1
|
Grossen TL, Bunnam A, Cohen RE. Seasonal mRNA Expression of Circadian Clock Genes in the Lizard Brain. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:278-284. [PMID: 39660507 DOI: 10.1002/jez.2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Seasonally breeding animals undergo physiological and behavioral changes to time reproduction to occur during specific seasons. These changes are regulated by changing environmental conditions, which may be communicated to the brain using the central circadian clock. This clock consists of a daily oscillation in the expression of several core genes, including period (per), cryptochrome (cry), circadian locomotor output cycles kaput (clock), and basic helix-loop-helix ARNT-like protein 1 (bmal1). We began to examine seasonal regulation of four core circadian clock genes in a dissection of the reptile brain containing the hypothalamus-per1, cry1, bmal1 and clock. Our study focused on examining mRNA expression in the morning and compared levels between breeding and nonbreeding animals. We found that per1 and bmal1 mRNA expression was highest in the nonbreeding compared to breeding season in the anole hypothalamus. We also found that cry1 mRNA expression was higher in the female compared to the male anole hypothalamus. We found support for the idea that core circadian genes play a role in regulating changes between the seasons and/or sexes, although more work is needed to elucidate what processes might be differentially regulated. To our knowledge, this is the first examination of the expression of these four genes in the reptilian brain.
Collapse
Affiliation(s)
- Taylor L Grossen
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota, USA
| | - Alexus Bunnam
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota, USA
| |
Collapse
|
2
|
Ali R, Zhen Y, Zanna X, Lin J, Zhang C, Ma J, Zhong Y, Husien HM, Saleh AA, Wang M. Impact of Circadian Clock PER2 Gene Overexpression on Rumen Epithelial Cell Dynamics and VFA Transport Protein Expression. Int J Mol Sci 2024; 25:12428. [PMID: 39596493 PMCID: PMC11594904 DOI: 10.3390/ijms252212428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The circadian gene PER2 is recognized for its regulatory effects on cell proliferation and lipid metabolism across various non-ruminant cells. This study investigates the influence of PER2 gene overexpression on goat rumen epithelial cells using a constructed pcDNA3.1-PER2 plasmid, assessing its impact on circadian gene expression, cell proliferation, and mRNA levels of short-chain fatty acid (SCFA) transporters, alongside genes related to lipid metabolism, cell proliferation, and apoptosis. Rumen epithelial cells were obtained every four hours from healthy dairy goats (n = 3; aged 1.5 years; average weight 45.34 ± 4.28 kg), cultured for 48 h in vitro, and segregated into control (pcDNA3.1) and overexpressed (pcDNA3.1-PER2) groups, each with four biological replicates. The study examined the potential connection between circadian rhythms and nutrient assimilation in ruminant, including cell proliferation, apoptosis, cell cycle dynamics, and antioxidant activity and the expression of circadian-related genes, VFA transporter genes and regulatory factors. The introduction of the pcDNA3.1-PER2 plasmid drastically elevated PER2 expression levels by 3471.48-fold compared to controls (p < 0.01), confirming effective overexpression. PER2 overexpression resulted in a significant increase in apoptosis rates (p < 0.05) and a notable reduction in cell proliferation at 24 and 48 h post-transfection (p < 0.05), illustrating an inhibitory effect on rumen epithelial cell growth. PER2 elevation significantly boosted the expression of CCND1, WEE1, p21, and p16 (p < 0.05) while diminishing CDK4 expression (p < 0.05). While the general expression of intracellular inflammation genes remained stable, TNF-α expression notably increased. Antioxidant marker levels (SOD, MDA, GSH-Px, CAT, and T-AOC) exhibited no significant change, suggesting no oxidative damage due to PER2 overexpression. Furthermore, PER2 overexpression significantly downregulated AE2, NHE1, MCT1, and MCT4 mRNA expressions while upregulating PAT1 and VH+ ATPase. These results suggest that PER2 overexpression impairs cell proliferation, enhances apoptosis, and modulates VFA transporter-related factors in the rumen epithelium. This study implies that the PER2 gene may regulate VFA absorption through modulation of VFA transporters in rumen epithelial cells, necessitating further research into its specific regulatory mechanisms.
Collapse
Affiliation(s)
- Rahmat Ali
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Yongkang Zhen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Xi Zanna
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Jiaqi Lin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Chong Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Jianjun Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Yuhong Zhong
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Hosameldeen Mohamed Husien
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Ahmad A. Saleh
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China;
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| |
Collapse
|
3
|
Giannetto C, Arfuso F, Rizzo M, Giudice E, Calapai F, Guercio A, Macaluso G, Giacchino I, Piccione G, Cannella V. Persistence of clock gene expression in peripheral blood in dogs maintained under different photoperiod schedules. Chronobiol Int 2024; 41:369-377. [PMID: 38326980 DOI: 10.1080/07420528.2024.2315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Dogs are the common pets adopted by humans, and their circadian behavior and physiology are influenced by human habits. In many families, there is a change of lifestyle with respect to the natural daylight (NDL) cycle. Exposure to constant light disrupts some central and peripheral circadian rhythms. The aim of the present study was to improve the knowledge about the circadian changes of clock components in the peripheral blood in dogs housed under NDL and constant light (LL) conditions. Blood samples were collected on five female Beagle dogs (2 years old, 14 ± 0.5 kg) every 4 hours for a 24-hour period during an NDL (Sunrise 05:05 h - Sunset 20:55 h) and 24-hour period of constant light (LL). Blood samples were stored in a PAX gene Blood RNA Tube, real-time RT-quantitative polymerase chain reaction was performed to determine Clock, Per1-3, and Cry1-2 gene expression. During the NDL, all genes investigated showed robust diurnal daily rhythmicity. During the constant light, only Clock maintained its daily rhythmicity. Clock acrophase was observed close to sunrise (ZT 0) and was statistically different from the other clock genes except for Per3. Per3 daily oscillations were not statistically significant. No differences were observed among the clock genes tested in the amplitude and robustness values. Our results can be considered preliminary data to provide new insights into the adaptation mechanism of the canine peripheral circadian clock. The persistence of Clock gene expression during the LL indicated the presence of an endogenously generated signal in blood. Because peripheral blood is an easily accessible sample in dogs, the analysis of clock gene expression in this tissue could be useful to investigate the adaptive capacity of this species housed in different environmental conditions linked to the owner's lifestyle.
Collapse
Affiliation(s)
- Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Fabrizio Calapai
- Department of Chemical, Pharmaceutical and Environmental Scieces, University of Messina, Messina, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Giusi Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Ilenia Giacchino
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Vincenza Cannella
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| |
Collapse
|
4
|
Dardente H, Simonneaux V. GnRH and the photoperiodic control of seasonal reproduction: Delegating the task to kisspeptin and RFRP-3. J Neuroendocrinol 2022; 34:e13124. [PMID: 35384117 DOI: 10.1111/jne.13124] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Synchronization of mammalian breeding activity to the annual change of photoperiod and environmental conditions is of the utmost importance for individual survival and species perpetuation. Subsequent to the early 1960s, when the central role of melatonin in this adaptive process was demonstrated, our comprehension of the mechanisms through which light regulates gonadal activity has increased considerably. The current model for the photoperiodic neuroendocrine system points to pivotal roles for the melatonin-sensitive pars tuberalis (PT) and its seasonally-regulated production of thyroid-stimulating hormone (TSH), as well as for TSH-sensitive hypothalamic tanycytes, radial glia-like cells located in the basal part of the third ventricle. Tanycytes respond to TSH through increased expression of thyroid hormone (TH) deiodinase 2 (Dio2), which leads to heightened production of intrahypothalamic triiodothyronine (T3) during longer days of spring and summer. There is strong evidence that this local, long-day driven, increase in T3 links melatonin input at the PT to gonadotropin-releasing hormone (GnRH) output, to align breeding with the seasons. The mechanism(s) through which T3 impinges upon GnRH remain(s) unclear. However, two distinct neuronal populations of the medio-basal hypothalamus, which express the (Arg)(Phe)-amide peptides kisspeptin and RFamide-related peptide-3, appear to be well-positioned to relay this seasonal T3 message towards GnRH neurons. Here, we summarize our current understanding of the cellular, molecular and neuroendocrine players, which keep track of photoperiod and ultimately govern GnRH output and seasonal breeding.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Dopamine D1 Receptor-Mediated Regulation of Per1, Per2, CLOCK, and BMAL1 Expression in the Suprachiasmatic Nucleus in Adult Male Rats. J Mol Neurosci 2021; 72:618-625. [PMID: 34751875 DOI: 10.1007/s12031-021-01923-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
Photic and non-photic inputs are reported to affect clock gene expressions and behavioral activities in the SCN. However, it is not known whether dopaminergic input mediates these regulatory effects on clock genes. The present study examined the molecular effects of dopamine D1 agonist on Per1, Per2, CLOCK, and Bmal1 expressions in the SCN and its effect on behavioral activities to determine the role of dopamine D1 receptor in regulation of these gene expressions and behavioral activities in adult male Wistar rats. To examine the molecular effects of dopamine D1 agonist day and night, we injected 20 mg/kg SKF38393 to the first group of rats at 6 a.m. and the second group at 6 p.m. We also injected saline to the third and fourth groups of rats at 6 a.m. and 6 p.m. as control groups. All rats were sacrificed 2 h following the injections. The real-time PCR technique was used to evaluate the clock gene expression. In addition, to examine the effects of dopamine D1 agonists on behavioral activities, we injected 20 mg/kg SKF38393 to SKF receiving group and saline to control group. The behavioral activities of the rats were monitored on the running wheel for 21 days, 1 week following the injections. SKF injections increased the Per2 and CLOCK expressions in the daytime and significantly decreased the Per1 and Bmal1 expressions. However, at night, SKF injections increased only Per2 expressions significantly and decreased the Per1, CLOCK, and Bmal1 genes expressions. Both saline receiving groups showed that all gene expressions were significantly higher except Per2 during nighttime. SKF injection increased the running wheel activity during nighttime significantly. Based on the obtained result, clock gene expression and behavioral activities in adult male Wistar rats may be altered or monitored by administration of exogenous dopamine.
Collapse
|
6
|
Khodasevich D, Tsui S, Keung D, Skene DJ, Revell V, Martinez ME. Characterizing the modern light environment and its influence on circadian rhythms. Proc Biol Sci 2021; 288:20210721. [PMID: 34284625 PMCID: PMC8292753 DOI: 10.1098/rspb.2021.0721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Humans have largely supplanted natural light cycles with a variety of electric light sources and schedules misaligned with day-night cycles. Circadian disruption has been linked to a number of disease processes, but the extent of circadian disruption among the population is unknown. In this study, we measured light exposure and wrist temperature among residents of an urban area during each of the four seasons, as well as light illuminance in nearby outdoor locations. Daily light exposure was significantly lower for individuals, compared to outdoor light sensors, across all four seasons. There was also little seasonal variation in the realized photoperiod experienced by individuals, with the only significant difference occurring between winter and summer. We tested the hypothesis that differential light exposure impacts circadian phase timing, detected via the wrist temperature rhythm. To determine the influence of light exposure on circadian rhythms, we modelled the impact of morning and night-time light exposure on the timing of the maximum wrist temperature. We found that morning and night-time light exposure had significant but opposing impacts on maximum wrist temperature timing. Our results demonstrate that, within the range of exposure seen in everyday life, night-time light can delay the onset of the maximum wrist temperature, while morning light can lead to earlier onset. Our results demonstrate that humans are minimizing natural seasonal differences in light exposure, and that circadian shifts and disruptions may be a more regular occurrence in the general population than is currently recognized.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Susan Tsui
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Darwin Keung
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Debra J. Skene
- Chronobiology, University of Surrey, Guildford, Surrey, UK
| | - Victoria Revell
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | |
Collapse
|
7
|
Zhao SQ, Gao Y, Zhang Y, Yang XP, Yang Z. cAMP/PKA/CREB signaling pathway-mediated effects of melatonin receptor genes on clock gene expression in Bactrian camel ovarian granulosa cells. Domest Anim Endocrinol 2021; 76:106609. [PMID: 33636446 DOI: 10.1016/j.domaniend.2021.106609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/12/2023]
Abstract
The cAMP/PKA/CREB pathway is involved in the regulation of melatonin during important physiological activities in mammals. However, the regulation of circadian clock genes in ovarian granulosa cells remains unclear. Herein, we determined the relationship between melatonin and biological clock genes using cultured Bactrian camel ovarian granulosa cells. The enzyme-linked immunosorbent assays showed that the cAMP content was reduced when melatonin receptor (MT) genes or cryptochrome (Cry) genes were overexpressed; the quantitative polymerase chain reaction and western blot analyses revealed that the expression levels of all circadian clock genes (GNB2, PKA, CREB, Per1/2/3, and Clock) except Cry1/2 decreased significantly at 24 h. Cellular immunolocalization analysis showed that melatonin receptors were localized in the cell membrane and cytoplasm; the CRY protein was mainly localized in the nucleus. Overall, our findings indicated that the rhythmic regulation of ovarian granulosa cells was consistent with the regulatory action of the central circadian clock.
Collapse
Affiliation(s)
- S-Q Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Y Gao
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Y Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China.
| | - X-P Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Z Yang
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
The Circadian Physiology: Implications in Livestock Health. Int J Mol Sci 2021; 22:ijms22042111. [PMID: 33672703 PMCID: PMC7924354 DOI: 10.3390/ijms22042111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Circadian rhythms exist in almost all types of cells in mammals. Thousands of genes exhibit approximately 24 h oscillations in their expression levels, making the circadian clock a crucial regulator of their normal functioning. In this regard, environmental factors to which internal physiological processes are synchronized (e.g., nutrition, feeding/eating patterns, timing and light exposure), become critical to optimize animal physiology, both by managing energy use and by realigning the incompatible processes. Once the circadian clock is disrupted, animals will face the increased risks of diseases, especially metabolic phenotypes. However, little is known about the molecular components of these clocks in domestic species and by which they respond to external stimuli. Here we review evidence for rhythmic control of livestock production and summarize the associated physiological functions, and the molecular mechanisms of the circadian regulation in pig, sheep and cattle. Identification of environmental and physiological inputs that affect circadian gene expressions will help development of novel targets and the corresponding approaches to optimize production efficiency in farm animals.
Collapse
|
9
|
Zhao W, Yuan T, Fu Y, Niu D, Chen W, Chen L, Lu L. Seasonal differences in the transcriptome profile of the Zhedong white goose (Anser cygnoides) pituitary gland. Poult Sci 2020; 100:1154-1166. [PMID: 33518074 PMCID: PMC7858147 DOI: 10.1016/j.psj.2020.10.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
In animals, the adaptation to breed at the time of greatest survival of the young is known as seasonal reproduction. This is mainly controlled by the photoperiod, which stimulates the hypothalamic-pituitary-gonadal axis and starts the breeding season. Herein, we have determined the seasonal changes in gene expression patterns of Zhedong white geese pituitary glands under a natural photoperiodism, conducted at autumn equinox (AE), winter solstice (WS), spring equinox (SE), and summer solstice (SS). Pairwise comparisons of WS vs. AE, SE vs. WS, SS vs. SE, and AE vs. SS resulted in 1,139, 33, 704, and 3,503 differently expressed genes, respectively. When compared with SS, AE showed downregulation of genes, such as vasoactive intestinal peptide receptor, prolactin receptor, and thyroid hormone receptor beta, whereas gonadotropin-releasing hormone II receptor was upregulated, indicating that these genes may be responsible for the transition from cessation to egg laying. In addition, the expression levels of 5 transcription factors (POU1F1, Pitx2, NR5A1, NR4A2, and SREBF2) and 6 circadian clock-associated genes (Clock, Per2, ARNTL2, Eya3, Dio2, and NPAS2) also changed seasonally. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that “response to oxidative stress” and steroid biosynthesis pathway also participate in regulating the reproduction seasonality of geese. Overall, these results contribute to the identification of genes involved in seasonal reproduction, enabling a better understanding of the molecular mechanism underlying seasonal reproduction of geese.
Collapse
Affiliation(s)
- Wanqiu Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Taoyan Yuan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan Fu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong Niu
- College of Animal Science and Technology, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, Zhejiang, China
| | - Weihu Chen
- Department of Animal Husbandry and Veterinary, Xiangshan County Agricultural and Rural Bureau, Ningbo 315700, China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
10
|
Light-exposure at night impairs mouse ovary development via cell apoptosis and DNA damage. Biosci Rep 2019; 39:BSR20181464. [PMID: 30962269 PMCID: PMC6499499 DOI: 10.1042/bsr20181464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 11/17/2022] Open
Abstract
The alternation of light and dark rhythm causes a series of physiological, biochemical and metabolic changes in animals, which also alters the growth and development of animals, and feeding, migration, reproduction and other behavioral activities. In recent years, many studies have reported the effects of long-term (more than 6 weeks) illumination on ovarian growth and development. In the present study, we observed the damage, repair and apoptosis of ovarian DNA in a short period of illumination. The results showed that, in short time (less than 2 weeks) illumination conditions, the 24-h light treatment caused the reduction of total ovarian follicle number and down-regulation of circadian clock related genes. Furthermore, the changed levels of serum sex hormones were also detected after 24-h light exposure, of which the concentrations of LH (luteinizing hormone), FSH (follicle-stimulating hormone) and E2 (estradiol) were increased, but the concentration of PROG (progesterone) was decreased. Moreover, 24-h light exposure increased the expression of DNA damage and repair related genes, the number of TUNEL and RAD51 positive cells. These results indicated that 24-h light exposure for 4, 8 and 12 days increased DNA damage and cell apoptosis, thereby affecting the development of ovary.
Collapse
|