produced 1000 to 1500 embryos within 5 to 7 wk. Finally, two paths for improving the plantlet regenerative capacities of cocoa SE produced in liquid medium were identified. Supplementing the expression medium with myo-inositol used as an osmotic agent at a concentration of 50 g L-1 increased the embryo-to-plantlet conversion rate from 13-16% to 40-48%. A 6-wk culture of the embryos on a maturation medium in Petri dishes optimized their subsequent development into plantlets.
Collapse
Affiliation(s)
- Caroline Guillou
- Nestlé Research & Development Centre Tours–Plant Science Research Unit, 101 avenue Gustave Eiffel BP49716, 37097 Tours CEDEX 2, France
| | - Audrey Fillodeau
- Nestlé Research & Development Centre Tours–Plant Science Research Unit, 101 avenue Gustave Eiffel BP49716, 37097 Tours CEDEX 2, France
| | - Eric Brulard
- Nestlé Research & Development Centre Tours–Plant Science Research Unit, 101 avenue Gustave Eiffel BP49716, 37097 Tours CEDEX 2, France
| | - David Breton
- Nestlé Research & Development Centre Tours–Plant Science Research Unit, 101 avenue Gustave Eiffel BP49716, 37097 Tours CEDEX 2, France
| | - Simone De Faria Maraschin
- Nestlé Research & Development Centre Tours–Plant Science Research Unit, 101 avenue Gustave Eiffel BP49716, 37097 Tours CEDEX 2, France
| | - Dorothée Verdier
- Nestlé Research & Development Centre Tours–Plant Science Research Unit, 101 avenue Gustave Eiffel BP49716, 37097 Tours CEDEX 2, France
| | - Mathieu Simon
- Nestlé Research & Development Centre Tours–Plant Science Research Unit, 101 avenue Gustave Eiffel BP49716, 37097 Tours CEDEX 2, France
| | - Jean-Paul Ducos
- Nestlé Research & Development Centre Tours–Plant Science Research Unit, 101 avenue Gustave Eiffel BP49716, 37097 Tours CEDEX 2, France
| |
Collapse
|