1
|
Kazmerski TM, Moy C, Aliaj E, Hudson J, Wright B, Poranski M, Sjoberg J, Taylor-Cousar JL, Georgiopoulos AM, Ladores SL, Trimble A, Tangpricha V, Khan FN, Ramasamy R, Leitner DV, West NE, Santos RD, Stransky OM, Wilson A, Keller A, Jain R. Prioritizing sexual and reproductive health research and care for people with cystic fibrosis: A 2023 workshop report from the Cystic Fibrosis Foundation Sexual Health, Reproduction, and Gender (SHARING) Research Working Group. J Cyst Fibros 2024; 23:639-646. [PMID: 38485603 DOI: 10.1016/j.jcf.2024.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 08/31/2024]
Abstract
BACKGROUND To address sexual and reproductive health (SRH) concerns among people with cystic fibrosis(PwCF), the CF Foundation created the Sexual Health, Reproduction, and Gender Research (SHARING) Working Group. This report summarizes CF community SRH research priorities and workshop discussions/future study planning. METHODS Pre-workshop, we distributed a community prioritization survey on CF SRH research/care. During the workshop, we used results and reviewed existing research to establish research priorities and design studies to address identified knowledge gaps. RESULTS A total of 303 respondents (85 % PwCF, 15 % caregivers) completed the survey. Highly-rated SRH topics were: 1) effects of CF modulator therapy on sex hormones; 2) effects of sex hormones on CF; 3) fertility; 4) pregnancy; and 5) SRH/mental health. Twenty-four workshop participants established the need for further research on sex hormones and CF, optimizing SRH care provision, and fertility/ART. CONCLUSION SRH is an important and emerging area in CF and thoughtful consideration of community perspectives can ensure that future research is relevant and responsive.
Collapse
Affiliation(s)
- Traci M Kazmerski
- Department of Pediatrics, University of Pittsburgh School of Medicine, University Center, 120 Lytton Ave, Suite M060, Pittsburgh, PA 15213, United States; Center for Innovative Research on Gender Health Equity (CONVERGE), University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Christie Moy
- Cystic Fibrosis Foundation, Bethesda, MD 15213, United States.
| | - Enid Aliaj
- Cystic Fibrosis Foundation, Bethesda, MD 15213, United States.
| | - Jessica Hudson
- Cystic Fibrosis Foundation, Bethesda, MD 15213, United States.
| | - Brandon Wright
- Patient Partner, SHARING Research Working Group, Bethesda, MD 20814, United States
| | - Maddie Poranski
- Patient Partner, SHARING Research Working Group, Bethesda, MD 20814, United States
| | - Jacqui Sjoberg
- Patient Partner, SHARING Research Working Group, Bethesda, MD 20814, United States
| | | | - Anna M Georgiopoulos
- Massachusetts General Hospital, 55 Fruit St, Yawkey 6900, Boston, MA 02114, United States.
| | - Sigrid L Ladores
- School of Nursing, The University of Alabama at Birmingham, 1720 S. 2nd Ave., NB485-A, Birmingham, AL 35294, United States.
| | - Aaron Trimble
- Oregon Health and Sciences University, 3270 Southwest Pavilion Loop OHSU Physicians Pavilion, Portland, OR 97239, United States.
| | - Vin Tangpricha
- Department of Medicine, Emory University School of Medicine, 100 Woodruff Circle Atlanta, Atlanta, GA, 30322, United States.
| | - Farah Naz Khan
- University of Washington, 1959 NE Pacific St., Seattle, WA 98195, United States.
| | - Ranjith Ramasamy
- University of Miami, 1120 NW 14th Street, Miami, FL 33136, United States.
| | | | - Natalie E West
- The Johns Hopkins University, 1830 Building 5th Floor Pulmonary, Baltimore, MD 21287, United States.
| | - Rochelle Delos Santos
- Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, United States.
| | - Olivia M Stransky
- Center for Innovative Research on Gender Health Equity (CONVERGE), University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Alexandra Wilson
- National Jewish Health, 1400 Jackson St. J318 Denver, CO 80206, United States.
| | - Ashley Keller
- University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX 75390-8558, United States.
| | - Raksha Jain
- University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX 75390-8558, United States.
| |
Collapse
|
2
|
Pyle LC, Kim J, Bradfield J, Damrauer SM, D'Andrea K, Einhorn LH, Godse R, Hakonarson H, Kanetsky PA, Kember RL, Jacobs LA, Maxwell KN, Rader DJ, Vaughn DJ, Weathers B, Wubbenhorst B, Regeneron Genetics Center Research Team, Cancer Genomics Research Laboratory, Greene MH, Nathanson KL, Stewart DR. Germline Exome Sequencing for Men with Testicular Germ Cell Tumor Reveals Coding Defects in Chromosomal Segregation and Protein-targeting Genes. Eur Urol 2024; 85:337-345. [PMID: 37246069 PMCID: PMC10676450 DOI: 10.1016/j.eururo.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Testicular germ cell tumor (TGCT) is the most common cancer among young White men. TGCT is highly heritable, although there are no known high-penetrance predisposition genes. CHEK2 is associated with moderate TGCT risk. OBJECTIVE To identify coding genomic variants associated with predisposition to TGCT. DESIGN, SETTING, AND PARTICIPANTS The study involved 293 men with familial or bilateral (high risk; HR)-TGCT representing 228 unique families and 3157 cancer-free controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We carried out exome sequencing and gene burden analysis to identify associations with TGCT risk. RESULTS AND LIMITATIONS Gene burden association identified several genes, including loss-of-function variants of NIN and QRSL1. We identified no statistically significant association with the sex- and germ-cell development pathways (hypergeometric overlap test: p = 0.65 for truncating variants, p = 0.47 for all variants) or evidence of associations with the regions previously identified via genome-wide association studies (GWAS). When considering all significant coding variants together with genes associated with TGCT on GWAS, there were associations with three major pathways: mitosis/cell cycle (Gene Ontology identity GO:1903047: observed/expected variant ratio [O/E] 6.17, false discovery rate [FDR] 1.53 × 10-11), co-translational protein targeting (GO:0006613: O/E 18.62, FDR 1.35 × 10-10), and sex differentiation (GO:0007548: O/E 5.25, FDR 1.90 × 10-4). CONCLUSIONS To the best of our knowledge, this study is the largest to date on men with HR-TGCT. As in previous studies, we identified associations with variants for several genes, suggesting multigenic heritability. We identified associations with co-translational protein targeting, and chromosomal segregation and sex determination, identified via GWAS. Our results suggest potentially druggable targets for TGCT prevention or treatment. PATIENT SUMMARY We searched for gene variations that increase the risk of testicular cancer and found numerous new specific variants that contribute to this risk. Our results support the idea that many gene variants inherited together contribute to the risk of testicular cancer.
Collapse
Affiliation(s)
- Louise C Pyle
- Rare Disease Institute, Center for Genetic Medicine, Children's National Hospital, Washington, DC, USA; Department of Precision Medicine, George Washington University, Washington, DC, USA; Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Rama Godse
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rachel L Kember
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Linda A Jacobs
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kara N Maxwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Vaughn
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benita Weathers
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
3
|
Wang H, Li Y, Liu C, Lu T, Zhai Q, Wang H, Zhang J. Inhibition of VDAC1 prevents oxidative stress and apoptosis induced by bisphenol A in spermatogonia via AMPK/mTOR signaling pathway. J Toxicol Sci 2023; 48:109-119. [PMID: 36858637 DOI: 10.2131/jts.48.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Bisphenol A (BPA), one of the main components of industrial products, is clinically associated with the increased male infertility rate. However, the underlying molecular mechanism of the BPA-resulted reproductive toxicity is not fully elucidated. Voltage-dependent anion channel 1 (VDAC1) is a pore protein and located at the outer mitochondrial membrane. As a mitochondrial gatekeeper, VDAC1 controls the release of reactive oxygen species (ROS) and the metabolic and energetic functions of mitochondria, and serves as a critical player in mitochondrial-mediated apoptosis. Herein, we explored the role of VDAC1 in BPA-induced apoptosis of spermatogonia. The results showed that BPA increased spermatogonia cell line GC-1 spg cell apoptosis and intracellular ROS level, and suppressed AMPK/mTOR signaling pathway at a dose of 80 μM for 48 hr. Lentivirus-mediated short hairpin RNA targeting VDAC1 (Lv-shVDAC1) silenced VDAC1 expression and enhanced BPA-restricted cell viability. Knockdown of VDAC1 inhibited the apoptosis of BPA-treated GC-1 spg cells determined by with changes of the expressions of pro-apoptotic and anti-apoptotic proteins. Knockdown of VDAC1 also alleviated the BPA-triggered intracellular ROS generation and oxidative stress. Moreover, silence of VDAC1 increased AMPKα1/2 phosphorylation and suppressed mTOR phosphorylation under BPA exposure. Dorsomorphin, an AMPK inhibitor, partially abolished the effects of VDAC1 gene silencing on BPA-stimulated GC-1 spg cells. In conclusion, inhibition of VDAC1 attenuated the BPA-induced oxidative stress and apoptosis and promoted the cell viability in spermatogonia through modulating AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Haixu Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of The Fourth Military Medical University, China
| | - Yan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of The Fourth Military Medical University, China
| | - Chuang Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of The Fourth Military Medical University, China
| | - Tianxiang Lu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of The Fourth Military Medical University, China
| | - Qian Zhai
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of The Fourth Military Medical University, China
| | - Hongna Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of The Fourth Military Medical University, China
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of The Fourth Military Medical University, China
| |
Collapse
|
4
|
Cheng H, Yang S, Meng Q, Zheng B, Gu Y, Wang L, Song T, Xu C, Wang G, Han M, Shen L, Ding J, Li H, Ouyang J. Genetic analysis and intracytoplasmic sperm injection outcomes of Chinese patients with congenital bilateral absence of vas deferens. J Assist Reprod Genet 2022; 39:719-728. [PMID: 35119551 PMCID: PMC8995229 DOI: 10.1007/s10815-022-02417-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Congenital bilateral absence of the vas deferens (CBAVD) is a major cause of obstructive azoospermia and male factor infertility. CBAVD is mainly caused by mutations in the genes encoding CFTR (cystic fibrosis transmembrane conductance regulator) and ADGRG2 (adhesion G protein-coupled receptor G2). This study aimed to describe CFTR and ADGRG2 variations in 46 Chinese CBAVD patients and evaluated sperm retrieval and assisted reproductive technology outcomes. METHODS The CFTR and ADGRG2 genes were sequenced and analyzed by whole-exome sequencing (WES), and variations were identified by Sanger sequencing. Bioinformatic analysis was performed. We retrospectively reviewed the outcomes of patients undergoing sperm retrieval surgery and intracytoplasmic sperm injection (ICSI). RESULTS In total, 35 of 46 (76.09%) patients carried at least one variation in CFTR, but no copy number variants or ADGRG2 variations were found. In addition to the IVS9-5 T allele, there were 27 CFTR variations, of which 4 variations were novel and predicted to be damaging by bioinformatics. Spermatozoa were successfully retrachieved in 46 patients, and 39 of the patients had their own offspring through ICSI. CONCLUSION There are no obvious hotspot CFTR mutations in Chinese CBAVD patients besides the IVS9-5 T allele. Therefore, WES might be the best detection method, and genetic counseling should be different from that provided to Caucasian populations. After proper counseling, all patients can undergo sperm retrieval from their epididymis or testis, and most of them can have their own children through ICSI.
Collapse
Affiliation(s)
- Hongbo Cheng
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 Jiangsu China ,Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shenmin Yang
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qingxia Meng
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Bo Zheng
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yidong Gu
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Luyun Wang
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Tao Song
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu China
| | - Chunlu Xu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu China
| | - Gaigai Wang
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mutian Han
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Liyan Shen
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jie Ding
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Li
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Jun Ouyang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
5
|
García R, Falduti C, Clauzure M, Jara R, Massip-Copiz MM, de Los Ángeles Aguilar M, Santa-Coloma TA, Valdivieso ÁG. CFTR chloride channel activity modulates the mitochondrial morphology in cultured epithelial cells. Int J Biochem Cell Biol 2021; 135:105976. [PMID: 33845203 DOI: 10.1016/j.biocel.2021.105976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/10/2023]
Abstract
The impairment of the CFTR channel activity, a cAMP-activated chloride (Cl-) channel responsible for cystic fibrosis (CF), has been associated with a variety of mitochondrial alterations such as modified gene expression, impairment in oxidative phosphorylation, increased reactive oxygen species (ROS), and a disbalance in calcium homeostasis. The mechanisms by which these processes occur in CF are not fully understood. Previously, we demonstrated a reduced MTND4 expression and a failure in the mitochondrial complex I (mCx-I) activity in CF cells. Here we hypothesized that the activity of CFTR might modulate the mitochondrial fission/fusion balance, explaining the decreased mCx-I. The mitochondrial morphology and the levels of mitochondrial dynamic proteins MFN1 and DRP1 were analysed in IB3-1 CF cells, and S9 (IB3-1 expressing wt-CFTR), and C38 (IB3-1 expressing a truncated functional CFTR) cells. The mitochondrial morphology of IB3-1 cells compared to S9 and C38 cells showed that the impaired CFTR activity induced a fragmented mitochondrial network with increased rounded mitochondria and shorter branches. Similar results were obtained by using the CFTR pharmacological inhibitors CFTR(inh)-172 and GlyH101 on C38 cells. These morphological changes were accompanied by modifications in the levels of the mitochondrial dynamic proteins MFN1, DRP1, and p(616)-DRP1. IB3-1 CF cells treated with Mdivi-1, an inhibitor of mitochondrial fission, restored the mCx-I activity to values similar to those seen in S9 and C38 cells. These results suggest that the mitochondrial fission/fusion balance is regulated by the CFTR activity and might be a potential target to treat the impaired mCx-I activity in CF.
Collapse
Affiliation(s)
- Rocío García
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Camila Falduti
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Raquel Jara
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - María M Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - María de Los Ángeles Aguilar
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
7
|
Chou YH, Pan SY, Shao YH, Shih HM, Wei SY, Lai CF, Chiang WC, Schrimpf C, Yang KC, Lai LC, Chen YM, Chu TS, Lin SL. Methylation in pericytes after acute injury promotes chronic kidney disease. J Clin Invest 2021; 130:4845-4857. [PMID: 32749240 DOI: 10.1172/jci135773] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
The origin and fate of renal myofibroblasts is not clear after acute kidney injury (AKI). Here, we demonstrate that myofibroblasts were activated from quiescent pericytes (qPericytes) and the cell numbers increased after ischemia/reperfusion injury-induced AKI (IRI-AKI). Myofibroblasts underwent apoptosis during renal recovery but one-fifth of them survived in the recovered kidneys on day 28 after IRI-AKI and their cell numbers increased again after day 56. Microarray data showed the distinctive gene expression patterns of qPericytes, activated pericytes (aPericytes, myofibroblasts), and inactivated pericytes (iPericytes) isolated from kidneys before, on day 7, and on day 28 after IRI-AKI. Hypermethylation of the Acta2 repressor Ybx2 during IRI-AKI resulted in epigenetic modification of iPericytes to promote the transition to chronic kidney disease (CKD) and aggravated fibrogenesis induced by a second AKI induced by adenine. Mechanistically, transforming growth factor-β1 decreased the binding of YBX2 to the promoter of Acta2 and induced Ybx2 hypermethylation, thereby increasing α-smooth muscle actin expression in aPericytes. Demethylation by 5-azacytidine recovered the microvascular stabilizing function of aPericytes, reversed the profibrotic property of iPericytes, prevented AKI-CKD transition, and attenuated fibrogenesis induced by a second adenine-AKI. In conclusion, intervention to erase hypermethylation of pericytes after AKI provides a strategy to stop the transition to CKD.
Collapse
Affiliation(s)
- Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yu-Han Shao
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Mou Shih
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shi-Yao Wei
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chun-Fu Lai
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Claudia Schrimpf
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Kai-Chien Yang
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, and
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Wang H, An M, Liu Y, Hu K, Jin Y, Xu S, Chen B, Lu M. Genetic diagnosis and sperm retrieval outcomes for Chinese patients with congenital bilateral absence of vas deferens. Andrology 2020; 8:1064-1069. [PMID: 32020786 DOI: 10.1111/andr.12769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Congenital bilateral absence of the vas deferens (CBAVD) is a frequent cause of obstructive azoospermia. CBAVD is mainly caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene and is also related to the X-linked ADGRG2 (adhesion G protein-coupled receptor G2) gene. Genetic screening and counseling strategies for Chinese CBAVD populations remain controversial because the genetic background of CBAVD in Chinese population is largely unknown. OBJECTIVES In this study, we aimed to study the mutation spectrum of CFTR and ADGRG2 in a group of CBAVD patients and to evaluate sperm retrieval outcomes in a subset of CBAVD patients. MATERIALS AND METHODS Next-generation targeted sequencing was used to identify mutations in the CFTR and ADGRG2 genes in 38 CBAVD patients. In addition, we followed and analyzed nine of the 38 patients who were undergoing sperm retrieval surgery. RESULTS In total, 27 of 38 (71.05%) patients carried at least one likely pathogenic or pathogenic mutation in CFTR or ADGRG2. In addition to the IVS9-5T allele, 15 CFTR and 1 ADGRG2 mutations were identified, including 4 novel mutations. CFTR hot-spot mutations were not identified in our study. Spermatozoon was successfully obtained in all nine patients who underwent MESA or TESE surgery, but most patients had spermatozoa with relatively low motility and high abnormality rates. DISCUSSION AND CONCLUSION Except for the IVS9-5T allele, hot-spot mutations of CFTR may not exist in Chinese CBAVD patients. Therefore, next-generation targeted sequencing for whole CFTR and ADGRG2 gene may be the appropriate genetic testing method, and genetic counseling may be different from Caucasian populations. We observed a high success rate of sperm retrieval with relatively low motility and high abnormality rates in Chinese CBAVD patients. However, this is only a weak conclusion due to the small sample size.
Collapse
Affiliation(s)
- Hongxiang Wang
- Department of Urology and Andrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Miao An
- CarrierGene Biotechnologies Co., Ltd, Shanghai, China
| | - Yidong Liu
- Department of Urology and Andrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Hu
- Department of Urology and Andrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Jin
- Department of Urology and Andrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shiran Xu
- Department of Urology and Andrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Chen
- Department of Urology and Andrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mujun Lu
- Department of Urology and Andrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Ribeiro CMP, Lubamba BA. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation. Int J Mol Sci 2017; 18:ijms18010118. [PMID: 28075361 PMCID: PMC5297752 DOI: 10.3390/ijms18010118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease.
Collapse
Affiliation(s)
- Carla M P Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bob A Lubamba
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|