1
|
Ludwig L, Vanderboon EN, Treleaven H, Wood RD, Schott CR, Wood GA. Patient-matched tumours, plasma, and cell lines reveal tumour microenvironment- and cell culture-specific microRNAs. Biol Open 2024; 13:bio060483. [PMID: 39714200 PMCID: PMC11695573 DOI: 10.1242/bio.060483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/01/2024] [Indexed: 12/24/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that are present in all cell types and bodily fluids and are commonly dysregulated in cancer. miRNAs in cancer have been studied by measuring levels in cell lines, tumour tissues, and in circulation; however, no study has specifically investigated miRNA expression in patient-matched samples across all three sample types. Canine osteosarcoma is a well-established spontaneously occurring model of human osteosarcoma for which matched samples are available. We analysed a panel of miRNAs by real-time quantitative PCR and compared across patients and sample types. While some miRNAs are highly expressed in all three sample types, tumour tissue and cell lines had the most in common. There were several miRNAs that were highly expressed in plasma and tumour tissue but not in cell lines and likely represent miRNAs produced in the tumour microenvironment. Two highly expressed miRNAs were exclusive to plasma and are known to be expressed in circulating cells. This study highlights the importance of considering sample type when studying miRNAs in cancer and demonstrates the power of using patient-matched samples.
Collapse
Affiliation(s)
- Latasha Ludwig
- Department of Pathobiology, University of Guelph, Guelph N1G 2W1, Canada
| | - Emma N. Vanderboon
- Department of Pathobiology, University of Guelph, Guelph N1G 2W1, Canada
| | - Heather Treleaven
- Department of Pathobiology, University of Guelph, Guelph N1G 2W1, Canada
| | - R. Darren Wood
- Department of Pathobiology, University of Guelph, Guelph N1G 2W1, Canada
| | - Courtney R. Schott
- Department of Pathobiology, University of Guelph, Guelph N1G 2W1, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
2
|
Yau AWN, Chu SYC, Yap WH, Wong CL, Chia AYY, Tang YQ. Phage display screening in breast cancer: From peptide discovery to clinical applications. Life Sci 2024; 357:123077. [PMID: 39332485 DOI: 10.1016/j.lfs.2024.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Breast cancer is known as the most common type of cancer found in women and a leading cause of cancer death in women, with the global incidence only increasing. Breast cancer in Malaysia is also unfortunately the most prevalent in Malaysian women. Many treatment options are available for breast cancer, but there is increasing resistance developed against treatment and increased recurrence risk, emphasizing the need for new treatment options. This review will focus on the applications of phage display screening in the context of breast cancer. Phage display screening can facilitate the drug discovery process by providing rapid screening and isolation of peptides that bind to targets of interest with high specificity. Peptides derived from phage display target various types of proteins involved in breast cancer, including HER2, C5AR1, p53 and PRDM14, either for therapeutic or diagnostic purposes. Different approaches were employed as well to produce potential peptides using radiolabelling and conjugation techniques. Promising results were reported for in vitro and in vivo studies utilizing peptides derived from phage display screening. Further optimization of the protocols and factors to consider are required to mitigate the challenges involved with phage display screening of peptides for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ashlyn Wen Ning Yau
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Sylvester Yee Chun Chu
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Wei Hsum Yap
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Chuan Loo Wong
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Adeline Yoke Yin Chia
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Yin-Quan Tang
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Chong ZX. Roles of miRNAs in regulating ovarian cancer stemness. Biochim Biophys Acta Rev Cancer 2024; 1879:189191. [PMID: 39353485 DOI: 10.1016/j.bbcan.2024.189191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ovarian cancer is one of the gynaecology malignancies with the highest mortality rate. Ovarian cancer stem cell (CSC) is a subpopulation of ovarian cancer cells with increased self-renewability, aggression, metastatic potentials, and resistance to conventional anti-cancer therapy. The emergence of ovarian CSC is a critical factor that promotes treatment resistance and frequent relapse among ovarian cancer patients, leading to poor clinical outcomes. MicroRNA (miRNA) is a short, non-protein-coding RNA that regulates ovarian CSC development. Although multiple original research articles have discussed the CSC-regulatory roles of different miRNAs in ovarian cancer, there is a deficiency of a review article that can summarize the findings from different research papers. To narrow the gap in the literature, this review aimed to provide an up-to-date summary of the CSC-regulatory roles of various miRNAs in modulating ovarian cancer cell stemness. This review will begin by giving an overview of ovarian CSC and the pathways responsible for driving its appearance. Next, the CSC-regulatory roles of miRNAs in controlling ovarian CSC development will be discussed. Overall, more than 60 miRNAs have been reported to play CSC-regulatory roles in the development and progression of ovarian cancer. By targeting various downstream targets, these miRNAs can control the signaling activities of PI3K/AKT, EGFR/ERK, WNT/ß-catenin, NF-kß, Notch, Hippo/YAP, EMT, and DNA repair pathways. Hence, these CSC-modulatory miRNAs have the potential to be used as prognostic biomarkers in predicting the clinical outcomes of ovarian cancer patients. Targeting CSC-promoting miRNAs or increasing the expressions of CSC-repressing miRNAs can help slow ovarian cancer progression. However, more in-depth functional and clinical trials must be carried out to evaluate the suitability, safety, sensitivity, and specificity of these CSC-regulating miRNAs as prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599.
| |
Collapse
|
4
|
Muñoz JP, Pérez-Moreno P, Pérez Y, Calaf GM. The Role of MicroRNAs in Breast Cancer and the Challenges of Their Clinical Application. Diagnostics (Basel) 2023; 13:3072. [PMID: 37835815 PMCID: PMC10572677 DOI: 10.3390/diagnostics13193072] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a subclass of non-coding RNAs that exert substantial influence on gene-expression regulation. Their tightly controlled expression plays a pivotal role in various cellular processes, while their dysregulation has been implicated in numerous pathological conditions, including cancer. Among cancers affecting women, breast cancer (BC) is the most prevalent malignant tumor. Extensive investigations have demonstrated distinct expression patterns of miRNAs in normal and malignant breast cells. Consequently, these findings have prompted research efforts towards leveraging miRNAs as diagnostic tools and the development of therapeutic strategies. The aim of this review is to describe the role of miRNAs in BC. We discuss the identification of oncogenic, tumor suppressor and metastatic miRNAs among BC cells, and their impact on tumor progression. We describe the potential of miRNAs as diagnostic and prognostic biomarkers for BC, as well as their role as promising therapeutic targets. Finally, we evaluate the current use of artificial intelligence tools for miRNA analysis and the challenges faced by these new biomedical approaches in its clinical application. The insights presented in this review underscore the promising prospects of utilizing miRNAs as innovative diagnostic, prognostic, and therapeutic tools for the management of BC.
Collapse
Affiliation(s)
- Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Pablo Pérez-Moreno
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
| | - Yasmín Pérez
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
5
|
Pishbin F, Ziamajidi N, Abbasalipourkabir R, Najafi R, Farhadian M. Correlation of Wilms' Tumor 1 (WT1) with Oxidative Stress Markers and Expression of miR-361-5p; New Aspect of WT1 in Breast Cancer. Indian J Clin Biochem 2023; 38:338-350. [PMID: 37234179 PMCID: PMC10205927 DOI: 10.1007/s12291-022-01053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/12/2022] [Indexed: 10/17/2022]
Abstract
Breast carcinoma is a heterogeneous disease that affects millions of women worldwide. Wilms' tumor 1 (WT1) is an oncogene that promotes proliferation, metastasis and reduces apoptosis. MicroRNAs (miR) are short noncoding RNAs with a major role in cancer metastasis. In present study, we investigated the association of serum level of WT1 with oxidative stress and expression of miR-361-5p in breast cancer. Serum samples of 45 patients and of 45 healthy women analyzed for protein level of WT1, malondialdehyde (MDA), total oxidant status (TOS), and total antioxidant capacity (TAC). Serum and tissue expression of miR-361-5p in 45 tumor tissues and 45 paired non-tumor adjacent tissues and 45 serum samples of patients and healthy women analyzed by qRT-PCR. Protein levels of WT1 not significantly difference in serum of patients compared to healthy controls. Serum levels of MDA and TOS in patients were higher, but TAC level was lower than healthy controls (p < 0.001). There was a positive correlation between WT1 with MDA and TOS, and a negative correlation between WT1 with TAC in patients. miR-361-5p expression in tumor tissues and serum of patients was lower than non-tumor adjacent tissues and serum of healthy controls, respectively (p < 0.001). Moreover, there was a negative correlation between miR-361-5p and WT1 in patients. The positive correlation between WT1 with MDA and TOS and negative correlation between TAC and miR-361-5p suggests that this gene can play an important role in worse prognoses in breast cancer. Additionally, miR-361-5p may serve as an invasive biomarker for early detection of breast cancer.
Collapse
Affiliation(s)
- Fariba Pishbin
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
C AS, Shah M, Nandy D, Gupta R. Genomic Index of Sensitivity to Chemotherapy for Triple Negative Breast Cancer. Asian Pac J Cancer Prev 2023; 24:2043-2053. [PMID: 37378935 PMCID: PMC10505887 DOI: 10.31557/apjcp.2023.24.6.2043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE Patients with triple-negative breast cancer (TNBC) frequently develop resistance to chemotherapy. Studies have shown that microRNAs (miRNAs) are often aberrantly expressed in TNBC and are associated with drug resistance. However, a prognostic strategy that correlates miRNAs with chemotherapy resistance remains largely unknown. METHODS To identify breast cancer chemoresistance-associated miRNAs, the miRNA microarray dataset GSE71142 was downloaded from the Gene Expression Omnibus database. Differentially expressed miRNAs (DE-miRNAs) in chemoresistant groups were identified using the LIMMA package in R. Potential target genes were predicted using the miRTarBase 9. Functional and pathway enrichment analyses was done using WebGestalt. A protein-protein interaction network was visualized using Cytoscape software. The top six hub genes regulated by DE-miRNAs were identified using the random forest model. The chemotherapy resistance index (CRI) in TNBC was defined as sum of the median expression levels of the top six hub genes. The association of CRI with distant relapse risk was evaluated using point-biserial correlation coefficient in the validation cohorts of patients with TNBC. The correlation between CRI and cumulative hazard rate was estimated using the Cox model, and the predicted rate of distant relapse was obtained from the Breslow-type estimator of the survival function. All statistical computations were performed using Origin2019b. RESULTS A total of 12 DE-miRNAs were screened, including six upregulated and six downregulated miRNAs in chemoresistant breast cancer tissues compared with chemosensitive tissues. Based on fold changes, miR-214-3p, miR-4758-3p, miR-200c-3p, miR-4254, miR-140-3p, and miR-24-3p were the top six most upregulated miRNAs, whereas miR-142-5p, miR-146-5p, miR-1268b, miR-1275, miR-4447, and miR-4472 were the top six most downregulated miRNAs. The top three hub genes for upregulated miRNAs were RAC1, MYC, and CCND1 and for downregulated miRNAs were IL-6, SOCS1, and PDGFRA. CRI was significantly associated with the risk of distant relapse. CONCLUSION CRI predicted survival benefits with reduced hazard rate.
Collapse
Affiliation(s)
- Ahammad Sameer C
- Department of Applied Sciences, Parul University, Vadodara, India.
| | - Manan Shah
- Parul Sevashram Hospital, Parul University, Vadodara, India.
| | - Dipayan Nandy
- Parul Sevashram Hospital, Parul University, Vadodara, India.
| | - Reeshu Gupta
- Department of Applied Sciences, Parul University, Vadodara, India.
| |
Collapse
|
7
|
Ciechomska M, Roszkowski L, Burakowski T, Massalska M, Felis-Giemza A, Roura AJ. Circulating miRNA-19b as a biomarker of disease progression and treatment response to baricitinib in rheumatoid arthritis patients through miRNA profiling of monocytes. Front Immunol 2023; 14:980247. [PMID: 37056771 PMCID: PMC10086423 DOI: 10.3389/fimmu.2023.980247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionA number of studies have demonstrated a key role of miRNA isolated from cells, tissue or body fluids as disease-specific biomarkers of autoimmune rheumatic diseases including rheumatoid arthritis (RA) and systemic sclerosis (SSc). Also, the expression level of miRNA is changing during disease development, therefore miRNA can be used as biomarkers monitoring RA progression and treatment response. In this study we have investigated the monocytes-specific miRNA that could serve as potential biomarkers of disease progression observed in sera and synovial fluids (SF) in early (eRA) and advanced (aRA) RA and in RA patients before and 3 months after selective JAK inhibitor (JAKi) -baricitinib treatment.MethodsSamples from healthy control (HC) (n=37), RA (n=44) and SSc (n=10) patients were used. MiRNA-seq of HC, RA, and SSc monocytes was performed to find versatile miRNA present in different rheumatic diseases. Selected miRNAs were validated in body fluids in eRA (<2 years disease onset) and aRA (>2 years disease onset) and RA patients receiving baricitinib.ResultsUsing miRNA-seq, we selected top 6 miRNA out of 95 that were significantly changed in both RA and SSc monocytes compared to HC. To identify circulating miRNA predicting RA progression, these 6 miRNA were measured in eRA and aRA sera and SF. Interestingly, miRNA (-19b-3p, -374a-5p, -3614-5p) were significantly increased in eRA sera vs HC and even further upregulated in SF vs aRA sera. In contrast, miRNA-29c-5p was significantly reduced in eRA sera vs HC and even further decreased in SF vs aRA sera. Kegg pathway analysis predicted that miRNA were involved in inflammatory-mediated pathways. ROC analysis demonstrated that miRNA-19b-3p (AUC=0.85, p=0.04) can be used as biomarker predicting JAKi response.DiscussionIn conclusion, we identified and validated miRNA candidates which were present simultaneously in monocytes, sera, SF and that can be used as biomarkers predicting joint inflammation and monitoring therapy response to JAKi in RA patients.
Collapse
Affiliation(s)
- Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- *Correspondence: Marzena Ciechomska,
| | - Leszek Roszkowski
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Tomasz Burakowski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Magdalena Massalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Anna Felis-Giemza
- Biologic Therapy Center, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
8
|
Padroni L, De Marco L, Dansero L, Fiano V, Milani L, Vasapolli P, Manfredi L, Caini S, Agnoli C, Ricceri F, Sacerdote C. An Epidemiological Systematic Review with Meta-Analysis on Biomarker Role of Circulating MicroRNAs in Breast Cancer Incidence. Int J Mol Sci 2023; 24:3910. [PMID: 36835336 PMCID: PMC9967215 DOI: 10.3390/ijms24043910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Breast cancer (BC) is a multifactorial disease caused by an interaction between genetic predisposition and environmental exposures. MicroRNAs are a group of small non-coding RNA molecules, which seem to have a role either as tumor suppressor genes or oncogenes and seem to be related to cancer risk factors. We conducted a systematic review and meta-analysis to identify circulating microRNAs related to BC diagnosis, paying special attention to methodological problems in this research field. A meta-analysis was performed for microRNAs analyzed in at least three independent studies where sufficient data to make analysis were presented. Seventy-five studies were included in the systematic review. A meta-analysis was performed for microRNAs analyzed in at least three independent studies where sufficient data to make analysis were presented. Seven studies were included in the MIR21 and MIR155 meta-analysis, while four studies were included in the MIR10b metanalysis. The pooled sensitivity and specificity of MIR21 for BC diagnosis were 0.86 (95%CI 0.76-0.93) and 0.84 (95%CI 0.71-0.92), 0.83 (95%CI 0.72-0.91) and 0.90 (95%CI 0.69-0.97) for MIR155, and 0.56 (95%CI 0.32-0.71) and 0.95 (95%CI 0.88-0.98) for MIR10b, respectively. Several other microRNAs were found to be dysregulated, distinguishing BC patients from healthy controls. However, there was little consistency between included studies, making it difficult to identify specific microRNAs useful for diagnosis.
Collapse
Affiliation(s)
- Lisa Padroni
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| | - Laura De Marco
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| | - Lucia Dansero
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Valentina Fiano
- Unit of Cancer Epidemiology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Lorenzo Milani
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| | - Paolo Vasapolli
- Unit of Cancer Epidemiology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Luca Manfredi
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Saverio Caini
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Fulvio Ricceri
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
- Unit of Epidemiology, Regional Health Service ASL TO3, 10095 Grugliasco, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| |
Collapse
|
9
|
Kaur A, Mahmoud R, Megalathan A, Pettit S, Dhakal S. Multiplexed smFRET Nucleic Acid Sensing Using DNA Nanotweezers. BIOSENSORS 2023; 13:119. [PMID: 36671954 PMCID: PMC9856376 DOI: 10.3390/bios13010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The multiplexed detection of disease biomarkers is part of an ongoing effort toward improving the quality of diagnostic testing, reducing the cost of analysis, and accelerating the treatment processes. Although significant efforts have been made to develop more sensitive and rapid multiplexed screening methods, such as microarrays and electrochemical sensors, their limitations include their intricate sensing designs and semi-quantitative detection capabilities. Alternatively, fluorescence resonance energy transfer (FRET)-based single-molecule counting offers great potential for both the sensitive and quantitative detection of various biomarkers. However, current FRET-based multiplexed sensing typically requires the use of multiple excitation sources and/or FRET pairs, which complicates labeling schemes and the post-analysis of data. We present a nanotweezer (NT)-based sensing strategy that employs a single FRET pair and is capable of detecting multiple targets. Using DNA mimics of miRNA biomarkers specific to triple-negative breast cancer (TNBC), we demonstrated that the developed sensors are sensitive down to the low picomolar range (≤10 pM) and can discriminate between targets with a single-base mismatch. These simple hybridization-based sensors hold great promise for the sensitive detection of a wider spectrum of nucleic acid biomarkers.
Collapse
|
10
|
The Role of miRNAs in the Prognosis of Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 13:diagnostics13010127. [PMID: 36611419 PMCID: PMC9818368 DOI: 10.3390/diagnostics13010127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/03/2023] Open
Abstract
Breast cancer is one of the most common malignancies among women around the world. The basal or triple-negative subtype (TNBC) is a heterogeneous group of tumors, characterized by its aggressive and metastatic nature, with low survival and worse prognosis. Research on genetic biomarkers, such as microRNAs (miRs) in TNBC, demonstrate their relevance in the prognosis of the disease. Therefore, the objective of this research was to verify the role of miRs in the prognosis of TNBC. A search was carried out in the PubMed (MEDLINE), Web of Science, and Scopus databases, with articles in the English language from 2010 to 2022. Only articles that analyzed the role of miRNAs in the prognosis of TNBC and that met the criteria of the MOOSE method were included. For the preparation and planning of this systematic review, a PRISMA checklist and the MOOSE method were used. The Newcastle-Ottawa Scale was used to analyze the quality of the included studies. The excluded criteria considered were: (1) studies that presented duplication in the databases; (2) reviews of the literature, clinical case reports, meta-analyses, conference abstracts, letters to the editor, theses, dissertations, and book chapters; (3) studies that stratified only women diagnosed with other subtypes of breast cancer subtypes; (4) experiments without a control or comparison group. After the bibliographic survey of the 2.274 articles found, 43 articles met the inclusion criteria, totaling 5421 patients with TNBC analyzed for this review. Six miRs (miR-155, miR-21, miR-27a/b/, miR-374a/b, miR-30a/c/e, and miR-301a) were included in the meta-analysis. A low expression of miR-155 was associated with reduced overall survival (OS) (HR: 0.68, 95% CI: 0.58-0.81). A high expression of miR-21 was a predictor of OS reduction (HR: 2.56; 95% CI: 1.49-4.40). In addition, high levels of miR-27a/b and miR-301a/b were associated with lower OS, while the decreased expression levels of miR-30 and miR-374a/b were associated with worse relapse-free survival (RFS) and shorter disease-free survival (DFS), respectively. The present study revealed that miRs play essential roles in the development of metastases, in addition to acting as suppressors of the disease, thus improving the prognosis of TNBC. However, the clinical application of these findings has not yet been investigated.
Collapse
|
11
|
Gianni C, Palleschi M, Merloni F, Bleve S, Casadei C, Sirico M, Di Menna G, Sarti S, Cecconetto L, Mariotti M, De Giorgi U. Potential Impact of Preoperative Circulating Biomarkers on Individual Escalating/de-Escalating Strategies in Early Breast Cancer. Cancers (Basel) 2022; 15:96. [PMID: 36612091 PMCID: PMC9817806 DOI: 10.3390/cancers15010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The research on non-invasive circulating biomarkers to guide clinical decision is in wide expansion, including the earliest disease settings. Several new intensification/de-intensification strategies are approaching clinical practice, personalizing the treatment for each patient. Moreover, liquid biopsy is revealing its potential with multiple techniques and studies available on circulating biomarkers in the preoperative phase. Inflammatory circulating cells, circulating tumor cells (CTCs), cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), and other biological biomarkers are improving the armamentarium for treatment selection. Defining the escalation and de-escalation of treatments is a mainstay of personalized medicine in early breast cancer. In this review, we delineate the studies investigating the possible application of these non-invasive tools to give a more enlightened approach to escalating/de-escalating strategies in early breast cancer.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Duque G, Manterola C, Otzen T, Arias C, Palacios D, Mora M, Galindo B, Holguín JP, Albarracín L. Cancer Biomarkers in Liquid Biopsy for Early Detection of Breast
Cancer: A Systematic Review. Clin Med Insights Oncol 2022; 16:11795549221134831. [PMCID: PMC9634213 DOI: 10.1177/11795549221134831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Breast cancer (BC) is the most common neoplasm in women worldwide. Liquid
biopsy (LB) is a non-invasive diagnostic technique that allows the analysis
of biomarkers in different body fluids, particularly in peripheral blood and
also in urine, saliva, nipple discharge, volatile respiratory fluids, nasal
secretions, breast milk, and tears. The objective was to analyze the
available evidence related to the use of biomarkers obtained by LB for the
early diagnosis of BC. Methods: Articles related to the use of biomarkers for the early diagnosis of BC due
to LB, published between 2010 and 2022, from the databases (WoS, EMBASE,
PubMed, and SCOPUS) were included. The MInCir diagnostic scale was applied
in the articles to determine their methodological quality (MQ). Descriptive
statistics were used, as well as determination of weighted averages of each
variable, to analyze the extracted data. Sensitivity, specificity, and area
under the curve values for specific biomarkers (individual or in panels) are
described. Results: In this systematic review (SR), 136 articles met the selection criteria,
representing 17 709 patients with BC. However, 95.6% were case-control
studies. In 96.3% of cases, LB was performed in peripheral blood samples.
Most of the articles were based on microRNA (miRNA) analysis. The mean MQ
score was 25/45 points. Sensitivity, specificity, and area under the curve
values for specific biomarkers (individual or in panels) have been
found. Conclusions: The determination of biomarkers through LB is a useful mechanism for the
diagnosis of BC. The analysis of miRNA in peripheral blood is the most
studied methodology. Our results indicate that LB has a high sensitivity and
specificity for the diagnosis of BC, especially in early stages.
Collapse
Affiliation(s)
- Galo Duque
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador,Galo Duque, Faculty of Medicine,
Universidad del Azuay. Postal address: Av. 24 de Mayo y Hernán Malo, Cuenca,
Ecuador 010107.
| | - Carlos Manterola
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Center of Excellence in Morphological
and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Tamara Otzen
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Center of Excellence in Morphological
and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Cristina Arias
- Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | | | - Miriann Mora
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Bryan Galindo
- Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Juan Pablo Holguín
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Lorena Albarracín
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
13
|
Mukherjee Das A, Shrivastav KD, Taneja N, Awasthi AA, Rashid S, Gogia A, Janardhanan R. Knowledge and awareness of breast cancer and breast self-examination among college-going female students in Delhi-NCR: a cross sectional study. HEALTH EDUCATION 2022. [DOI: 10.1108/he-10-2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeBreast cancer (BC) presents a major public health challenge world-over including India. While several risk-factors, early signs and symptoms of BC are known, the knowledge and awareness of this disease remains poor among the population. The present study aimed to determine the extent of knowledge and awareness of BC, its risk factors, early signs and symptoms and breast self-examination (BSE) practice as an early detection method among Indian college-going female students.Design/methodology/approachThe authors conducted a cross-sectional survey at a University in Delhi-NCR. Data on socio-demographic, knowledge and awareness of BC including BSE was collected using a pretested questionnaire. Chi-square test and logistic regression analysis was performed. All tests were two-sided and significance was set at p < 0.05.FindingsA total of 866 female students participated in the study with mean age of 22.32 (±0.146) years having mean body mass index (BMI) of 21.22 (±3.52). As high as 82.1% of the participants had heard of BC but while 74.8% thought early detection is possible, 70.7% believed BC cannot be prevented. Gene mutations (60.2%) were identified as a significant risk factor, while breast pain (61.4%) was commonly recognized as a sign of BC. Only 29.8% of students ever performed BSE. Increased odds of performing BSE (OR = 3.4) was found among students who recognized gene mutations as an important BC risk factor.Research limitations/implicationsKnowledge and awareness of BC including BSE among female college students were found to be below average. It is suggested that there is an urgent need for increasing BC awareness among young girls through workshops and mobile-health interventions.Practical implicationsThis study provides new information on the level of knowledge and awareness of BC risk factors, sign and symptoms and self-examination practice among young college girls. Moreover, this study advocates the need for design and implementation of a sustainable digital health model for active population BC screening, which is not being done currently.Social implicationsBC is a highly aggressive disease, which is now one of the leading causes of morbidity and mortality in India and world over. Although the knowledge of BC risk factors and its signs and symptoms have increased, the awareness of these elements among the general population at large is low and/or missing, especially in India. Furthermore, as a consequence of unorganized screening programs in the country, majority of women are presenting young with locally advanced disease. Understanding the existing level of knowledge and educating school, college and University students of the pertinent factors and screening practices such as BSE could drastically help in improving the self-screening and/or clinical examination rates. This could potentially lead to early detection and improved prognosis, thus ameliorating disease burden.Originality/valueThis study is one of the few studies conducted in India among young female college students belonging to non-medical backgrounds, delineating the level of knowledge and awareness of BC risk factors and signs and symptoms along with practice of early detection method such as BSE. The study has a considerable sample size and provides valuable evidence for a need to implement programs incorporating digital health models for accelerating awareness and screening of young girls in both rural and urban settings.
Collapse
|
14
|
Nguyen THN, Nguyen TTN, Nguyen TTM, Nguyen LHM, Huynh LH, Phan HN, Nguyen HT. Panels of circulating microRNAs as potential diagnostic biomarkers for breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 2022; 196:1-15. [DOI: 10.1007/s10549-022-06728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
|
15
|
Mukherjee Das A, Gogia A, Garg M, Elaiyaraja A, Arambam P, Mathur S, Babu-Rajendran R, Deo SVS, Kumar L, Das BC, Janardhanan R. Urinary concentration of endocrine-disrupting phthalates and breast cancer risk in Indian women: A case-control study with a focus on mutations in phthalate-responsive genes. Cancer Epidemiol 2022; 79:102188. [PMID: 35688051 DOI: 10.1016/j.canep.2022.102188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Phthalates are known endocrine-disrupting chemicals used indiscriminately as constituents in consumer products including food processing, and packaging, cosmetics, personal care and household items. Although, few studies have assessed the risk of breast cancer on exposure to phthalates, their association with breast cancer risk in Indian women have not yet been evaluated. METHODS We conducted a case-control study involving 171 participants. Urinary concentrations of six phthalate dieters; DMP (Dimethyl phthalate), DEP (Diethyl phthalate), DBP (Dibutyl phthalate), BBP (benzyl butyl phthalate), DEHP (Di-2-ethyl-hexyl phthalate), DINOP (Di-n-octyl phthalate) were estimated by GC-MS and geometric means were calculated. Univariate and multivariable logistic regression was performed to assess breast cancer risk on exposure to phthalates. Genes responsive to phthalates were identified through literature search and matched with NGS data, and gene-enrichment analysis was performed. RESULTS Significant associations were observed between urinary phthalate concentrations and increased risk of breast cancer for di-butyl phthalate (OR=1.5, 95% CI; 1.06, 2.11, p = 0.002) and di-2-ethyl-hexyl phthalate (>median vs ≤ median; OR=2.97, 95% CI; 1.18, 7.47, p = 0.005) in multivariable analyses. We also found several phthalate-responsive gene mutations in paired breast tumor tissues, which include PTPRD (76.19%), AR (42.86%), CYP1A1 (42.86%), CYP19A1 (23.81%), AHRR (19.05%), PIK3CA (19.05%), CYP1B1 (9.52%), RB1 (9.52%) and MMP9 (9.52%). Gene-enrichment analysis revealed that these genes form a major part of ER/PR, PPAR and HIF-1α-TGF-β signaling cascades involved in breast cancer CONCLUSION: Although the sample size is small, in this first case-control study from India, DBP and DEHP were found to be associated with increased risk of invasive breast cancer and tumor tissues revealed mutations in several phthalate-responsive genes. It is, therefore suggested that human biomonitoring in India and larger studies evaluating the early life genetic and epigenetic alterations on phthalates exposure are required to establish their role in breast carcinogenesis.
Collapse
Affiliation(s)
- Ankan Mukherjee Das
- Laboratory of Disease Dynamics and Molecular Epidemiology, Amity Institute of Public Health, Amity University Uttar Pradesh, Noida, India
| | - Ajay Gogia
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| | - Manoj Garg
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Arun Elaiyaraja
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, Bharathidasan University, Tamil Nadu, India
| | - Priyadarshini Arambam
- Laboratory of Disease Dynamics and Molecular Epidemiology, Amity Institute of Public Health, Amity University Uttar Pradesh, Noida, India; Batra Hospital and Medical Research Centre, New Delhi, India
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ramaswamy Babu-Rajendran
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, Bharathidasan University, Tamil Nadu, India
| | - S V S Deo
- Department of Surgical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Bhudev C Das
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India.
| | - Rajiv Janardhanan
- Laboratory of Disease Dynamics and Molecular Epidemiology, Amity Institute of Public Health, Amity University Uttar Pradesh, Noida, India.
| |
Collapse
|
16
|
Muhammad A, Forcados GE, Katsayal BS, Bako RS, Aminu S, Sadiq IZ, Abubakar MB, Yusuf AP, Malami I, Faruk M, Ibrahim S, Pase PA, Ahmed S, Abubakar IB, Abubakar M, Yates C. Potential epigenetic modifications implicated in triple- to quadruple-negative breast cancer transition: a review. Epigenomics 2022; 14:711-726. [PMID: 35473304 DOI: 10.2217/epi-2022-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Current research on triple-negative breast cancer (TNBC) has resulted in delineation into the quadruple-negative breast cancer (QNBC) subgroup. Epigenetic modifications such as DNA methylation, histone posttranslational modifications and associated changes in chromatin architecture have been implicated in breast cancer pathogenesis. Herein, the authors highlight genes with observed epigenetic modifications that are associated with more aggressive TNBC/QNBC pathogenesis and possible interventions. Advanced literature searches were done on PubMed/MEDLINE, Scopus and Google Scholar. The results suggest that nine epigenetically altered genes/differentially expressed proteins in addition to the downregulated androgen receptor are associated with TNBC aggressiveness and could be implicated in the TNBC to QNBC transition. Thus, restoring the normal expression of these genes via epigenetic reprogramming could be therapeutically beneficial to TNBC and QNBC patients.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria.,Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | | | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Rabiatu Suleiman Bako
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria.,Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria
| | | | - Ibrahim Malami
- Department of Pharmacognosy & Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Nigeria.,Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria
| | - Mohammed Faruk
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Peter Abur Pase
- Department of Surgery, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Saad Ahmed
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Ibrahim Babangida Abubakar
- Deparment of Biochemistry, Kebbi State University of Science & Technology, PMB 1144, Aliero, Kebbi State, Nigeria
| | - Murtala Abubakar
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Clayton Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
17
|
Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, Zaguia A, Koundal S, Belay A. Global Increase in Breast Cancer Incidence: Risk Factors and Preventive Measures. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9605439. [PMID: 35480139 PMCID: PMC9038417 DOI: 10.1155/2022/9605439] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is a global cause for concern owing to its high incidence around the world. The alarming increase in breast cancer cases emphasizes the management of disease at multiple levels. The management should start from the beginning that includes stringent cancer screening or cancer registry to effective diagnostic and treatment strategies. Breast cancer is highly heterogeneous at morphology as well as molecular levels and needs different therapeutic regimens based on the molecular subtype. Breast cancer patients with respective subtype have different clinical outcome prognoses. Breast cancer heterogeneity emphasizes the advanced molecular testing that will help on-time diagnosis and improved survival. Emerging fields such as liquid biopsy and artificial intelligence would help to under the complexity of breast cancer disease and decide the therapeutic regimen that helps in breast cancer management. In this review, we have discussed various risk factors and advanced technology available for breast cancer diagnosis to combat the worst breast cancer status and areas that need to be focused for the better management of breast cancer.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University (Gharuan), Mohali 140313, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh 160014, India
| | - Deepika Koundal
- Department of Systemics, School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India
| | - Atef Zaguia
- Department of computer science, College of Computers and Information Technology, Taif University, P.O. BOX 11099, Taif 21944, Saudi Arabia
| | - Shubham Koundal
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University (Gharuan), Mohali 140313, India
| | - Assaye Belay
- Department of Statistics, Mizan-Tepi University, Ethiopia
| |
Collapse
|
18
|
Afzal S, Hassan M, Ullah S, Abbas H, Tawakkal F, Khan MA. Breast Cancer; Discovery of Novel Diagnostic Biomarkers, Drug Resistance, and Therapeutic Implications. Front Mol Biosci 2022; 9:783450. [PMID: 35265667 PMCID: PMC8899313 DOI: 10.3389/fmolb.2022.783450] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the second most reported cancer in women with high mortality causing millions of cancer-related deaths annually. Early detection of breast cancer intensifies the struggle towards discovering, developing, and optimizing diagnostic biomarkers that can improve its prognosis and therapeutic outcomes. Breast cancer-associated biomarkers comprise macromolecules, such as nucleic acid (DNA/RNA), proteins, and intact cells. Advancements in molecular technologies have identified all types of biomarkers that are exclusively studied for diagnostic, prognostic, drug resistance, and therapeutic implications. Identifying biomarkers may solve the problem of drug resistance which is a challenging obstacle in breast cancer treatment. Dysregulation of non-coding RNAs including circular RNAs (circRNAs) and microRNAs (miRNAs) initiates and progresses breast cancer. The circulating multiple miRNA profiles promise better diagnostic and prognostic performance and sensitivity than individual miRNAs. The high stability and existence of circRNAs in body fluids make them a promising new diagnostic biomarker. Many therapeutic-based novels targeting agents have been identified, including ESR1 mutation (DNA mutations), Oligonucleotide analogs and antagonists (miRNA), poly (ADP-ribose) polymerase (PARP) in BRCA mutations, CDK4/6 (cell cycle regulating factor initiates tumor progression), Androgen receptor (a steroid hormone receptor), that have entered clinical validation procedure. In this review, we summarize the role of novel breast cancer diagnostic biomarkers, drug resistance, and therapeutic implications for breast cancer.
Collapse
Affiliation(s)
- Samia Afzal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- *Correspondence: Samia Afzal,
| | - Muhammad Hassan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Safi Ullah
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Hazrat Abbas
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Farah Tawakkal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mohsin Ahmad Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
19
|
Powrózek T, Ochieng Otieno M. Blood Circulating Non-Coding RNAs for the Clinical Management of Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:803. [PMID: 35159070 PMCID: PMC8833777 DOI: 10.3390/cancers14030803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, and is related to unfavorable prognosis and limited treatment strategies. Currently, there is a lack of reliable biomarkers allowing for the clinical management of TNBC. This is probably caused by a complex molecular background, leading to the development and establishment of a unique tumor phenotype. Recent studies have reported non-coding RNAs (ncRNAs) not only as the most promising class of molecular agents with a high applicability to manage human cancers, including TNBC, but also as robust and non-invasive biomarkers that are able to be monitored in blood circulation, with the application of liquid biopsy. There is a lack of papers discussing the role of blood-circulating ncRNAs as diagnostic, predictive, and prognostic biomarkers for TNBC. In this paper, we summarized the available literature reports on the utility of blood-circulating ncRNAs for TNBC management. Additionally, we supplemented this review by bioinformatics analysis, for better understanding of the role of ncRNAs' machinery in the development of a unique TNBC phenotype.
Collapse
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland
| | - Michael Ochieng Otieno
- Haematological Malignancies H12O Clinical Research Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain;
| |
Collapse
|
20
|
Zou R, Loke SY, Tang YC, Too HP, Zhou L, Lee ASG, Hartman M. Development and validation of a circulating microRNA panel for the early detection of breast cancer. Br J Cancer 2022; 126:472-481. [PMID: 35013577 PMCID: PMC8810862 DOI: 10.1038/s41416-021-01593-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mammography is widely used for breast cancer screening but suffers from a high false-positive rate. Here, we perform the largest comprehensive, multi-center study to date involving diverse ethnic groups, for the identification of circulating miRNAs for breast cancer screening. METHODS This study had a discovery phase (n = 289) and two validation phases (n = 374 and n = 379). Quantitative PCR profiling of 324 miRNAs was performed on serum samples from breast cancer (all stages) and healthy subjects to identify miRNA biomarkers. Two-fold cross-validation was used for building and optimising breast cancer-associated miRNA panels. An optimal panel was validated in cohorts with Caucasian and Asian samples. Diagnostic ability was evaluated using area under the curve (AUC) analysis. RESULTS The study identified and validated 30 miRNAs dysregulated in breast cancer. An optimised eight-miRNA panel showed consistent performance in all cohorts and was successfully validated with AUC, accuracy, sensitivity, and specificity of 0.915, 82.3%, 72.2% and 91.5%, respectively. The prediction model detected breast cancer in both Caucasian and Asian populations with AUCs ranging from 0.880 to 0.973, including pre-malignant lesions (stage 0; AUC of 0.831) and early-stage (stages I-II) cancers (AUC of 0.916). CONCLUSIONS Our panel can potentially be used for breast cancer screening, in conjunction with mammography.
Collapse
Affiliation(s)
- Ruiyang Zou
- Department of Research and Development, MiRXES Lab, Singapore, Singapore
| | - Sau Yeen Loke
- Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
| | - Yew Chung Tang
- Department of Research and Development, MiRXES Lab, Singapore, Singapore
| | - Heng-Phon Too
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lihan Zhou
- Department of Research and Development, MiRXES Lab, Singapore, Singapore.
| | - Ann S G Lee
- Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore.
- SingHealth Duke-NUS Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| |
Collapse
|
21
|
Raghu A, Magendhra Rao AKD, Rajkumar T, Mani S. Prognostic Implications of microRNA-155, -133a, -21 and -205 in Breast Cancer Patients' Plasma. Microrna 2021; 10:206-218. [PMID: 34238179 DOI: 10.2174/2211536610666210707114843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/26/2021] [Accepted: 04/14/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Breast cancer, being a heterogenous disease at the intra-tumoral and intertumoral levels, presents challenges in following the progress of the disease. Tumour-secreted aberrantly expressed miRNAs obtained from peripheral blood represent a non-invasive alternative resource for detecting and monitoring the development of the disease. This study evaluates the expression of miR-155, miR-133a, miR-21 and miR-205 as non-invasive, prognostic and follow-up markers for breast cancer. METHODS Plasma expression levels of miR-155, miR-133a, miR-21 and miR-205 were measured using real-time PCR in breast cancer patients (n=63) at presentation, healthy controls (n=25), and in post-treatment samples of 31 patients. A meta-analysis was performed using 43 studies identified from PubMed, Google Scholar and Scopus databases. Hedge's g values were used to calculate the overall effect size. RESULTS Plasma miR-21 levels were higher in breast cancer patients at presentation compared to controls, while no difference was observed for miR-155, miR-133a and miR-205. These results were further supported by the meta-analysis. The altered levels of miR-155 during tamoxifen treatment indicated a potential role for miR-155 in monitoring treatment response. Further, high expressions of at least three miRNAs correlated with poor overall survival in the breast cancer patients. CONCLUSION Plasma levels of miR-155, miR-133a, miR-21 and miR-205 may be useful as prognostic and follow-up markers for breast cancer with further validation in a large cohort of patients.
Collapse
Affiliation(s)
- Aarthy Raghu
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600036,India
| | | | | | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600036,India
| |
Collapse
|
22
|
Aftab M, Poojary SS, Seshan V, Kumar S, Agarwal P, Tandon S, Zutshi V, Das BC. Urine miRNA signature as a potential non-invasive diagnostic and prognostic biomarker in cervical cancer. Sci Rep 2021; 11:10323. [PMID: 33990639 PMCID: PMC8121812 DOI: 10.1038/s41598-021-89388-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs as cancer biomarkers in serum, plasma, and other body fluids are often used but analysis of miRNA in urine is limited. We investigated the expression of selected miRNAs in the paired urine, serum, cervical scrape, and tumor tissue specimens from the women with cervical precancer and cancer with a view to identify if urine miRNAs could be used as reliable non-invasive biomarkers for an early diagnosis and prognosis of cervical cancer. Expression of three oncomiRs (miR-21, miR-199a, and miR-155-5p) and three tumor suppressors (miR-34a, miR-145, and miR-218) as selected by database search in cervical pre-cancer, cancer, and normal controls including cervical cancer cell lines were analyzed using qRT-PCR. The expression of miRNAs was correlated with various clinicopathological parameters, including HPV infection and survival outcome. We observed a significant overexpression of the oncomiRs and the downregulation of tumor suppressor miRNAs. A combination of miR-145-5p, miR-218-5p, and miR-34a-5p in urine yielded 100% sensitivity and 92.8% specificity in distinguishing precancer and cancer patients from healthy controls and it well correlates with those of serum and tumor tissues. The expression of miR-34a-5p and miR-218-5p were found to be independent prognostic factors for the overall survival of cervical cancer patients. We conclude that the evaluation of the above specific miRNA expression in non-invasive urine samples may serve as a reliable biomarker for early detection and prognosis of cervical cancer.
Collapse
Affiliation(s)
- Mehreen Aftab
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Satish S Poojary
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Vaishnavi Seshan
- Department of Gynecology and Obstetrics, Safdarjung Hospital, New Delhi, 110029, India
| | - Sachin Kumar
- Depatment of Medical Oncology, Dr. B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Pallavi Agarwal
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Vijay Zutshi
- Department of Gynecology and Obstetrics, Safdarjung Hospital, New Delhi, 110029, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
23
|
Development of a microRNA Panel for Classification of Abnormal Mammograms for Breast Cancer. Cancers (Basel) 2021; 13:cancers13092130. [PMID: 33925125 PMCID: PMC8124944 DOI: 10.3390/cancers13092130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer screening by mammography suffers from high rates of false positivity, resulting in unnecessary investigative imaging and biopsies. There is an unmet need for biomarkers that can distinguish between malignant and benign breast lesions. We performed miRNA profiling on 638 patients with abnormal mammograms and 100 healthy controls. A six-miRNA panel was identified and validated in an independent cohort that had an AUC of 0.881 when differentiating between cases versus those with benign lesions or healthy individuals with normal mammograms. In addition, biomarker panel scores increased with tumor size, stage and number of lymph nodes involved. This study demonstrates that circulating miRNAs can potentially be used in conjunction with mammography to differentiate between patients with malignant and benign breast lesions. Abstract Mammography is extensively used for breast cancer screening but has high false-positive rates. Here, prospectively collected blood samples were used to identify circulating microRNA (miRNA) biomarkers to discriminate between malignant and benign breast lesions among women with abnormal mammograms. The Discovery cohort comprised 72 patients with breast cancer and 197 patients with benign breast lesions, while the Validation cohort had 73 and 196 cancer and benign cases, respectively. Absolute expression levels of 324 miRNAs were determined using RT-qPCR. miRNA biomarker panels were identified by: (1) determining differential expression between malignant and benign breast lesions, (2) focusing on top differentially expressed miRNAs, and (3) building panels from an unbiased search among all expressed miRNAs. Two-fold cross-validation incorporating a feature selection algorithm and logistic regression was performed. A six-miRNA biomarker panel identified by the third strategy, had an area under the curve (AUC) of 0.785 and 0.774 in the Discovery and Validation cohorts, respectively, and an AUC of 0.881 when differentiating between cases versus those with benign lesions or healthy individuals with normal mammograms. Biomarker panel scores increased with tumor size, stage and number of lymph nodes involved. Our work demonstrates that circulating miRNA signatures can potentially be used with mammography to differentiate between patients with malignant and benign breast lesions.
Collapse
|
24
|
Meta-analysis of the clinicopathological significance of miRNA-145 in breast cancer. Biosci Rep 2021; 40:226280. [PMID: 32869851 PMCID: PMC7502658 DOI: 10.1042/bsr20193974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
Low expression of tumor suppressor microRNA (miRNA) and high expression of carcinogenic miRNA promote the occurrence and progression of human cancer. Most studies show that miR-145 is a tumor suppressor miRNA, and is closely related to the clinicopathology of breast cancer. However, the results are still inconsistent. Therefore, we conducted a meta-analysis on the basis of eligible studies to summarize the possible correlation between miR-145 and the clinicopathology and prognosis of breast cancer. Using PubMed, Embase, Web of Science, Wanfang and CNKI, we searched all published papers written in either English or Chinese on miR-145 expression in breast cancer from 1990 to November 2019 for meta-analysis. We used standardized mean difference (SMD) to evaluate the differential expression of miR-145 in breast cancer tissues and adjacent normal tissues or normal breast tissues. We found that miR-145 expression was significantly lower in breast cancer tissues than that in adjacent normal tissues (SMD = −2.93, P<0.0001) and in healthy women (SMD = −0.52, P=0.009). miR-145 expression was lower in breast cancer patients with ER-positive (SMD = 0.65, P<0.001), HER-2-positive (SMD = −1.04, P<0.001), compared with their counterparts, respectively. In addition, breast cancer patients with low expression of miR-145 had larger tumor diameters (SMD = −1.97, P<0.001) and lymph node metastasis (SMD = −1.75, P<0.001) that are unfavorable prognostic factors. Conclusion: Low miR-145 is observed in breast cancer, which is closely related to molecular subtypes and unfavorable factors of breast cancer. These findings indicate that miR-145 is tumor suppressor miRNA, and may be a potential diagnostic and prognostic marker in breast cancer.
Collapse
|
25
|
Dass SA, Tan KL, Selva Rajan R, Mokhtar NF, Mohd Adzmi ER, Wan Abdul Rahman WF, Tengku Din TADAA, Balakrishnan V. Triple Negative Breast Cancer: A Review of Present and Future Diagnostic Modalities. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:62. [PMID: 33445543 PMCID: PMC7826673 DOI: 10.3390/medicina57010062] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast type of cancer with no expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). It is a highly metastasized, heterogeneous disease that accounts for 10-15% of total breast cancer cases with a poor prognosis and high relapse rate within five years after treatment compared to non-TNBC cases. The diagnostic and subtyping of TNBC tumors are essential to determine the treatment alternatives and establish personalized, targeted medications for every TNBC individual. Currently, TNBC is diagnosed via a two-step procedure of imaging and immunohistochemistry (IHC), which are operator-dependent and potentially time-consuming. Therefore, there is a crucial need for the development of rapid and advanced technologies to enhance the diagnostic efficiency of TNBC. This review discusses the overview of breast cancer with emphasis on TNBC subtypes and the current diagnostic approaches of TNBC along with its challenges. Most importantly, we have presented several promising strategies that can be utilized as future TNBC diagnostic modalities and simultaneously enhance the efficacy of TNBC diagnostic.
Collapse
Affiliation(s)
- Sylvia Annabel Dass
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, USM, Penang 11800, Malaysia; (S.A.D.); (K.L.T.); (R.S.R.)
| | - Kim Liu Tan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, USM, Penang 11800, Malaysia; (S.A.D.); (K.L.T.); (R.S.R.)
| | - Rehasri Selva Rajan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, USM, Penang 11800, Malaysia; (S.A.D.); (K.L.T.); (R.S.R.)
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (N.F.M.); (E.R.M.A.)
| | - Elis Rosliza Mohd Adzmi
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (N.F.M.); (E.R.M.A.)
| | - Wan Faiziah Wan Abdul Rahman
- Department of Pathology, School of Medical Sciences, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia;
- Breast Cancer Awareness & Research Unit, Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
| | - Tengku Ahmad Damitri Al-Astani Tengku Din
- Breast Cancer Awareness & Research Unit, Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
- Chemical Pathology Department, School of Medical Sciences, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, USM, Penang 11800, Malaysia; (S.A.D.); (K.L.T.); (R.S.R.)
| |
Collapse
|
26
|
Wu HJ, Chu PY. Recent Discoveries of Macromolecule- and Cell-Based Biomarkers and Therapeutic Implications in Breast Cancer. Int J Mol Sci 2021; 22:ijms22020636. [PMID: 33435254 PMCID: PMC7827149 DOI: 10.3390/ijms22020636] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer type and the leading cause of cancer-related mortality in women worldwide. Breast cancer is fairly heterogeneous and reveals six molecular subtypes: luminal A, luminal B, HER2+, basal-like subtype (ER−, PR−, and HER2−), normal breast-like, and claudin-low. Breast cancer screening and early diagnosis play critical roles in improving therapeutic outcomes and prognosis. Mammography is currently the main commercially available detection method for breast cancer; however, it has numerous limitations. Therefore, reliable noninvasive diagnostic and prognostic biomarkers are required. Biomarkers used in cancer range from macromolecules, such as DNA, RNA, and proteins, to whole cells. Biomarkers for cancer risk, diagnosis, proliferation, metastasis, drug resistance, and prognosis have been identified in breast cancer. In addition, there is currently a greater demand for personalized or precise treatments; moreover, the identification of novel biomarkers to further the development of new drugs is urgently needed. In this review, we summarize and focus on the recent discoveries of promising macromolecules and cell-based biomarkers for the diagnosis and prognosis of breast cancer and provide implications for therapeutic strategies.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan;
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua County 505, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, No. 542, Sec. 1 Chung-Shan Rd., Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-975-611-855; Fax: +886-4-7227-116
| |
Collapse
|
27
|
miR-210 and miR-152 as Biomarkers by Liquid Biopsy in Invasive Ductal Carcinoma. J Pers Med 2021; 11:jpm11010031. [PMID: 33419057 PMCID: PMC7825421 DOI: 10.3390/jpm11010031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022] Open
Abstract
Detecting circulating microRNAs (miRNAs; miRs) by means of liquid biopsy is an important tool for the early diagnosis and prognosis of breast cancer (BC). We aimed to identify and validate miR-210 and miR-152 as non-invasive circulating biomarkers, for the diagnosis and staging of BC patients, confirming their involvement in tumor angiogenesis. Methods: RT-qPCR was performed and MiRNA expression analysis was obtained from plasma and fragments of BC and benign breast condition (BBC) women patients, plus healthy subjects. Additionally, the immunohistochemistry technique was carried out to analyze the expression of target proteins. Results: Tumor fragments showed increased expression of oncomiR-210 and decreased expression of miR-152 tumoral suppressor. Both miRNAs were increased in plasma samples from BC patients. The receiver operating characteristic (ROC) curve analysis revealed that only the expression of oncomiR-210 in tissue samples and only the expression of the miR-152 suppressor in plasma have the appropriate sensitivity and specificity for use as differential biomarkers between early/intermediate and advanced stages of BC patients. In addition, there was an increase in the expression of hypoxia-inducible factor 1-alpha (HIF-1α), insulin-like growth factor 1 receptor (IGF-1R), and vascular endothelial growth factor (VEGF) in BC patients. On the contrary, a decrease in Von Hippel–Lindau (VHL) protein expression was observed. Conclusions: This study showed that increased levels of miR-210 and decreased levels of miR152, in addition to the expressions of their target proteins, could indicate, respectively, the oncogenic and tumor suppressive role of these miRNAs in fragments. Both miRNAs are potential diagnostic biomarkers for BC by liquid biopsy. In addition, miR-152 proved to be a promising biomarker for disease staging.
Collapse
|
28
|
Pishbin F, Ziamajidi N, Abbasalipourkabir R, Najafi R, Farhadian M. Correlation of miR-600 with WT1 expression and its potential clinical significance in breast cancer. Per Med 2021; 18:31-42. [PMID: 33393369 DOI: 10.2217/pme-2020-0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aim: The study aimed to explore miR-600 and WT1 expression and its potential clinical significance in breast cancer. Materials & methods: The expression of miR-600 and WT1 in tumor and non-tumor adjacent tissues in 45 breast cancer patients as well as serum level of miR-600 in these patients and 45 healthy group were analyzed. Results: The expression level of miR-600 in tumor tissue and serum of patients was significantly lower than non-tumor adjacent tissues and serum of controls, respectively, while WT1 mRNA and protein levels were higher in tumor tissues compared with non-tumor adjacent tissues. The miR-600 expression was correlated with lymph node metastasis and clinical stage. Conclusion: The miR-600 acts as tumor suppressor and a diagnostic and prognostic biomarker in breast cancer patients.
Collapse
Affiliation(s)
- Fariba Pishbin
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine & Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
29
|
de Sales ACV, da Silva IIFG, Leite MCB, de Lima Coutinho L, de Albuquerque Cavalcante Reis RB, Martins DBG, de Lima Filho JL, Oliveira Souto F. miRNA-195 expression in the tumor tissues of female Brazilian breast cancer patients with operable disease. Clinics (Sao Paulo) 2021; 76:e2142. [PMID: 33503182 PMCID: PMC7798133 DOI: 10.6061/clinics/2021/e2142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/02/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE This study aimed to assess miRNA-195 expression in the tumor tissues from a cohort of Brazilian female breast cancer patients undergoing neoadjuvant chemotherapy (NAC) and evaluate its correlation with various clinicopathological markers. METHODS Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate the miRNA-195 expression in tumor tissues from a cohort of female breast cancer patients undergoing NAC. This expression was then correlated with the occurrence of several distinct breast cancer molecular subtypes and other clinicopathological variables. RESULTS A total of 55 patients were included in this study, 28 (50.9%) of whom were treated using NAC. Tumor miRNA-195 expression was suppressed in breast cancer patients, regardless of their exposure to systemic treatments, histological grade, size, nodal status, and tumor-node-metastasis (TNM) staging. This was more pronounced in luminal and triple-negative patients, and patient's response to NAC was correlated with an increase in miRNA-195 expression. CONCLUSION miRNA-195 is downregulated in the tumor tissues of Brazilian breast cancer patients regardless of NAC exposure; this reinforces its role as a tumor suppressor and a potential biomarker for chemotherapy response.
Collapse
Affiliation(s)
- Alexandre Cesar Vieira de Sales
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, PE, BR
- Nucleo de Ciencias da Vida (NCV), Centro Academico do Agreste (CAA), Universidade Federal de Pernambuco (UFPE), Caruaru, PE, BR
- *Corresponding author. E-mail:
| | | | | | - Leandro de Lima Coutinho
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, PE, BR
| | | | | | - José Luiz de Lima Filho
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, PE, BR
| | - Fabrício Oliveira Souto
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, PE, BR
- Nucleo de Ciencias da Vida (NCV), Centro Academico do Agreste (CAA), Universidade Federal de Pernambuco (UFPE), Caruaru, PE, BR
| |
Collapse
|
30
|
Circulating MicroRNAs as Prognostic and Therapeutic Biomarkers in Breast Cancer Molecular Subtypes. J Pers Med 2020; 10:jpm10030098. [PMID: 32842653 PMCID: PMC7563822 DOI: 10.3390/jpm10030098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a common and heterogeneous disease, of which six molecular subtypes, characterized by different biological features and clinical outcomes, were described. The identification of additional biomarkers able to further connote and distinguish the different BC subtypes is essential to improve the diagnostic, prognostic and therapeutic strategies in BC patients. MicroRNAs (miRNAs) are short non-coding RNA involved in several physiological and pathological processes, including cancer development and progression. In particular, circulating miRNAs, which can be found in an adequately stable structure in serum/plasma of cancer patients, are emerging as very promising non-invasive biomarkers. Several studies have analyzed the potential role of circulating miRNAs as prognostic and therapeutic markers in BC. In the present review we describe circulating miRNAs, identified as putative biomarker in BC, with special reference to different BC molecular subtypes.
Collapse
|
31
|
Turco C, Donzelli S, Fontemaggi G. miR-15/107 microRNA Gene Group: Characteristics and Functional Implications in Cancer. Front Cell Dev Biol 2020; 8:427. [PMID: 32626702 PMCID: PMC7311568 DOI: 10.3389/fcell.2020.00427] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The miR-15/107 group of microRNAs (miRNAs) encloses 10 annotated human members and is defined based on the presence of the sequence AGCAGC near the mature miRNAs’ 5′ end. Members of the miR-15/107 group expressed in humans are highly evolutionarily conserved, and seven of these miRNAs are widespread in vertebrate species. Contrary to the majority of miRNAs, which recognize complementary sequences on the 3′UTR region, some members of the miR-15/107 group are peculiarly characterized by the ability to target the coding sequence (CDS) of their target mRNAs, inhibiting translation without strongly affecting their mRNA levels. There is compelling evidence that different members of the miR-15/107 group regulate overlapping lists of mRNA targets but also show target specificity. The ubiquitously expressed miR-15/107 gene group controls several human cellular pathways, such as proliferation, angiogenesis, and lipid metabolism, and might be altered in various diseases, such as neurodegenerative diseases and cancer. Intriguingly, despite sharing the same seed sequence, different members of this family of miRNAs may behave as oncomiRs or as tumor suppressor miRNAs in the context of cancer cells. This review discusses the regulation and functional contribution of the miR-15/107 group to the control of gene expression. Moreover, we particularly focus on the contribution of specific miR-15/107 group members as tumor suppressors in breast cancer, reviewing literature reporting their ability to function as major controllers of a variety of cell pathways and to act as powerful biomarkers in this disease.
Collapse
Affiliation(s)
- Chiara Turco
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
32
|
Are Basal-Like and Non-Basal-Like Triple-Negative Breast Cancers Really Different? JOURNAL OF ONCOLOGY 2020; 2020:4061063. [PMID: 32256581 PMCID: PMC7102473 DOI: 10.1155/2020/4061063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/11/2020] [Indexed: 01/07/2023]
Abstract
Objective Triple-negative breast cancer (TNBC) accounts for 15–25% of breast cancers. It is increasingly recognized that TNBC is a motley disease. TNBC and basal-like (BL) subtype are different molecular classes of breast cancer with a high degree of overlap. However, a smaller fraction lacks the expression of basal markers in spite of being TNBC and is called non-basal-like (NBL). The aim of this study is to assess the clinicopathological features in TNBC and compare its BL and NBL subtypes. Material and Methods. A total of 200 subjects fulfilling the inclusion criteria of study were identified from the electronic medical records of institution. The tumor sections of subjects were immunohistochemically stained for basal markers, namely, 34βE12, c-Kit, and EGFR, in order to differentiate between BL and NBL subtypes. Comprehensive data were assembled from subjects' clinical records. The features of TNBC and their associations with the two subtypes were assessed using statistical analyses. Results TNBC constituted 22% of all breast cancers. The family history of cancer was observed to be significantly associated with stage (p=0.013). The proportions of BL and NBL subtypes were equal. Of all parameters compared between two subtypes, only lymphovascular invasion was found to have statistically significant difference (p=0.019). Though no statistical significant difference between overall survival (OS) and disease-free survival (DFS) of two subgroups was found, BL subtype has slightly shorter DFS and OS compared to NBL. Conclusion Both BL and NBL subtypes occur in equal proportions; hence, basalness and triple negativity are not synonyms. Though BL and NBL are prognostically similar, BL subtype shows a trend towards slightly shorter DFS and OS compared to NBL.
Collapse
|
33
|
Emergence of Circulating MicroRNAs in Breast Cancer as Diagnostic and Therapeutic Efficacy Biomarkers. Mol Diagn Ther 2020; 24:153-173. [DOI: 10.1007/s40291-020-00447-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Ritter A, Hirschfeld M, Berner K, Rücker G, Jäger M, Weiss D, Medl M, Nöthling C, Gassner S, Asberger J, Erbes T. Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int J Oncol 2019; 56:47-68. [PMID: 31789396 PMCID: PMC6910196 DOI: 10.3892/ijo.2019.4920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Due to the positive association between neoadjuvant chemotherapy (NACT) and the promising early response rates of patients with triple negative breast cancer (TNBC), including probabilities of pathological complete response, NACT is increasingly used in TNBC management. Liquid biopsy-based biomarkers with the power to diagnose the early response to NACT may support established monitoring tools, which are to a certain extent imprecise and costly. Simple serum- or urine-based analyses of non-coding RNA (ncRNA) expression may allow for fast, minimally-invasive testing and timely adjustment of the therapy regimen. The present study investigated breast cancer-related ncRNAs [microRNA (miR)-7, -9, -15a, -17, -18a, -19b, -21, -30b, -222 and -320c, PIWI-interacting RNA-36743 and GlyCCC2] in triple positive BT-474 cells and three TNBC cell lines (BT-20, HS-578T and MDA-MB-231) treated with various chemotherapeutic agents using reverse transcription-quantitative PCR. Intracellular and secreted microvesicular ncRNA expression levels were analysed using a multivariable statistical regression analysis. Chemotherapy-driven effects were investigated by analysing cell cycle determinants at the mRNA and protein levels. Serum and urine specimens from 8 patients with TNBC were compared with 10 healthy females using two-sample t-tests. Samples from the patients with TNBC were compared at two time points. Chemotherapeutic treatments induced distinct changes in ncRNA expression in TNBC cell lines and the BT-474 cell line in intra- and extracellular compartments. Serum and urine-based ncRNA expression analysis was able to discriminate between patients with TNBC and controls. Time point comparisons in the urine samples of patients with TNBC revealed a general rise in the level of ncRNA. Serum data suggested a potential association between piR-36743, miR-17, -19b and -30b expression levels and an NACT-driven complete clinical response. The present study highlighted the potential of ncRNAs as liquid biopsy-based biomarkers in TNBC chemotherapy treatment. The ncRNAs tested in the present study have been previously investigated for their involvement in BC or TNBC chemotherapy responses; however, these previous studies were restricted to patient tissue or in vitro models. The data from the present study offer novel insight into ncRNA expression in liquid samples from patients with TNBC, and the study serves as an initial step in the evaluation of ncRNAs as diagnostic biomarkers in the monitoring of TNBC therapy.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79104 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Markus Medl
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Sandra Gassner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| |
Collapse
|
35
|
Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W, Yu M, Lin J, Cui Q. MicroRNAs Involved in Carcinogenesis, Prognosis, Therapeutic Resistance and Applications in Human Triple-Negative Breast Cancer. Cells 2019; 8:cells8121492. [PMID: 31766744 PMCID: PMC6953059 DOI: 10.3390/cells8121492] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive, prevalent, and distinct subtype of breast cancer characterized by high recurrence rates and poor clinical prognosis, devoid of both predictive markers and potential therapeutic targets. MicroRNAs (miRNA/miR) are a family of small, endogenous, non-coding, single-stranded regulatory RNAs that bind to the 3′-untranslated region (3′-UTR) complementary sequences and downregulate the translation of target mRNAs as post-transcriptional regulators. Dysregulation miRNAs are involved in broad spectrum cellular processes of TNBC, exerting their function as oncogenes or tumor suppressors depending on their cellular target involved in tumor initiation, promotion, malignant conversion, and metastasis. In this review, we emphasize on masses of miRNAs that act as oncogenes or tumor suppressors involved in epithelial–mesenchymal transition (EMT), maintenance of stemness, tumor invasion and metastasis, cell proliferation, and apoptosis. We also discuss miRNAs as the targets or as the regulators of dysregulation epigenetic modulation in the carcinogenesis process of TNBC. Furthermore, we show that miRNAs used as potential classification, prognostic, chemotherapy and radiotherapy resistance markers in TNBC. Finally, we present the perspective on miRNA therapeutics with mimics or antagonists, and focus on the challenges of miRNA therapy. This study offers an insight into the role of miRNA in pathology progression of TNBC.
Collapse
Affiliation(s)
- Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Huan Gu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Xianhui Xiong
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongshun Ao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jiaqi Cao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Wen Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence:
| |
Collapse
|
36
|
Clinical Theragnostic Relationship between Drug-Resistance Specific miRNA Expressions, Chemotherapeutic Resistance, and Sensitivity in Breast Cancer: A Systematic Review and Meta-Analysis. Cells 2019; 8:cells8101250. [PMID: 31615089 PMCID: PMC6830093 DOI: 10.3390/cells8101250] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
Awareness of breast cancer has been increasing due to early detection, but the advanced disease has limited treatment options. There has been growing evidence on the role of miRNAs involved in regulating the resistance in several cancers. We performed a comprehensive systematic review and meta-analysis on the role of miRNAs in influencing the chemoresistance and sensitivity of breast cancer. A bibliographic search was performed in PubMed and Science Direct based on the search strategy, and studies published until December 2018 were retrieved. The eligible studies were included based on the selection criteria, and a detailed systematic review and meta-analysis were performed based on PRISMA guidelines. A random-effects model was utilised to evaluate the combined effect size of the obtained hazard ratio and 95% confidence intervals from the eligible studies. Publication bias was assessed with Cochran’s Q test, I2 statistic, Orwin and Classic fail-safe N test, Begg and Mazumdar rank correlation test, Duval and Tweedie trim and fill calculation and the Egger’s bias indicator. A total of 4584 potential studies were screened. Of these, 85 articles were eligible for our systematic review and meta-analysis. In the 85 studies, 188 different miRNAs were studied, of which 96 were upregulated, 87 were downregulated and 5 were not involved in regulation. Overall, 24 drugs were used for treatment, with doxorubicin being prominently reported in 15 studies followed by Paclitaxel in 11 studies, and 5 drugs were used in combinations. We found only two significant HR values from the studies (miR-125b and miR-4443) and our meta-analysis results yielded a combined HR value of 0.748 with a 95% confidence interval of 0.508–1.100; p-value of 0.140. In conclusion, our results suggest there are different miRNAs involved in the regulation of chemoresistance through diverse drug genetic targets. These biomarkers play a crucial role in guiding the effective diagnostic and prognostic efficiency of breast cancer. The screening of miRNAs as a theragnostic biomarker must be brought into regular practice for all diseases. We anticipate that our study serves as a reference in framing future studies and clinical trials for utilising miRNAs and their respective drug targets.
Collapse
|
37
|
Clinical Translatability of "Identified" Circulating miRNAs for Diagnosing Breast Cancer: Overview and Update. Cancers (Basel) 2019; 11:cancers11070901. [PMID: 31252695 PMCID: PMC6678980 DOI: 10.3390/cancers11070901] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
The effective management of patients with breast cancer (BC) depends on the early diagnosis of the disease. Currently, BC diagnosis is based on diagnostic imaging and biopsy, while the use of non-invasive circulating biomarkers for diagnosis remains an unmet need. Among the plethora of proposed non-invasive biomarkers, circulating microRNAs (miRNAs) have been considered promising diagnostic molecules because they are very stable in biological fluids and easily detectable. Although the discovery of miRNAs has opened a new avenue for their clinical application, the clinical translatability of these molecules remains unclear. This review analyses the role of circulating miRNAs as BC diagnostic biomarkers and focuses on two essential requirements to evaluate their clinical validity: i) Specificity and ii) consistent expression between the blood and tissue. These two issues were analyzed in depth using the Human miRNA Disease Database (HMDD v3.0) and the free search engine PubMed. One hundred and sixty three BC-associated miRNAs were selected and analyzed for their specificity among all human pathologies that shared deregulation (291) and consistent expression in the bloodstream and the tissue. In addition, we provide an overview of the current clinical trials examining miRNAs in BC. In conclusion, we highlight pitfalls in the translatability of circulating miRNAs into clinical practice due to the lack of specificity and a consistent expression pattern between the tissue and blood.
Collapse
|
38
|
Incoronato M, Grimaldi AM, Mirabelli P, Cavaliere C, Parente CA, Franzese M, Staibano S, Ilardi G, Russo D, Soricelli A, Catalano OA, Salvatore M. Circulating miRNAs in Untreated Breast Cancer: An Exploratory Multimodality Morpho-Functional Study. Cancers (Basel) 2019; 11:E876. [PMID: 31234535 PMCID: PMC6628327 DOI: 10.3390/cancers11060876] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to identify new disease-related circulating miRNAs with high diagnostic accuracy for breast cancer (BC) and to correlate their deregulation with the morpho-functional characteristics of the tumour, as assessed in vivo by positron emission tomography/magnetic resonance (PET/MR) imaging. A total of 77 untreated female BC patients underwent same-day PET/MR and blood collection, and 78 healthy donors were recruited as negative controls. The expression profile of 84 human miRNAs was screened by using miRNA PCR arrays and validated by real-time PCR. The validated miRNAs were correlated with the quantitative imaging parameters extracted from the primary BC samples. Circulating miR-125b-5p and miR-143-3p were upregulated in BC plasma and able to discriminate BC patients from healthy subjects (miR-125-5p area under the receiver operating characteristic ROC curve (AUC) = 0.85 and miR-143-3p AUC = 0.80). Circulating CA15-3, a soluble form of the transmembrane glycoprotein Mucin 1 (MUC-1) that is upregulated in epithelial cancer cells of different origins, was combined with miR-125b-5p and improved the diagnostic accuracy from 70% (CA15-3 alone) to 89% (CA15-3 plus miR-125b-5p). MiR-143-3p showed a strong and significant correlation with the stage of the disease, apparent diffusion coefficient (ADCmean), reverse efflux volume transfer constant (Kepmean) and maximum standardized uptake value (SUVmax), and it might represent a biomarker of tumour aggressiveness. Similarly, miR-125b-5p was correlated with stage and grade 2 but inversely correlated with the forward volume transfer constant (Ktransmean) and proliferation index (Ki67), suggesting a potential role as a biomarker of a relatively more favourable prognosis. In situ hybridization (ISH) experiments revealed that miR-143-3p was expressed in endothelial tumour cells, miR-125-5p in cancer-associated fibroblasts, and neither in epithelial tumour cells. Our results suggested that miR-125-5p and miR-143-3p are potential biomarkers for the risk stratification of BC, and Kaplan-Maier plots confirmed this hypothesis. In addition, the combined use of miR-125-b-5p and CA15-3 enhanced the diagnostic accuracy up to 89%. This is the first study that correlates circulating miRNAs with in vivo quantified tumour biology through PET/MR biomarkers. This integration elucidates the link between the plasmatic increase in these two potential circulating biomarkers and the biology of untreated BC. In conclusion, while miR-143-3b and miR-125b-5p provide valuable information for prognosis, a combination of miR-125b-5p with the tumour marker CA15-3 improves sensitivity for BC detection, which warrants consideration by further validation studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefania Staibano
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Naples, Italy.
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Naples, Italy.
| | - Daniela Russo
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Naples, Italy.
| | - Andrea Soricelli
- IRCCS SDN, 80143 Naples, Italy.
- Department of Motor Sciences & Wellness, University of Naples Parthenope, 80133 Naples, Italy.
| | - Onofrio Antonio Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | |
Collapse
|
39
|
Gupta I, Sareyeldin RM, Al-Hashimi I, Al-Thawadi HA, Al Farsi H, Vranic S, Al Moustafa AE. Triple Negative Breast Cancer Profile, from Gene to microRNA, in Relation to Ethnicity. Cancers (Basel) 2019; 11:cancers11030363. [PMID: 30871273 PMCID: PMC6468678 DOI: 10.3390/cancers11030363] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer-related deaths among women worldwide. It is classified into four major molecular subtypes. Triple-negative breast cancers (TNBCs), a subgroup of breast cancer, are defined by the absence of estrogen and progesterone receptors and the lack of HER-2 expression; this subgroup accounts for ~15% of all breast cancers and exhibits the most aggressive metastatic behavior. Currently, very limited targeted therapies exist for the treatment of patients with TNBCs. On the other hand, it is important to highlight that knowledge of the molecular biology of breast cancer has recently changed the decision-making process regarding the course of cancer therapies. Thus, a number of new techniques, such as gene profiling and sequencing, proteomics, and microRNA analysis have been used to explore human breast carcinogenesis and metastasis including TNBC, which consequently could lead to new therapies. Nevertheless, based on evidence thus far, genomics profiles (gene and miRNA) can differ from one geographic location to another as well as in different ethnic groups. This review provides a comprehensive and updated information on the genomics profile alterations associated with TNBC pathogenesis associated with different ethnic backgrounds.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Israa Al-Hashimi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Halema Al Farsi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Semir Vranic
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
- Biomedical Research Centre, Qatar University, Doha P.O Box: 2713, Qatar.
| |
Collapse
|
40
|
Rezaei Z, Sebzari A, Kordi-Tamandani DM, Dastjerdi K. Involvement of the Dysregulation of miR-23b-3p, miR-195-5p, miR-656-5p, and miR-340-5p in Trastuzumab Resistance of HER2-Positive Breast Cancer Cells and System Biology Approach to Predict Their Targets Involved in Resistance. DNA Cell Biol 2019; 38:184-192. [PMID: 30702337 DOI: 10.1089/dna.2018.4427] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resistance to trastuzumab has become a limiting factor for therapeutic efficacy of human epidermal growth factor 2 (HER2)-positive breast cancer. Different expression levels of miRNAs in cancer cells have been associated with poor prognosis and response to chemotherapy. The aim of this study was to evaluate miRNAs that were thought to be associated with HER2-positive breast cancer chemoresistance. In this study, the relative expression of candidate miRNAs to U6 RNA was evaluated in trastuzumab-resistant and trastuzumab-sensitive cells using relative real-time PCR. Our results demonstrated that miR-23b-3p, miR-195-5p, miR-656-5p, and miR-340-5p were significantly dysregulated. For the first time in this study, these miRNAs were identified to be involved in trastuzumab resistance. TargetScan and miRDB were then used for predicting the potential targets of the candidate miRNAs. Our results also revealed that the predicted potential targets of these miRNAs were strongly associated with drug resistance pathways. As a relative expression of candidate miRNAs was statistically different in trastuzumab-resistant and trastuzumab-sensitive cells, their potential targets were involved in drug resistance pathways. We strongly hypothesized the dysregulation of miRNAs as a possible mechanism of trastuzumab resistance. We also assumed that the strategic manipulation of these regulatory networks might be a possible therapeutic strategy to improve the results of chemotherapy for this resistance. However, more research is needed to evaluate the role of these miRNAs in the acquisition of trastuzumab resistance.
Collapse
Affiliation(s)
- Zohreh Rezaei
- 1 Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ahmadreza Sebzari
- 2 Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Kazem Dastjerdi
- 2 Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,3 Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
41
|
Gonçalves OSL, Wheeler G, Dalmay T, Dai H, Castro M, Castro P, García-Rupérez J, Ruiz-Tórtola Á, Griol A, Hurtado J, Bellieres L, Bañuls MJ, González D, López-Guerrero JA, Neves-Petersen MT. Detection of miRNA cancer biomarkers using light activated Molecular Beacons. RSC Adv 2019; 9:12766-12783. [PMID: 35515856 PMCID: PMC9063790 DOI: 10.1039/c9ra00081j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/07/2019] [Indexed: 12/29/2022] Open
Abstract
Early detection of cancer biomarkers can reduce cancer mortality rate. miRNAs are small non-coding RNAs whose expression changes upon the onset of various types of cancer. Biosensors that specifically detect such biomarkers can be engineered and integrated into point-of-care devices (POC) using label-free detection, high sensibility and compactness. In this paper, a new engineered Molecular Beacon (MB) construct used to detect miRNAs is presented. Such a construct is immobilized onto biosensor surfaces in a covalent and spatially oriented way using the photonic technology Light Assisted Molecular Immobilization (LAMI). The construct consists of a Cy3 labelled MB covalently attached to a light-switchable peptide. One MB construct contains a poly-A sequence in its loop region while the other contains a sequence complementary to the cancer biomarker miRNA-21. The constructs have been characterized by UV-Vis spectroscopy, mass spectrometry and HPLC. LAMI led to the successful immobilization of the engineered constructs onto thiol functionalized optically flat quartz slides and Silicon on Insulator (SOI) sensor surfaces. The immobilized Cy3 labelled MB construct has been imaged using confocal fluorescence microscopy (CFM). The bioavailability of the immobilized engineered MB biosensors was confirmed through specific hybridization with the Cy5 labelled complementary sequence and imaged by CFM and FRET. Hybridization kinetics have been monitored using steady state fluorescence spectroscopy. The label-free detection of miRNA-21 was also achieved by using integrated photonic sensing structures. The engineered light sensitive constructs can be immobilized onto thiol reactive surfaces and are currently being integrated in a POC device for the detection of cancer biomarkers. Photonic based detection strategies of cancer miRNA biomarkers after Light Assisted Molecular Immobilization (LAMI) of peptide-MB biosensor constructs.![]()
Collapse
|
42
|
Dasgupta H, Islam S, Alam N, Roy A, Roychoudhury S, Panda CK. Hypomethylation of mismatch repair genes MLH1 and MSH2 is associated with chemotolerance of breast carcinoma: Clinical significance. J Surg Oncol 2018; 119:88-100. [PMID: 30481381 DOI: 10.1002/jso.25304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND OBJECTIVES The aim of the study was to understand the importance of mismatch repair genes MLH1 and MSH2 in chemotolerance and prognosis of breast carcinoma (BC). METHODS First, the alterations (deletion/methylation/expression) of MLH1 and MSH2 were analyzed in 45 neoadjuvant chemotherapy (NACT)-treated and 133 pretherapeutic BC samples. The chemotolerant BC cells were characterized by treating two BC cell lines MCF-7 and MDA MB 231 with two anthracycline antitumor antibiotics, doxorubicin and nogalamycin. RESULTS The deletion frequencies were 32% to 38% in MLH1/MSH2 genes and promoter methylation frequencies were 49% to 62% in MLH1 and 41% to 51% in MSH2 in both NACT-treated and pretherapeutic samples. The overall alteration of MLH1 and MSH2 was 58% to 71% in the samples. Reduced messenger RNA (mRNA) and protein expression were found in both the genes and it showed concordance with the molecular alterations. NACT-treated patients showed better prognosis. The chemotherapeutic drug induced increased mRNA/protein expression of the genes in BC cell lines was due to their promoter hypomethylation, as analyzed by quantitative methylation assay. This phenomenon was also evident in NACT-treated BC samples. CONCLUSION MLH1/MSH2 genes play a critical role in the development of BC. Hypomethylation of MLH1/MSH2 genes might be important in chemotolerance of the disease.
Collapse
Affiliation(s)
- Hemantika Dasgupta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saimul Islam
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | - Susanta Roychoudhury
- Research Divison, Saroj Gupta Cancer Center and Research Institute, Kolkata, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
43
|
The role of NF-κB and miRNA in oral cancer and cancer stem cells with or without HPV16 infection. PLoS One 2018; 13:e0205518. [PMID: 30372446 PMCID: PMC6205583 DOI: 10.1371/journal.pone.0205518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
A small subpopulation of cancer stem-like cells (CSCs) present in almost all tumors is responsible for drug resistance and tumor recurrence. The role of NF-kB and miRNA in close association with essential risk factors, tobacco, alcohol and high risk HPV infection during oral carcinogenesis and its prognosis is not well understood. We have isolated cancer stem like SP cells from both HPV+/-ve oral squamous cell carcinoma (OSCC) cell lines and primary tumors, which formed orospheres, expressed stemness markers Oct4, Sox-2, CD133 and CD117. These cells showed differentially upregulated expression of NF-kB proteins and selective overexpression of viral oncogenes E6/E7 only in HPV16+ve cells which formed higher number of orospheres, overexpressed c-Rel and selectively activated p65 that heterodimerized with p50 to show higher DNA binding activity. Further, selective over expression of miR-21 and miR-155 and downregulation of miR-34a were demonstrated by HPV+ve CSCs which overexpress HPV16 oncogene E6 that is responsible for the maintenance of stemness. While, HPV-ve CSCs show exclusively p50 homodimeriztion, poor differentiation and worst prognosis, HPV infection induced participation of p65 along with deregulated expression of specific miRNAs led to well differentiation of tumors and better prognosis.
Collapse
|
44
|
Zhang Y, Fang J, Zhao H, Yu Y, Cao X, Zhang B. Retracted
: Downregulation of microRNA‐1469 promotes the development of breast cancer via targeting HOXA1 and activating PTEN/PI3K/AKT and Wnt/β‐catenin pathways. J Cell Biochem 2018; 120:5097-5107. [DOI: 10.1002/jcb.27786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/06/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Yonghui Zhang
- Department of Breast Surgery Peking University International Hospital, Peking University Beijing China
| | - Jing Fang
- Department of Head and Neck Surgery Anhui Provincial Cancer Hospital, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China Hefei Anhui China
| | - Hongmeng Zhao
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| | - Yue Yu
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| | - Xuchen Cao
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| | - Bin Zhang
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| |
Collapse
|
45
|
Bano N, Yadav M, Das BC. Differential Inhibitory Effects of Curcumin Between HPV+ve and HPV-ve Oral Cancer Stem Cells. Front Oncol 2018; 8:412. [PMID: 30319975 PMCID: PMC6168628 DOI: 10.3389/fonc.2018.00412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/06/2018] [Indexed: 12/26/2022] Open
Abstract
Aim: To investigate the role of a herbal antioxidative compound curcumin on cell proliferation, orosphere formation and miRNA-21 expression in HPV16+ve/–ve oral cancer stem cells. Materials and Methods: Oral cancer stem cells were isolated from HPV+ve/HPV–ve oral cancer cell lines by FACS and stemness markers. MTT, spheroid assay and qRT-PCR were employed to examine the effects of curcumin. Results: Curcumin treatment in micromolar concentration (0–50 μM) demonstrated significant differential inhibition in CSC proliferation, orosphere formation and miRNA-21 expression in a dose dependent manner, the effect being highly pronounced in HPV positive CSCs. Conclusion: The strong and dose-dependent inhibitory effects of curcumin on cell proliferation, stemness and miRNA appear to be due to its chemosensitizing and anticancer effects on OSCC-CSCs.
Collapse
Affiliation(s)
- Nasreen Bano
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Manisha Yadav
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Bhudev C Das
- Stem Cell & Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, India
| |
Collapse
|
46
|
Piasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in regulation of triple-negative breast cancer progression. J Cancer Res Clin Oncol 2018; 144:1401-1411. [PMID: 29923083 PMCID: PMC6061037 DOI: 10.1007/s00432-018-2689-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Dysregulation of miRNA profile has been associated with a broad spectrum of cellular processes underlying progression of various human malignancies. Increasing evidence suggests that specific microRNA clusters might be of clinical utility, especially in triple-negative breast carcinoma (TNBC), devoid of both predictive markers and potential therapeutic targets. Here we provide a comprehensive review of the existing data on microRNAs in TNBC, their molecular targets, a putative role in invasive progression with a particular emphasis on the epithelial-to-mesenchymal transition (EMT) and acquisition of stem-cell properties (CSC), regarded both as prerequisites for metastasis, and significance for therapy. METHODS PubMed and Medline databases were systematically searched for the relevant literature. 121 articles have been selected and thoroughly analysed. RESULTS Several miRNAs associated with EMT/CSC and invasion were identified as significantly (1) upregulated: miR-10b, miR-21, miR-29, miR-9, miR-221/222, miR-373 or (2) downregulated: miR-145, miR-199a-5p, miR-200 family, miR-203, miR-205 in TNBC. Dysregulation of miR-10b, miR-21, miR-29, miR-145, miR-200 family, miR-203, miR-221/222 was reported of prognostic value in TNBC patients. CONCLUSION Available data suggest that specific microRNA clusters might play an important role in biology of TNBC, understanding of which should assist disease prognostication and therapy.
Collapse
Affiliation(s)
| | - Marcin Braun
- Department of Pathology, Medical University of Lodz, Lodz, Poland
- Postgraduate School for Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Radzislaw Kordek
- Department of Pathology, Medical University of Lodz, Lodz, Poland
| | - Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| | - Hanna Romanska
- Department of Pathology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
47
|
Donzelli S, Milano E, Pruszko M, Sacconi A, Masciarelli S, Iosue I, Melucci E, Gallo E, Terrenato I, Mottolese M, Zylicz M, Zylicz A, Fazi F, Blandino G, Fontemaggi G. Expression of ID4 protein in breast cancer cells induces reprogramming of tumour-associated macrophages. Breast Cancer Res 2018; 20:59. [PMID: 29921315 PMCID: PMC6009061 DOI: 10.1186/s13058-018-0990-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Background As crucial regulators of the immune response against pathogens, macrophages have been extensively shown also to be important players in several diseases, including cancer. Specifically, breast cancer macrophages tightly control the angiogenic switch and progression to malignancy. ID4, a member of the ID (inhibitors of differentiation) family of proteins, is associated with a stem-like phenotype and poor prognosis in basal-like breast cancer. Moreover, ID4 favours angiogenesis by enhancing the expression of pro-angiogenic cytokines interleukin-8, CXCL1 and vascular endothelial growth factor. In the present study, we investigated whether ID4 protein exerts its pro-angiogenic function while also modulating the activity of tumour-associated macrophages in breast cancer. Methods We performed IHC analysis of ID4 protein and macrophage marker CD68 in a triple-negative breast cancer series. Next, we used cell migration assays to evaluate the effect of ID4 expression modulation in breast cancer cells on the motility of co-cultured macrophages. The analysis of breast cancer gene expression data repositories allowed us to evaluate the ability of ID4 to predict survival in subsets of tumours showing high or low macrophage infiltration. By culturing macrophages in conditioned media obtained from breast cancer cells in which ID4 expression was modulated by overexpression or depletion, we identified changes in the expression of ID4-dependent angiogenesis-related transcripts and microRNAs (miRNAs, miRs) in macrophages by RT-qPCR. Results We determined that ID4 and macrophage marker CD68 protein expression were significantly associated in a series of triple-negative breast tumours. Interestingly, ID4 messenger RNA (mRNA) levels robustly predicted survival, specifically in the subset of tumours showing high macrophage infiltration. In vitro and in vivo migration assays demonstrated that expression of ID4 in breast cancer cells stimulates macrophage motility. At the molecular level, ID4 protein expression in breast cancer cells controls, through paracrine signalling, the activation of an angiogenic programme in macrophages. This programme includes both the increase of angiogenesis-related mRNAs and the decrease of members of the anti-angiogenic miR-15b/107 group. Intriguingly, these miRNAs control the expression of the cytokine granulin, whose enhanced expression in macrophages confers increased angiogenic potential. Conclusions These results uncover a key role for ID4 in dictating the behaviour of tumour-associated macrophages in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-018-0990-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Donzelli
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Elisa Milano
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Magdalena Pruszko
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Andrea Sacconi
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy.,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Ilaria Iosue
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy.,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Elisa Melucci
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Enzo Gallo
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- Biostatistics Unit, Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Marcella Mottolese
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Alicja Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy. .,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Giovanni Blandino
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
48
|
Turashvili G, Lightbody ED, Tyryshkin K, SenGupta SK, Elliott BE, Madarnas Y, Ghaffari A, Day A, Nicol CJB. Novel prognostic and predictive microRNA targets for triple-negative breast cancer. FASEB J 2018; 32:fj201800120R. [PMID: 29812973 DOI: 10.1096/fj.201800120r] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Triple-negative breast cancers (TNBCs) account for ∼25% of all invasive carcinomas and represent a large subset of aggressive, high-grade tumors. Despite current research focused on understanding the genetic landscape of TNBCs, reliable prognostic and predictive biomarkers remain limited. Although dysregulated microRNAs (miRNAs) have emerged as key players in many cancer types, the role of miRNAs in TNBC disease progression is unclear. We performed miRNA profiling of 51 TNBCs by next-generation sequencing to reveal differentially expressed miRNAs. A total of 228 miRNAs were identified. Three miRNAs (miR-224-5p, miR-375, and miR-205-5p) separated the tumors based on basal status. Six miRNAs (high let-7d-3p, miR-203b-5p, and miR-324-5p; low miR-30a-3p, miR-30a-5p, and miR-199a-5p) were significantly associated with decreased overall survival (OS) and 5 miRNAs (high let-7d-3p; low miR-30a-3p, miR-30a-5p, miR-30c-5p, and miR-128-3p) with decreased relapse-free survival (RFS). On multivariate analysis, high expression of let-7d-3p and low expression of miR-30a were independent predictors of decreased OS and RFS. High expression of miR-95-3p was significantly associated with decreased OS and RFS in patients treated with anthracycline-based chemotherapy. Five miRNAs (let-7d-3p, miR-30a-3p, miR-30c-5p, miR-128-3p, and miR-95-3p) were validated by quantitative RT-PCR. Our findings unveil novel prognostic and predictive miRNA targets for TNBC, including a miRNA signature that predicts patient response to anthracycline-based chemotherapy. This may improve clinical management and/or lead to the development of novel therapies.-Turashvili, G., Lightbody, E. D., Tyryshkin, K., SenGupta, S. K., Elliott, B. E., Madarnas, Y., Ghaffari, A., Day, A., Nicol, C. J. B. Novel prognostic and predictive microRNA targets for triple-negative breast cancer.
Collapse
Affiliation(s)
- Gulisa Turashvili
- Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Department of Pathology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth D Lightbody
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Kathrin Tyryshkin
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Sandip K SenGupta
- Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Bruce E Elliott
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | | | - Abdi Ghaffari
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Andrew Day
- Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Christopher J B Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
49
|
Fang J, Li Y, Zhang J, Yan M, Li J, Bao S, Jin T. Correlation between polymorphisms in microRNA-regulated genes and cervical cancer susceptibility in a Xinjiang Uygur population. Oncotarget 2018; 8:31758-31764. [PMID: 28423658 PMCID: PMC5458245 DOI: 10.18632/oncotarget.15970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
Abstract
We explored the correlation between single nucleotide polymorphisms (SNPs) and susceptibility to cervical cancer (CC) in a Xinjiang Uygur population. Ten SNPs in eight miRNA-regulated genes were selected for analysis. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using unconditional logistic regression analysis. Multivariate logistic regression analysis was used to detect correlations between SNPs and CC. We found that minor allele "C" of rs512715 in NEAT1 was associated with an increased risk of CC in the allele, codominant, dominant, overdominant and log-additive models. Minor allele "C" of rs4777498 in CELF6 was associated with an increased risk of CC in the recessive model. Minor allele "C" of rs3094 in RNASE4 was associated with increased risk of CC in the allele, dominant and log-additive models. In clinical stage III/IV CC patients, minor allele "C" of rs3094 in RNASE4 and minor allele "C" of rs8004334 in JDP2 were associated with increased risk. In subtype squamous carcinoma CC patients, minor allele "C" of rs512715 in NEAT1 and minor allele "C" of rs3094 in RNASE4 were associated with increased risk. In subtype adenocarcinoma CC patients, minor allele "C" of rs3094 in RNASE was associated with increased risk.
Collapse
Affiliation(s)
- Jing Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ying Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Jiayi Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi, 710075, China
| | - Mengdan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi, 710075, China
| | - Jingjie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi, 710075, China
| | - Shan Bao
- Clinic of Gynecology and Obstetrics, Hainan Provincial People's Hospital, Haikou 570102, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi, 710075, China
| |
Collapse
|
50
|
Loke SY, Lee ASG. The future of blood-based biomarkers for the early detection of breast cancer. Eur J Cancer 2018; 92:54-68. [DOI: 10.1016/j.ejca.2017.12.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023]
|