1
|
Torres NL, Castro SL, Silva S. Visual movement impairs duration discrimination at short intervals. Q J Exp Psychol (Hove) 2024; 77:57-69. [PMID: 36717537 PMCID: PMC10712207 DOI: 10.1177/17470218231156542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
The classic advantage of audition over vision in time processing has been recently challenged by studies using continuously moving visual stimuli such as bouncing balls. Bouncing balls drive beat-based synchronisation better than static visual stimuli (flashes) and as efficiently as auditory ones (beeps). It is yet unknown how bouncing balls modulate performance in duration perception. Our previous study addressing this was inconclusive: there were no differences among bouncing balls, flashes, and beeps, but this could have been due to the fact that intervals were too long to allow sensitivity to modality (visual vs auditory). In this study, we conducted a first experiment to determine whether shorter intervals elicit cross-stimulus differences. We found that short (mean 157 ms) but not medium (326 ms) intervals made duration perception worse for bouncing balls compared with flashes and beeps. In a second experiment, we investigated whether the lower efficiency of bouncing balls was due to experimental confounds, lack of realism, or movement. We ruled out the experimental confounds and found support for the hypothesis that visual movement-be it continuous or discontinuous-impairs duration perception at short interval lengths. Therefore, unlike beat-based synchronisation, duration perception does not benefit from continuous visual movement, which may even have a detrimental effect at short intervals.
Collapse
Affiliation(s)
- Nathércia L Torres
- Center for Psychology at the University of Porto (CPUP), Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| | - São Luís Castro
- Center for Psychology at the University of Porto (CPUP), Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| | - Susana Silva
- Center for Psychology at the University of Porto (CPUP), Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Wang T, Luo Y, Ivry RB, Tsay JS, Pöppel E, Bao Y. A unitary mechanism underlies adaptation to both local and global environmental statistics in time perception. PLoS Comput Biol 2023; 19:e1011116. [PMID: 37146089 PMCID: PMC10191274 DOI: 10.1371/journal.pcbi.1011116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/17/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023] Open
Abstract
Our duration estimation flexibly adapts to the statistical properties of the temporal context. Humans and non-human species exhibit a perceptual bias towards the mean of durations previously observed as well as serial dependence, a perceptual bias towards the duration of recently processed events. Here we asked whether those two phenomena arise from a unitary mechanism or reflect the operation of two distinct systems that adapt separately to the global and local statistics of the environment. We employed a set of duration reproduction tasks in which the target duration was sampled from distributions with different variances and means. The central tendency and serial dependence biases were jointly modulated by the range and the variance of the prior, and these effects were well-captured by a unitary mechanism model in which temporal expectancies are updated after each trial based on perceptual observations. Alternative models that assume separate mechanisms for global and local contextual effects failed to capture the empirical results.
Collapse
Affiliation(s)
- Tianhe Wang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Department of Psychology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Yingrui Luo
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Richard B. Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Jonathan S. Tsay
- Department of Psychology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Ernst Pöppel
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Institute of Medical Psychology, Ludwig Maximilian University, Munich, Germany
| | - Yan Bao
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Institute of Medical Psychology, Ludwig Maximilian University, Munich, Germany
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
3
|
van Ackooij M, Paul JM, van der Zwaag W, van der Stoep N, Harvey BM. Auditory timing-tuned neural responses in the human auditory cortices. Neuroimage 2022; 258:119366. [PMID: 35690255 DOI: 10.1016/j.neuroimage.2022.119366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022] Open
Abstract
Perception of sub-second auditory event timing supports multisensory integration, and speech and music perception and production. Neural populations tuned for the timing (duration and rate) of visual events were recently described in several human extrastriate visual areas. Here we ask whether the brain also contains neural populations tuned for auditory event timing, and whether these are shared with visual timing. Using 7T fMRI, we measured responses to white noise bursts of changing duration and rate. We analyzed these responses using neural response models describing different parametric relationships between event timing and neural response amplitude. This revealed auditory timing-tuned responses in the primary auditory cortex, and auditory association areas of the belt, parabelt and premotor cortex. While these areas also showed tonotopic tuning for auditory pitch, pitch and timing preferences were not consistently correlated. Auditory timing-tuned response functions differed between these areas, though without clear hierarchical integration of responses. The similarity of auditory and visual timing tuned responses, together with the lack of overlap between the areas showing these responses for each modality, suggests modality-specific responses to event timing are computed similarly but from different sensory inputs, and then transformed differently to suit the needs of each modality.
Collapse
Affiliation(s)
- Martijn van Ackooij
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands
| | - Jacob M Paul
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands; Melbourne School of Psychological Sciences, University of Melbourne, Redmond Barry Building, Parkville 3010, Victoria, Australia
| | | | - Nathan van der Stoep
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands
| | - Ben M Harvey
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands.
| |
Collapse
|
4
|
Tsouli A, Harvey BM, Hofstetter S, Cai Y, van der Smagt MJ, Te Pas SF, Dumoulin SO. The role of neural tuning in quantity perception. Trends Cogn Sci 2021; 26:11-24. [PMID: 34702662 DOI: 10.1016/j.tics.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Perception of quantities, such as numerosity, timing, and size, is essential for behavior and cognition. Accumulating evidence demonstrates neurons processing quantities are tuned, that is, have a preferred quantity amount, not only for numerosity, but also other quantity dimensions and sensory modalities. We argue that quantity-tuned neurons are fundamental to understanding quantity perception. We illustrate how the properties of quantity-tuned neurons can underlie a range of perceptual phenomena. Furthermore, quantity-tuned neurons are organized in distinct but overlapping topographic maps. We suggest that this overlap in tuning provides the neural basis for perceptual interactions between different quantities, without the need for a common neural representational code.
Collapse
Affiliation(s)
- Andromachi Tsouli
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Ben M Harvey
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Shir Hofstetter
- The Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Yuxuan Cai
- The Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Department of Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
| | - Maarten J van der Smagt
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Susan F Te Pas
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands; The Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Department of Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Time-to-Collision Estimations in Young Drivers with Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder. J Autism Dev Disord 2021; 52:3933-3948. [PMID: 34529252 DOI: 10.1007/s10803-021-05264-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
Individuals with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) may exhibit driving difficulties due to cognitive impairments such as time perception difficulties, a construct related to the perception of time-to-collision (TTC). This study examined the timing abilities of drivers with ASD and ADHD. Sixty participants (nADHD = 20, nASD = 20, nTD = 20) completed a time reproduction task and a TTC estimation task in a driving simulator. Results indicated drivers with ASD were less precise in time reproduction across all time intervals and over-reproduced time at shorter intervals. Drivers with ASD produced larger TTC estimates when driving at a faster speed compared to typically developing drivers. Drivers with ASD, but not ADHD, appear to present difficulties in time estimation abilities.
Collapse
|
6
|
Disentangling the effects of modality, interval length and task difficulty on the accuracy and precision of older adults in a rhythmic reproduction task. PLoS One 2021; 16:e0248295. [PMID: 33730049 PMCID: PMC7968708 DOI: 10.1371/journal.pone.0248295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Studies on the functional quality of the internal clock that governs the temporal processing of older adults have demonstrated mixed results as to whether they perceive and produce time slower, faster, or equally well as younger adults. These mixed results are due to a multitude of methodologies applied to study temporal processing: many tasks demand different levels of cognitive ability. To investigate the temporal accuracy and precision of older adults, in Experiment 1, we explored the age-related differences in rhythmic continuation task taking into consideration the effects of attentional resources required by the stimulus (auditory vs. visual; length of intervals). In Experiment 2, we added a dual task to explore the effect of attentional resources required by the task. Our findings indicate that (1) even in an inherently automatic rhythmic task, where older and younger adult’s general accuracy is comparable, accuracy but not precision is altered by the stimulus properties and (2) an increase in task load can magnify age-related differences in both accuracy and precision.
Collapse
|
7
|
Espinoza-Monroy M, de Lafuente V. Discrimination of Regular and Irregular Rhythms Explained by a Time Difference Accumulation Model. Neuroscience 2021; 459:16-26. [PMID: 33549694 DOI: 10.1016/j.neuroscience.2021.01.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Perceiving the temporal regularity in a sequence of repetitive sensory events facilitates the preparation and execution of relevant behaviors with tight temporal constraints. How we estimate temporal regularity from repeating patterns of sensory stimuli is not completely understood. We developed a decision-making task in which participants had to decide whether a train of visual, auditory, or tactile pulses, had a regular or an irregular temporal pattern. We tested the hypothesis that subjects categorize stimuli as irregular by accumulating the time differences between the predicted and observed times of sensory pulses defining a temporal rhythm. Results suggest that instead of waiting for a single large temporal deviation, participants accumulate timing-error signals and judge a pattern as irregular when the amount of evidence reaches a decision threshold. Model fits of bounded integration showed that this accumulation occurs with negligible leak of evidence. Consistent with previous findings, we show that participants perform better when evaluating the regularity of auditory pulses, as compared with visual or tactile stimuli. Our results suggest that temporal regularity is estimated by comparing expected and measured pulse onset times, and that each prediction error is accumulated towards a threshold to generate a behavioral choice.
Collapse
Affiliation(s)
- Marisol Espinoza-Monroy
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, Mexico
| | - Victor de Lafuente
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, Mexico.
| |
Collapse
|
8
|
Zimmermann E, Cicchini GM. Temporal Context affects interval timing at the perceptual level. Sci Rep 2020; 10:8767. [PMID: 32472083 PMCID: PMC7260213 DOI: 10.1038/s41598-020-65609-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 04/20/2020] [Indexed: 11/10/2022] Open
Abstract
There is now ample evidence that when observers are asked to estimate features of an object they take into account recent stimulation history and blend the current sensory evidence with the recent stimulus intensity according to their reliability. Most of this evidence has been obtained via estimation or production paradigms both of which entail a conspicuous post-perceptual decision stage. So it is an unsolved question, as to whether the trace of previous stimulation contributes at the decision stage or as early as the perceptual stage. To this aim we focused on duration judgments, which typically exhibit strong central tendency effects and asked a duration comparison between two intervals, one of which characterized by high uncertainty. We found that the perceived duration of this interval regressed toward the average duration, demonstrating a genuine perceptual bias. Regression did not transfer between the visual and the auditory modality, indicating it is modality specific, but generalized across passively observed and actively produced intervals. These findings suggest that temporal central tendency effects modulate how long an interval appears to us and that integration of current sensory evidence can occur as early as in the sensory systems.
Collapse
Affiliation(s)
- Eckart Zimmermann
- Institute for Experimental Psychology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | | |
Collapse
|
9
|
Matuz A, Van der Linden D, Topa K, Csathó Á. Cross-Modal Conflict Increases With Time-on-Task in a Temporal Discrimination Task. Front Psychol 2019; 10:2429. [PMID: 31736828 PMCID: PMC6836750 DOI: 10.3389/fpsyg.2019.02429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/14/2019] [Indexed: 01/01/2023] Open
Abstract
The modality appropriateness hypothesis argues that the auditory modality is preferred over the visual modality in tasks demanding temporal operations; hence, we predicted that responses to visual stimuli would be more sensitive to the detrimental effect of Time-on-Task. We used a bimodal temporal discrimination task. The factors were durational congruency between the modalities and the direction of modality-transmission. Participants needed to decide the duration of the cued stimulus (visual or auditory). The first five blocks of the task lasted about 1.5 h without rest [Time-on-Task (ToT) period]. The participants then had a 12-min break followed by an additional block of trials. Subjective fatigue, reaction time, error rates, and electrocardiographic data were recorded. In the visual modality, we found an enhanced congruency effect as a function of ToT. The cost of attentional shifting was higher in the auditory modality, but remained constant, suggesting that processing of auditory stimuli is robust against the effects of fatigue. Performance did not improve after the break, indicating that the effects of fatigue could not be overcome by taking a brief break. The heart rate variability (HRV) data showed that vagal inhibition increased with ToT, but this increase was not associated with the changes in performance.
Collapse
Affiliation(s)
- András Matuz
- Medical School, Department of Behavioural Sciences, University of Pécs, Pécs, Hungary
| | - Dimitri Van der Linden
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Kristóf Topa
- Institute of Psychology, University of Pécs, Pécs, Hungary
| | - Árpád Csathó
- Medical School, Department of Behavioural Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
10
|
Tian Y, Li L, Yin H, Huang X. Gender Differences in the Effect of Facial Attractiveness on Perception of Time. Front Psychol 2019; 10:1292. [PMID: 31231284 PMCID: PMC6558225 DOI: 10.3389/fpsyg.2019.01292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/16/2019] [Indexed: 11/17/2022] Open
Abstract
Time perception plays a fundamental role in human social activities, and it can be influenced in social situations by various factors, including facial attractiveness. However, in the eyes of observers of different genders, the attractiveness of a face varies. The current study aimed to explore whether gender modulates the effect of facial attractiveness on time perception. To account for individual differences in esthetic standards, the critical stimuli presented to each participant were selected from an image pool based on the participant’s own attractiveness judgments. In Experiment 1, men and women performed a stimuli selection task followed by a temporal reproduction task to measure their time perception of faces of different attractiveness levels and gender. To control for the potential influence of task order, Experiment 2 flipped the order of the selection and temporal tasks. Taken together, the experiments showed that both men and women exhibited longer reproduced durations for attractive opposite-sex faces than for unattractive opposite-sex faces; conversely, in the same-sex face condition, women still exhibited longer reproduced durations for attractive faces than for unattractive faces, whereas the effect of facial attractiveness on time perception among men tended to be smaller or even fail to reach significance. These results suggest that gender differences play an important role in the effect of facial attractiveness on time perception.
Collapse
Affiliation(s)
- Yu Tian
- School of Psychology, Southwest University, Chongqing, China.,Key Research Base of Humanities and Social Sciences, Southwest University, Chongqing, China
| | - Lingjing Li
- The Experimental Middle School Attached to Yunnan Normal University, Kunming, China
| | - Huazhan Yin
- Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, China
| | - Xiting Huang
- School of Psychology, Southwest University, Chongqing, China.,Key Research Base of Humanities and Social Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Manaia F, Rocha K, Marinho V, Magalhães F, Oliveira T, Carvalho V, Araújo T, Ayres C, Gupta D, Velasques B, Ribeiro P, Cagy M, Bastos VH, Teixeira S. The role of low-frequency rTMS in the superior parietal cortex during time estimation. Neurol Sci 2019; 40:1183-1189. [DOI: 10.1007/s10072-019-03820-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
|
12
|
Rocha K, Marinho V, Magalhães F, Ribeiro J, Oliveira T, Gupta DS, Chaves F, Velasques B, Ribeiro P, Cagy M, Lima G, Teixeira S. Low-frequency rTMS stimulation over superior parietal cortex medially improves time reproduction and increases the right dorsolateral prefrontal cortex predominance. Int J Neurosci 2018; 129:523-533. [DOI: 10.1080/00207454.2018.1476351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Kaline Rocha
- Neuro-innovation Technology & Brain Mapping Laboratory,, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Victor Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory,, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Francisco Magalhães
- Neuro-innovation Technology & Brain Mapping Laboratory,, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Jéssica Ribeiro
- Neuro-innovation Technology & Brain Mapping Laboratory,, Federal University of Piauí, Parnaíba, Brazil
| | - Thomaz Oliveira
- Neuro-innovation Technology & Brain Mapping Laboratory,, Federal University of Piauí, Parnaíba, Brazil
| | - Daya S. Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Fernanda Chaves
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio Cagy
- Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gildário Lima
- Neurophysics Applied Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Silmar Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory,, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
13
|
Murai Y, Yotsumoto Y. Optimal multisensory integration leads to optimal time estimation. Sci Rep 2018; 8:13068. [PMID: 30166608 PMCID: PMC6117357 DOI: 10.1038/s41598-018-31468-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
Our brain compensates sensory uncertainty by combining multisensory information derived from an event, and by integrating the current sensory signal with the prior knowledge about the statistical structure of previous events. There is growing evidence that both strategies are statistically optimal; however, how these two stages of information integration interact and shape an optimal percept remains an open question. In the present study, we investigated the perception of time as an amodal perceptual attribute. The central tendency, a phenomenon of biasing the current percept toward previous stimuli, is used to quantify and model how the prior information affects the current timing behavior. We measured the timing sensitivity and the central tendency for unisensory and multisensory stimuli with sensory uncertainty systematically manipulated by adding noise. Psychophysical results demonstrate that the central tendency increases as the uncertainty increases, and that the multisensory timing improves both the timing sensitivity and the central tendency bias compared to the unisensory timing. Computational models indicate that the optimal multisensory integration precedes the optimal integration of prior information causing the central tendency. Our findings suggest that our brain incorporates the multisensory information and prior knowledge in a statistically optimal manner to realize precise and accurate timing behavior.
Collapse
Affiliation(s)
- Yuki Murai
- Department of Psychology, University of California, Berkeley, USA.
- Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Fan Z, Yotsumoto Y. Multiple Time Intervals of Visual Events Are Represented as Discrete Items in Working Memory. Front Psychol 2018; 9:1340. [PMID: 30116213 PMCID: PMC6083218 DOI: 10.3389/fpsyg.2018.01340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/12/2018] [Indexed: 12/01/2022] Open
Abstract
Previous studies on time perception and temporal memory have focused primarily on single time intervals; it is still unclear how multiple time intervals are perceived and maintained in working memory. In the present study, using Sternberg's item recognition task, we compared the working memory of multiple items with different time intervals and visual textures, for sub- and supra-second ranges, and investigated the characteristics of working memory representation in the framework of the signal detection theory. In Experiments 1-3, gratings with different spatial frequencies and time intervals were sequentially presented as study items, followed by another grating as a probe. Participants determined whether the probe matched one of the study gratings, in either the temporal dimension or in the visual dimension. The results exhibited typical working memory characteristics such as the effects of memory load, serial position, and similarity between probe and study gratings, similarly, to the time intervals and visual textures. However, there were some differences between the two conditions. Specifically, the recency effect for time intervals was smaller, or even absent, as compared to that for visual textures. Further, as compared with visual textures, sub-second intervals were more likely to be judged as remembered in working memory. In addition, we found interactions between visual texture memory and time interval memory, and such visual-interval binding differed between sub- and supra-second ranges. Our results indicate that multiple time intervals are stored as discrete items in working memory, similarly, to visual texture memory, but the former might be more susceptible to decay than the latter. The differences in the binding between sub- and supra-second ranges imply that working memory for sub- and supra-second ranges may differ in the relatively higher decision stage.
Collapse
Affiliation(s)
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Rammsayer T, Pichelmann S. Visual-auditory differences in duration discrimination depend on modality-specific, sensory-automatic temporal processing: Converging evidence for the validity of the Sensory-Automatic Timing Hypothesis. Q J Exp Psychol (Hove) 2018; 71:2364-2377. [PMID: 30362412 DOI: 10.1177/1747021817741611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Sensory-Automatic Timing Hypothesis assumes visual-auditory differences in duration discrimination to originate from sensory-automatic temporal processing. Although temporal discrimination of extremely brief intervals in the range of tens-of-milliseconds is predicted to depend mainly on modality-specific, sensory-automatic temporal processing, duration discrimination of longer intervals is predicted to require more and more amodal, higher order cognitive resources and decreasing input from the sensory-automatic timing system with increasing interval duration. In two duration discrimination experiments with sensory modality as a within- and a between-subjects variable, respectively, we tested two decisive predictions derived from the Sensory-Automatic Timing Hypothesis: (1) visual-auditory differences in duration discrimination were expected to be larger for brief intervals in the tens-of-milliseconds range than for longer ones, and (2) visual-auditory differences in duration discrimination of longer intervals should disappear when statistically controlled for modality-specific input from the sensory-automatic timing system. In both experiments, visual-auditory differences in duration discrimination were larger for the brief than for the longer intervals. Furthermore, visual-auditory differences observed with longer intervals disappeared when statistically controlled for modality-specific input from the sensory-automatic timing system. Thus, our findings clearly confirmed the validity of the Sensory-Automatic Timing Hypothesis.
Collapse
|
16
|
A Bayesian Perspective on Accumulation in the Magnitude System. Sci Rep 2017; 7:630. [PMID: 28377631 PMCID: PMC5428809 DOI: 10.1038/s41598-017-00680-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Several theoretical and empirical work posit the existence of a common magnitude system in the brain. Such a proposal implies that manipulating stimuli in one magnitude dimension (e.g. duration in time) should interfere with the subjective estimation of another magnitude dimension (e.g. size in space). Here, we asked whether a generalized Bayesian magnitude estimation system would sample sensory evidence using a common, amodal prior. Two psychophysical experiments separately tested participants on their perception of duration, surface, and numerosity when the non-target magnitude dimensions and the rate of sensory evidence accumulation were manipulated. First, we found that duration estimation was resilient to changes in surface and numerosity, whereas lengthening (shortening) the duration yielded under- (over-) estimations of surface and numerosity. Second, the perception of surface and numerosity were affected by changes in the rate of sensory evidence accumulation, whereas duration was not. Our results suggest that a generalized magnitude system based on Bayesian computations would minimally necessitate multiple priors.
Collapse
|